
Formalization of Security Properties:
Enforcement for MAC Operating Systems and

Verification of Dynamic MAC Policies
Jérémy Briffaut, Jean-François Lalande, Christian Toinard

Laboratoire d’Informatique Fondamentale d’Orléans
ENSI de Bourges – Université d’Orléans

88 bd Lahitolle, 18020 Bourges cedex, France
{jeremy.briffaut,jean-francois.lalande,christian.toinard}@ensi-bourges.fr

Abstract—Enforcement of security properties by Operating
Systems is an open problem. To the best of our knowledge, the
solution presented in this paper1 is the first one that enables
a wide range of integrity and confidentiality properties to be
enforced. A unified formalization is proposed for the major
properties of the literature and new ones are defined using
a Security Property Language. Complex and precise security
properties can be defined easily using the SPL language but the
system includes 13 predefined protection templates. Enforcement
of the requested properties is supported through a compiler that
computes all the illegal activities associated with an existing MAC
policy. Thus, we provide a SPLinux kernel that enforces all
the requested Security Properties. When the MAC policies are
dynamic, it becomes difficult to compute all the possible illegal
activities. Our paper proposes a solution to that problem. A
meta-policy includes evolution constraints for the MAC policies.
A verification tool computes the requested security properties
that are defined through the SPL language. That tool provides
the illegal activities for all the possible MAC dynamic policies.
Thus, the security administrator can verify the MAC policies
and can optimize the requested security properties. It helps
him to evaluate the memory and processor load associated with
the enforcement of the request security properties. Efficiency is
presented for protecting high-interaction honeypots.

Index Terms—Security Properties, Protection, Mandatory Ac-
cess Control, Verification

I. INTRODUCTION

Security of the Operating Systems usually relies on Discre-
tionary Access Control (DAC): access permissions are set by
users on files they own, namely at the user’s discretion. This
access control model has proven to be fragile [2].

That is why access decisions have been moved from user
control to a Mandatory Access Control (MAC) associated with
a protection policy that describes how subjects and objects are
allowed to interact. For example, the NSA’s Security-Enhanced
Linux (SELinux) has been developed as part of the Linux
kernel. It implements a strong and highly configurable MAC.
Nevertheless these MAC systems can only guarantee simple
security properties (as a process cannot access a file). Complex
security properties cannot be ensured by this approach. For

1This paper is an extended work of the paper presented at SECURWARE
2009 [1].

example, existing MAC systems do not control information
flows involving multiple processes and resources.

The literature shows there is no approach to easing the
formalization of the required security properties. The authors,
to date, consider only specific properties but do not provide
a generic method to formalize a large range of security
properties related to integrity or confidentiality. Enforcement
is also limited to a subset of the required properties. To the
best of our knowledge, our proposal is the first one that 1)
enables a large set of security properties to be defined and 2)
provides a generic method for enforcing all the properties that
are supported by our Security Property Language.

13 security templates are presented in this paper that for-
malize some well know security properties of the literature and
propose new ones. We consider that these properties are the
most important ones and some of them have been tested on a
honeypot. But, new ones can be defined very easily, either by
the definition of a new property or by the composition of the
proposed template. Moreover, the 13 proposed templates are
very flexible. A security administrator can easily reuse them
to express multiple concrete security properties. He can define
a concrete property with specific values for the arguments of
the template.

An extended Linux kernel, called SPLinux, is available to
control all the concrete security properties that are requested
by the security administrator. This is the first solution to
enforce such a large and precise set of security properties.
A security administrator uses our SPL compiler to compute
two kinds of inputs: 1) the MAC policy available at the target
Operating System and 2) the requested concrete properties
defined using the SPL language. The compiler produces all
the illegal activities that are allowed by the target MAC policy.
Then, the Linux kernel uses a userland application that controls
all the illegal activities. Thus, a system call fails according to
1) the DAC policy, 2) the MAC policy and 3) the required
concrete properties. So, enforcement of the requested security
properties is proposed for a target MAC system e.g. SELinux.

When MAC policies are dynamic, the MAC policy states
can become infinite. In order to be able to control those
states, evolution constraints are required to reduce the possible

325

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

states. A meta-policy approach has been proposed in previous
works [3]. However, the security administrator needs a tool to
help him decide if the meta-policy is safe and if the related
MAC policy states can be computed efficiently by the SPL
compiler. Our verification tool takes two kinds of inputs: the
meta-policy that controls the MAC policies and the required
concrete security properties. Our verification system provides
at least one decision showing an illegal activity. It can also
provide, for a given MAC meta-policy, all the possible illegal
activities associated with the enforcement of each property.
Thus, the security administrator can decide either to 1) remove
a security property that cannot be violated or 2) add a better
security property that reduces the number of illegal activities or
3) modify the meta-policy in order to minimize the overhead.

A real application is proposed for protecting high interaction
honeypots. Our high interaction honeypot is a highly dis-
tributed system. A single meta-policy protects our distributed
honeypot against corruption of the various nodes. Despite
more than two years of experimentation and numerous in-
trusions, the target Operating System has never been com-
promised. This large scale experiment have been precisely
described in [4]. Even if this experiment is not a formal
proof that the meta-policy protects the honeypot against all
the possible attacks, we think that a system that has never
been compromised while hosting malicious users suggests the
efficiency of the proposed protection mechanism.

II. RELATED WORK

Under Linux, there are at least four security models avail-
able to ensure a Mandatory Access Control policy: SELinux,
GRSecurity, SMACK and RSBAC. But none of these solutions
can ensure a large set of security properties. At best they
can ensure one or two limited properties, such as the Bell
and LaPadula confidentiality property or the Biba integrity
property. Under the BSD family, solutions such as Trusted BSD
(available within the following Operating Systems: FreeBSD,
OpenBSD, MacOSX, NetBSD) provide more or less the same
kind of Mandatory Access Control as SELinux. But, there
again they fail to ensure the great majority of requested
security properties.

The major limitation is associated with a transitive closure
of allowed system calls that enables a security property to
be violated. All the existing approaches fail to manage the
causal relationships between the system calls correctly, thus
authorizing illegal activities.

Several works address how security properties can be en-
forced within an Operating System. [5] considers only protec-
tion policies and enforcement mechanisms, such as those in
MAC systems. Thus, the author does not deal with information
flows and more generally does not deal with confidentiality or
integrity but rather safety. Solutions such as [6], [7] consider
noninterference between privileged and unprivileged entities,
which is only one specific property. However, they cannot
formalize classes of security properties, such as the prevention
of flows between privileged entities.

Many solutions deal with the detection of violations of
security properties. Solutions such as [8] detect violation
of both confidentiality and integrity between privileged and
unprivileged entities. Again, those solutions consider only
noninterference and cannot enforce other classes of security
properties.

[9], [10] detects the flows violating a DAC policy. This
is a limited property. Moreover, its practical usage is very
limited for DAC systems since a DAC policy is not safe and
the related detections include numerous false positives and
false negatives.

[11] counts more than 150 publications related to
information-flow security. The majority deal with noninter-
ference. The other part aims at enforcing information-flow
policies using program analysis techniques. Information flow
analysis in a program language is not suited to enforcing
protection between several processes that are using the services
of an Operating System.

Finally, many works address the conformance of policies.
For example, [12] verifies that XACML access control policies
really match the Bell and LaPadula, Biba or Chinese Wall
models. But, those solutions cannot manage a large range of
security properties and do not deal with dynamic policies.
[13] considers the verification of SELinux policies. However,
it does not provide any administration language to ease the
formalization of the required security properties, nor does it
manage dynamic MAC policies.

The HiStar Operating System [14] associates each objet
or subject with an information flow level. Four different
information levels are proposed. For example, a subject with
level 1, cannot read an object with level 3. In practice, those
levels are very close to capabilities. In HiStar a capacity is
a collection of read and write levels that must be consistent
with the requested object level. The problem of HiStar is that
it is very close to the Bell and Lapadula model and it suffers
from the same limitations.

The Flume Operating System [15] proposes a reduced
form of MAC policy. They consider two kinds of processes,
unconfined and confined. A confined process cannot access
the file systems through dedicated system calls. The control of
unconfined processes requires a dedicated MAC policy between
security contexts. In contrast with SELinux, it is not a fine
grain MAC system. Flume is in essence very close to HiStar
since it uses capabilities as security contexts. However, Flume
does not control information flows.

Asbestos [16] reuses the idea behind HiStar by considering
four different levels of information. The protection rules can
only express pairwise relationship patterns. Again, information
flows involving multiple interactions and processes cannot be
controlled easily.

Works related to the enforcement of dynamic policies, such
as [17], [18], generally consider how to detect simple conflicts
within dynamic policies. For example, they detect if it is
safe to remove or add a role or a context, otherwise the
considered access control could become invalid, conflicting
or unsupported. So, they address conflicting rules but do not

326

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

enforce a large set of security properties.
To the best of our knowledge, even recent works such as

[16], [15], [14], [19], [20], [21] do not provide any administra-
tion language that enables a large range of security properties
to be easily formalised. All the Operating Systems described in
the literature fail to guarantee the requested security properties.
The security of Operating Systems thus remains an open
problem. The literature does not address the enforcement of
precise and flexible security properties related to integrity
and confidentiality. Finally, work on dynamic policies mainly
studies how to deal with conflicting protection rules. However,
available tools are not able to compute the illegal activities
for dynamic MAC policies in order to enforce a large set of
security properties. Finally, there has been, as yet, no real
experiment. Our paper addresses all the above points.

III. ABSTRACT SECURITY LANGUAGE

In order to formalize security properties associated with
the activities of the Operating System, let us firstly define
the model of the target MAC systems. That model fits the
majority of MAC systems. Some of them do not present
certain of the modelized functionalities, such as the control
of process transitions. In such cases, our formalization is
reduced to the functionalities provided by the target MAC
system. However, our modelling is adapted for a MAC system
providing a fine grain control such as SELinux. For other MAC
systems, extensions can be implemented to be able to enforce
all the required security properties. Details about how to
extend existing Linux systems to enforce the required security
properties are available in [22]. In that paper, an abstract
Security Property Language is provided to model the required
security properties. Hereafter, a concrete Security Property
Language uses that abstract language and applications are
given for the SELinux systems.

Since the causal dependencies between the system calls and
the formalization of the system activities are poorly addressed
in the literature, this section defines all the notions of our
abstract SPL. In the next section IV, the abstract SPL language
enables us to formalize 13 security templates.

A. System representation

A system is modellised by a set of security contexts per-
forming operations on other security contexts. The security
contexts identify the various entities of the system. Let us
denote as SC the whole set of security contexts existing in
a given system. Two sets of security contexts are considered
(SC = SCs∪SCo). SCo is the set of security contexts acting
as an object: each sco ∈ SCo characterizes a passive entity
(file, socket, . . .) on which system calls can be performed.
SCs is the set of security contexts acting as a subject: each
scs ∈ SCs characterizes an active entity, i.e. processes, that
can perform actions, i.e. system calls. For example, let us
consider the Apache webserver reading an HTML file, the
Apache process is identified as a subject (apache_t ∈ SCs)
and the file is considered as an object (var_www_t ∈ SCo).

Let us denote as IS (Interaction Set) the set of all the
elementary operations, i.e. system calls, existing in the system
(read, write, execute, . . .). An interaction it represents a
subject scs ∈ SCs executing an operation eo ∈ IS on a
given context sct ∈ SC. An interaction is a 3-uple defined
by:

it = (scs ∈ SCs, sct ∈ SC, eo ∈ IS)

noted:
scs

eo−→ sct

When an operation is performed, there are two conse-
quences from the security point of view. The interaction can
produce:
• an information transfer noted sc1 > sc2;
• a transition scs

trans−−−→ sct.
An information transfer conveys information from con-

text sc1 to sc2 using a write-like operation or a
read-like operation. For example, the read interaction
scapache

file:read−−−−−−→ scvar_www corresponds to the information
transfer scvar_www > scapache and the write interaction
scapache

file:write−−−−−−→ scvar_www corresponds to the information
transfer scapache > scvar_www. A precise definition about read
and write-like operations is given later in section III-D.

A transition enables a process to move from context scs to
context sct. When the process is running in the context sct, it
acquires new privileges associated with sct. For example, the
scinit process launches the Apache web server using a forked
process that transits using transition scinit

process:transition−−−−−−−−−−−−→
scapache.

B. Causal dependency

The state of the art related to causality shows that there is
no relevant definition of causal dependency to express security
properties. The difficulty lies in having a satisfactory estimator
of causality between interactions. A new definition of causal
dependency is given in this paper between a source and a
target context. Two interactions are causally dependant if:
• those interactions share a common security context
• the first interaction occurs before the end of the second

interaction
• the first interaction modifies the state of the shared

security context
• the second interaction modifies the state of the final

security context
The figure 1 gives an example of a causal dependency

between two interactions it1 and it2. This example clearly
shows that:

1) sc2 is a shared context,
2) it1 finishes before the end of it2,
3) an information flow occurs from sc1 to sc2,
4) an information flow occurs from sc2 to sc3.
Definition 3.1: The causal dependency between two inter-

action it1 and it2, noted it1 � it2, is defined by

327

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 1. Read and Write interaction / Causal dependency

sc2 ∈ it1,
sc2 ∈ it2, sc3 ∈ it2,
datesc2(begin(it1)) 6 datesc2(end(it2)),
it1 modifies the state of the shared context sc2,
it2 modifies the state of the security context sc3.

That definition overestimates the probability that the infor-
mation can flow from the source to the target. However, it
is a satisfactory estimator which only takes into account the
possible causal relationships. Our abstract SPL efficiently uses
that causal dependency to make the formalization of advanced
security properties easier.

C. System activities

In this section, an abstract language is proposed to describe
the activities of the different processes. That language uses our
definition of causal dependency to model the activities present-
ing indirect flows. Several operators enable those activities to
be combined.

A system activity is defined by a set of interactions. We
propose to distinguish four activity classes:

• The interaction class is the class where each activity
includes a single interaction that can permit direct flows.

• The sequence class contains activities composed of se-
quences of interactions. It enables indirect flows involving
several interactions to be modelled.

• The correlation class is the class where activities are a
combination of interactions and/or sequences.

• The last class of interactions are the remaining activities
which are not expressed by our language, i.e. activities
that cannot be observed by the target Operating System.

1) Sequence class: A sequence of interaction is a transitive
closure of causally dependent interactions. It models indirect
flows.

Definition 3.2: A sequence of n interactions, noted
scsource ⇒ sctarget, from a context scsource to sctarget is
a transitive closure of n− 1 causal dependencies

s.a.

n ≥ 2,
scsource ∈ it1,
sctarget ∈ itn,
∀k = 1..n− 1, itk � itk+1

As performed in section III-A we distinguish two kinds of
sequences, first, an information flow where each interaction is
an information transfer, second a transition sequence where
each interaction of the sequence is a transition. Formally, we
obtain:

Definition 3.3: An information flow between scsource and
sctarget, noted scsource � sctarget, is a sequence scsource ⇒
sctarget

s.a.

{
scsource ⇒ sctarget = {it1, . . . , itn},
∀k = 1..n, itk = sck > sck+1

Definition 3.4: A transition sequence between scsource and
sctarget, noted scsource ⇒trans sctarget, is a sequence
scsource ⇒ sctarget

s.a.

{
scsource ⇒ sctarget = {it1, . . . , itn},
∀k = 1..n, itk = sck

trans−−−→ sck+1

Using the example in figure 1, the sequence
{(sc1, sc2, {file : write}), (sc3, sc2, {file : read})} is
an information flow sc1 � sc3 composed of two transfers:
sc1 > sc2 and sc2 > sc3. In the case of two transitions, we
obtain the transition sequence sc1 ⇒trans sc3.

2) Correlation class: A correlation is a combination of
several sequences and/or interactions. It represents a complex
activity of the system. For example, a user can access an
Apache information if that user transits to the Apache context
and then reads the Apache configuration . This activity is com-
posed of one sequence of transition scuser ⇒trans scapache

and one interaction scapache_conf_t > scapache. To describe
the relationships between the elements of the correlation, we
define three operators ◦, ∧ and ∨.

For each sequence f = sc1
eo1−−→ . . .

eon−1−−−−→ scn, noted
sc1 ⇒ scn, let us define a function F which associates the
last context scn to the first context sc1, that is: F (sc1) = scn.

Definition 3.5: Let f = scf1 ⇒ scfn and g = scg1 ⇒ scgm

two sequences where scfn
= scg1 . Let F and G be the

corresponding functions.
The composition of two sequences f and g corresponds
to a global sequence scf1 ⇒ (scfn = scg1) ⇒ scgm

that respects the equation: G ◦ F (scf1) = G[F (scf1)] =
G(scfn

) = G(scg1) = scgm
. We note g ◦ f this new sequence

scf1 ⇒ scgm
.

Definition 3.6: Let a and b two interactions, sequences or
correlations, (a ∧ b) is observed if a is observed and b is
observed.

Definition 3.7: Let a and b two interactions, sequences or
correlations, (a ∨ b) is observed if a is observed or b is
observed.

328

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

activity ::= [description ” = ”] correlation

correlation ::= (correlation ∧ correlation)
|(correlation ∨ correlation)
|composition

composition ::= (composition ◦ composition)
|terminal

terminal ::= sequence|interaction

interaction ::= sc
eo−→ sc|sc > sc|sc trans−−−→ sc

sequence ::= sc⇒ sc|sc� sc|sc⇒trans sc

sc ::= ” security context ”
eo ::= ” elementary operation ”

description ::= ” name of activity ”

Fig. 2. Grammar of activities

We give two particular definitions for the correlation class
using the defined operators. The first definition gives a subject
access to a special privilege on a given object.

Definition 3.8: Let seq = scsource ⇒ scinter be an interac-
tion sequence and it = scinter

eo−→ sctarget, the composition
(it ◦ seq) overestimates the possibility of the privilege access
eo on sctarget by scsource. It is noted: scsource ⇒eo sctarget.

The second definition represents a subject access to the
information of a given object:

Definition 3.9: Let seq = scacces ⇒ scinter be a sequence
of interactions and flow = scinfo � scinter an information
flow, the correlation (seq∧flow) overestimates the possibility
of accessing the information contained in scinfo by scacces.
It is noted scacces V scinfo.

These two correlations overestimate the possibility of ac-
cessing a privilege or an information. We call these two
cases an indirect access to privilege/information. We define
two subcases that improve the estimation: if the sequence
of interaction seq = scacces ⇒ scinter is a sequence of
transitions seq = scacces Vtrans scinter this means that the
process has a direct access to the privilege/information. We
call this case a direct access to privilege/information.

These operators are used to define the grammar of the
language that describes all the possible activities of the
three classes (interactions, sequences, correlation), presented
in figure III-C2. With this grammar we can express complex
activities, as shown in the following example: the activity
((it ◦ seqtrans1) ∧ (seqtrans2 ∧ (flow ∨ seqint)) begins with
a transition sequence seqtrans1 that permits the interaction
it; the activity is also composed of a sequence of transitions
seqtrans2 and a sequence of information transfer flow or a
sequence of interactions seqint.

3) Activities overview: Table I gives an overview of all
possible activities modelled in this section. These activities
are separated into three classes: interactions, sequences, and

correlations. The top part of the Table describes these three
classes without any assumption about the nature of each
operation. In the bottom part, the activities that characterize
information flow, transition and privilege access are summed-
up with their associated notations.

D. Complementary definitions

Additional functions are needed to model the security
properties that will be presented in section IV. These functions
mainly characterise the operations of IS.

Definition 3.10: is_write_like:IS → {true, false} is the
function that says if an operation modifies an object and can
be assimilated to the write operation.

Definition 3.11: is_read_like:IS → {true, false} is the func-
tion that says if an operation gets information from an object
and can be assimilated to the read operation.

Definition 3.12: is_execute_like:IS → {true, false} is the
function that says if an operation can execute an object.

Definition 3.13: is_add_like:IS → {true, false} is the func-
tion that says if an operation can add information to an object
without being able to read the previous written information in
this object.

IV. SECURITY PROPERTIES

This section specifies the proposed template of security
properties using the activity language defined in the previous
section III. These 13 templates include the most known secu-
rity properties of the literature but include also new security
properties in order to show how powerful our language is. This
set of templates is not limited. Other templates can be easily
defined using the concrete SPL that implements the abstract
SPL.

The 13 proposed properties are the ones that we setup on
our honeypot to experiment them [4]. The obtained results
are briefly described in section VIII. The classical properties
of the literature will not be new for the reader: integrity,
confidentiality and the well known variants like the Biba
integrity or the Bell and LaPadula confidentiality property are
examples that enters the proposed model. It shows how the
model is able to clearly describe these properties. At the end
of the section, the Table II gives an overview of the properties
with a name and refers to their formal definition. This is crucial
to have such a formal definition of the properties and to be
able to show, in the section V how the SPL language will
implement these properties.

A. Integrity

This section proposes four types of integrity security prop-
erties from the literature:

• Object integrity, as defined in [23]
• Biba Integrity, which implements the Biba model [24]
• Integrity of subjects, which implements noninterference

between processes [8]
• Domain Integrity, which implements a chroot

329

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE I
ACTIVITIES OVERVIEW

Interaction Sequence Correlation

Interaction Interactions sequence Access to information

N
eu

tr
al sc1

eo−→ sc2 scsource ⇒ sctarget scsource V sctarget

Privilege access
scsource ⇒eo sctarget

C
ha

ra
ct

er
is

at
io

n

Information transfer Information flow Acces to information by transition
sc1 > sc2 scsource � sctarget scsource Vtrans sctarget

Transition Sequence of transitions

sc1
trans−−−−→ sc2 scsource ⇒trans sctarget

Privilege access by transition
scsource ⇒trans_eo sctarget

1) Object integrity: The integrity of a system object can
be altered when a write operation is performed on this object.
This object integrity property ensures that no process of the
system is able to modify a resource, either directly or by a
sequence of interactions. The direct protection of an object is
easily obtained with a MAC mechanism. Nevertheless, better
integrity protection is required against sequences of operations.
For example, if a user uses an exploit on Apache that leads
Apache to modify a file of /var/www, this is a sequence of
operations that violates the integrity of /var/www.

Property 4.1: The integrity of an object sco1 ∈ SCO, noted
P4.1(scs1, sco1), is respected by a subject scs1 ∈ SCS if:

∀eo ∈ IS s.a. scs1
eo−→ sco1,¬is_write_like(eo)

∧

∀eo ∈ IS s.a. scs1 ⇒eo sco1,¬is_write_like(eo)

Property 4.2: The integrity of a set of objects SCO1 ⊂
SCO, noted P4.2(SCS1, SCO1), is respected by a set of
subjects SCS1 ⊂ SCS if:

∀sco1 ∈ SCO1, ∀scs1 ∈ SCS1, P4.1(scs1, sco1)

2) Biba Integrity: The BIBA model [24] defines three rules
to guarantee the integrity of the system:

1) To allow scs1 to have read access to an object sco1, its
integrity level must be less than or equal to the object
integrity level;

2) To allow scs1 to have write access to an object sco1,
its integrity level must be greater than or equal to the
object integrity level;

3) To allow scs1 to invoke a subject scs2, its integrity level
must be greater than or equal to the invoked subject
integrity level;

A level of integrity is needed for each entity of the system:
let I : SC → N be a function that gives the level of integrity
of a security context.

Property 4.3: The Biba integrity of an object sco1 ∈ SCO,
noted P4.3(scs1, sco1), is respected by a subject scs1 ∈ SCS

if:

∀eo ∈ IS s.a.
{

scs1
eo−→ sco1

is_read_like(eo)
, I(scs1) 6 I(sco1)

∀eo ∈ IS s.a.
{

scs1
eo−→ sco1

is_write_like(eo)
, I(scs1) > I(sco1)

∀eo ∈ IS s.a.
{

scs1
eo−→ sco1

is_execute_like(eo)
, I(scs1) > I(sco1)

Property 4.4: For a system, composed by a set of contexts
SC, the integrity of this system, noted P4.4(SC), is respected
if:

∀scs, sco ∈ SCS × SCO, P4.3(scs, sco)

3) Integrity of Subjects: The integrity of subjects cor-
responds to the non-interference property [25]. The non-
interference property uses the notation of commutativ-
ity. Two interactions it1 = (scs1, sco1, eo1) and it2 =
(scs2, sco1, eo2) are commutative if the operation eo1 does
not change what the context scs2 sees of sco1. For example,
the operations eo1 = {file : write} and eo2 = {file : read}
are not commutative, and the operations eo1 = {file :
read} and eo2 = {file : read} are commutative. Let
commute : IS×IS → {true, false} the function that returns
the commutativity of two operations using the table defined
in [26].

Property 4.5: The integrity of a subject scs1 ∈ SCS , noted
P4.5(scs1, scs2), is respected by a subject scs2 ∈ SCS if:

∀sco1 ∈ SCO, ∀eo1, eo2 ∈ IS s.a.

{
scs1

eo1−−→ sco1

scs2
eo2−−→ sco1

,

commute(eo1, eo2)

∀sco1 ∈ SCO, ∀eo1, eo2 ∈ IS s.a.
{

scs1 ⇒eo1 sco1

scs2 ⇒eo2 sco1
,

commute(eo1, eo2)

330

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Property 4.6: For a system, composed by a set of sub-
ject contexts SCS , the integrity of these subjects, noted
P4.6(SCS), are guaranteed if:

∀scs1, scs2 ∈ SCS , P4.5(scs1, scs2)

4) Domain Integrity: The property of domain integrity is
linked to the notion of chroot available in operating systems
or software. A set of contexts in a chroot are isolated from
other outside contexts. Any interaction with a context outside
the chroot (the domain) is a violation of the domain property.

Property 4.7: Let chrootin ⊂ SC be a set of contexts
representing a domain.
The integrity of the domain chrootin, noted P4.7(chrootin),
is respected if:

∀eo ∈ IS
∀sc1, sc2 ∈ SC

, s.a. sc1
eo−→ sc2, sc1 ∈ chrootin =⇒ sc2 ∈ chrootin

∨
sc2 ∈ chrootin =⇒ sc1 ∈ chrootin

B. Confidentiality

The confidentiality property prevents unwanted accesses.
Thus, information flow cannot be operated in order to steal
information from an object. Four confidentiality properties are
declined in this section:
• Confidentiality of system contexts
• Bell & LaPadula confidentiality
• Bell & LaPadula restrictive confidentiality
• Data access consistency
1) Confidentiality of system contexts: This property guar-

antees that a context sc2 is confidential for the context sc1 if
no information flow is possible from sc1 to sc2.

Property 4.8: The confidentiality of sc2 ∈ SC vs sc1 ∈
SC, noted P4.8(sc1, sc2), is guaranteed if: @(sc2 > sc1)

@(sc2 � sc1)
@(sc1 V sc2)

Property 4.9: For a system, composed of a set of contexts
SC, the confidentiality of a subset of contexts SC1 ⊂ SC vs
a subset SC2 ⊂ SC, noted P4.9(SC1, SC2), is guaranteed if:

∀sc1, sc2 ∈ SC1 × SC2, P4.8(sc1, sc2)

2) Bell & LaPadula confidentiality: The Bell & LaPadula
model uses a level of classification for the subjects and a sen-
sitivity level for objects [27]. Two rules have to be respected
in order to guarantee the Bell & LaPadula confidentiality
property:

1) if a subject context performs a read operation on an
object, its level of classification has to be greater than
the sensitivity level of the object;

2) if an information flows from the object o2 to o1, the
sensitivity level of o2 must be greater than that of o1.

Let class : SC → N the function that associates a subject with
its classification level and for an object its sensitivity level.

Property 4.10: The Bell & LaPadula confidentiality prop-
erty of an object sco1 ∈ SCO, noted P4.10(sco1, scs), is
respected by a subject scs ∈ SCS if:

∃scs > sco1, class(scs) > class(sco1)

∀sco2 ∈ SCO s.a. sco2 � sco1, class(sco1) > class(sco2)

Property 4.11: For a system, composed of a set of contexts
SC, the Bell & LaPadula confidentiality of the system, noted
P4.11(SC), is guaranteed if:

∀sco, scs ∈ SCO × SCS , P4.10(sco, scs)

3) Bell & LaPadula restrictive confidentiality: In contrast
with the previous property, the Bell & LaPadula restrictive
confidentiality provides a finer grain protection. Three rules
are needed to express this property:

1) if a subject context reads an object, its level of classifi-
cation has to be greater than the sensitivity level of the
object;

2) if a subject context adds information to an object (for
example, appending text with no possible read and
modification of the existing data on a text file), its level
of classification has to be less than the sensitivity level
of the object;

3) if a subject context modifies an object (for example,
read and write classification on a text file), its level of
classification has to be equal to the sensitivity level of
the object;

Property 4.12: The Bell & LaPadula restrictive confiden-
tiality property of an object sco ∈ SCO, noted P4.12(sco, scs),
is respected by a subject scs ∈ SCS if:

∃scs > sco1, class(scs) > class(sco)

∀eo ∈ IS s.a.
{

scs
eo−→ sco

is_add_like(eo)
, class(scs) 6 class(sco)

∃sco1 > scs, class(scs) = class(sco)

Property 4.13: For a system, composed of a set of contexts
SC, the Bell & LaPadula restrictive confidentiality of the
system, noted P4.13(SC), is guaranteed if:

∀sco, scs ∈ SCO × SCS , P4.12(sco, scs)

4) Data access consistency: This property aims to guar-
antee that the access to the data is consistent between direct
access (one interaction) and a sequence of interactions that
leads to data access. In contrast with data access consistency
for DAC systems [10], our property provides a better approach
since a MAC policy can be safe. In case of MAC systems, if a
context cannot read a file directly, there is no reason for it to
be able to read the information using a transition to another
context.

Property 4.14: The data access consistency property of two
contexts sc1, sc2 ∈ SC2, noted P4.14(sc1, sc2), is respected
if:

sc1 V sc2 implies sc2 > sc1

331

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Property 4.15: For a system, composed of a set of contexts
SC, the data access consistency property, noted P4.15(SC), is
guaranteed if:

∀sc1, sc2 ∈ SC,P4.14(sc1, sc2)

C. Privilege abuse

This class of security property is designed to prevent a
malicious use of the privileges available on a system. We
distinguish five possible types of privilege abuse:
• The separation of duties
• No context transition
• Trusted path execution
• Policy abuse
• Meta-policy abuse
1) The Separation of Duties: The property of the separation

of duties is defined in [28] by the idea that an object created
by one person cannot be executed by that same person. A
more general definition is given in [29]: several operations
performed on a same object must be done so by different
users. This property must take into account that:
• a subject can perform operations directly on the subject

using an interaction: in this case we call the property the
separation of direct duties;

• a subject can use a sequence of operations to perform the
operation on the object: in this case we call the property
the separation of extended duties.

Let us give a more general definition of the separation of
duties associated with two sets of operations: OP1 and OP2.
Then, this general definition is illustrated with the definition
given in [28] that concerns the special write operation.

Property 4.16: Let OP1, OP2 ⊂ IS2 two sets of ele-
mentary operations. A system composed of contexts SC =
SCS ∪ SCO respects the separation of duties of OP1 and
OP2 if:

∀scs ∈ SCS

∀sco ∈ SCO

∀eo1, eo2 ∈ IS
s.a.

it1 = scs

eo1−−→ sco

it2 = scs
eo2−−→ sco

eo1 ∈ OP1

(it2 ◦ it1)

, eo2 6∈ OP2

∧
it3 = scs ⇒eo1 sco

it4 = scs ⇒eo2 sco

eo1 ∈ OP1

(it4 ◦ it3)

, eo2 6∈ OP2

The definition of [28], called the separation of execute/write
duties property can be implemented with OP2 = {execute}
and OP1 = {write}:

Property 4.17: The separation of execute/write duties prop-
erty on an object sco ∈ SCO for a subject scs ∈ SCS , noted
P4.17(scs, sco), is respected if:

∀eo1, eo2 ∈ IS s.a.

it1 = scs

eo1−−→ sco

it2 = scs
eo2−−→ sco

is_write_like(eo1)
(it2 ◦ it1)

,

¬is_execute_like(eo2)

Property 4.18: The separation of execute/write duties prop-
erty for a subject scs ∈ SCS and all possible related objects
of the system, noted P4.18(scs), is respected if:

∀sco ∈ SCO, P4.17(scs, sco)

Property 4.19: The separation of extended execute/write
duties property on an object sco ∈ SCO for a subject
scs ∈ SCS , noted P4.19(scs, sco), is respected if:

∀eo1, eo2 ∈ IS s.a.

it1 = scs⇒eo1 sco
it2 = scs⇒eo2 sco
is_write_like(eo1)
(it2 ◦ it1)

,

¬is_execute_like(eo2)

Property 4.20: For a system, composed of a set of contexts
SC, the separation of execute/write duties property of the
system, noted P4.20(SC), is guaranteed if:

∀scs, sco ∈ SCS × SCO, P4.17(scs, sco) ∧ P4.19(scs, sco)

2) No Context transition: Let us define a new property
called “No context transition” that guarantees that a process
will not be able to transit to another context. This can be
considered as an integrity property for the process running in
this context; it can also be seen as a sort of confidentiality
for this process that cannot change its context and bring
information into another context.

Property 4.21: The no context transition of a subject scs1

with scs2, noted P4.21(scs1, scs2), is guaranteed if:{
¬scs1

trans−−−→ scs2

¬scs1 ⇒trans scs2

A more general version of this property protects one security
context that cannot transit to any other context. For example,
this property can be applied to the Apache web server that
will not be allowed to transit to any other context in case of
an attack trying to exploit a vulnerability.

Property 4.22: The no context transition of a subject scs1,
noted P4.22(scs1), is guaranteed if:

∀scs2 ∈ SCS s.a. P4.21(scs1, scs2)

3) Trusted path execution: This notion of trust refers to the
administrators that trust the executables they have installed
but does not trust the executables installed by other users.
To use this property, a set of contexts noted TPE is built by
the administrator to group all the software that he wants to
authorize on the system. Any file that can be executed outside
of this set breaks the trusted path execution property.

Property 4.23: Let TPE ⊂ SC the set of the trusted
contexts. The system guarantees the trusted path execution
property, noted P4.23(TPE), if:

∀sc1, sc2 ∈ SC,∀eo ∈ IS s.a
{

sc1
eo−→ sc2

is_execute_like(eo)
,

sc2 ∈ TPE

332

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

4) Policy abuse: A MAC policy can be deployed on a
system. This policy, noted POL, defines all the allowed
interactions on the system. Any operation not included in this
policy is a violation attempt.

Property 4.24: Let POL = {it1, . . . , itn} be a MAC policy.
A system guarantees the respect of the policy abuse property,
noted P4.24(SC,POL), if:

∀sc1, sc2 ∈ SC,∀eo ∈ IS s.a. it = sc1
eo−→ sc2,

it ∈ POL

5) Meta-policy abuse: This property guarantees that a
meta-policy, defined in section VI, is respected. A meta-policy
constrains a policy by evolution constraints. The policy of
the system is then dynamic but respects the meta-policy. An
interaction is a violation of the meta-policy if no policy that
respects the meta-policy contains this interaction.

Property 4.25: Let MP be a meta-policy. A MAC policy
POL that respects MP is noted POL ∈ MP . A system
guarantees the respect of the meta-policy abuse property, noted
P4.25(SC,MP), if:

∀sc1, sc2 ∈ SC
∀eo ∈ IS

, s.a. it = sc1
eo−→ sc2,

∃POL ∈MP s.a. it ∈ POL

In practice, this property is hard to check as the control
of dynamic MAC policies is complex and can require a high
overhead. Section VII covers this problem.

D. Security properties sum-up

Table II gives an overview of the described security prop-
erties. Each property has a precise name, a reference number
in the model, a name in the concrete SPL implementation and
a short explanation about the property. With these 13 security
properties, 13 protection templates will be presented in the
next section that gives a real implementation using the concrete
SPL language. Nevertheless, it is important to remember that
the SPL language can handle more security properties and that
only the 13 most important properties are given in this paper.

V. CONCRETE SECURITY PROPERTY LANGUAGE

Our abstract SPL language needs a concrete syntax that can
be compiled as a protection language. Instead of giving the
complete concrete syntax, which is pointless since this imple-
ments the previous abstract language, this section describes
how each template is expressed using our concrete SPL.

Our concrete SPL enables us to define security functions,
i.e. templates. Calling those functions corresponds to the
instantiation of the protection template to the target Operating
Systems. Each template is very powerful. It enables multiple
protection properties to be easily expressed using only specific
values for the arguments. Moreover, each concrete security
property makes it possible to compute the whole set of
illegal activities in contradiction with the requested security
properties, as presented in section VII.

Fig. 3. Enforcement of Security Properties

Fig. 4. Example policy for the web server Apache

Those templates are written using a concrete language
called SPL, for Security Properties Language, that we have
created specifically to be able to quickly write new security
properties. A compilation of our concrete SPL language pro-
duces all illegal activities i.e. violating one of the security
properties [22]. An enforcement process uses those illegal
activities and communicates with the SPLinux kernel in order
to guarantee the requested properties as represented in figure 3.
See [22] to have details about the enforcement architecture that
complements the classical DAC and the SELinux protections.

Through the compilation of the function calls, all the
violations of the security properties found in the MAC policy
are added to the list of illegal activities. These activities can
be used to:
• correct the MAC policy if possible;
• to prevent or detect these violations if they occur.
Hereafter, two types of examples are given for each prop-

erty:
• a simplified example associated with a web server policy,

presented on figure 5;
• a complete MAC policy associated with a SELinux host.

The whole policy is impossible to represent in this paper
as the number of contexts approaches 2,000 and there are
more than 100,000 interactions.

A. Apache policy description

The policy presented in figure 4 is a simplified version of
the policy that is used for Apache and for the logging of the
users in the system. The users can log in the system using a
local console under the login_d context or via SSH under the
ssh_d context. Then, a user can transit into the user_d context
or to the administrator_d context in order to run commands
from the shell. Note that a SSH user is not allowed to become
an administrator in this policy.

333

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE II
SECURITY PROPERTIES SUM-UP

Property Specificity Reference Rule Goal

Integrity Objects Integrity P4.2(SCS1, SCO1) integrity A set of contexts must not modify another set of contexts
Biba Integrity P4.4(SC) int_biba Biba security model applied to a set of contexts
Subjects Integrity P4.6(SCS) int_subject Non-interference property applied on a set of subjects (process)
Domain Integrity P4.7(chrootin) int_domain Chroot for a set of contexts (virtual chroot)

Confi- Confidentiality P4.9(SC1, SC2) confidentiality A set of contexts must not obtain information from another set
dentiality Bell&Lapadula P4.11(SC) conf_blp Bell & LaPadulla security model applied to a set of contexts

Bell&Lapadula restrictive P4.13(SC) conf_blpr Bell & LaPadulla restrictive security model applied to a set of contexts
Data Access Consistency P4.15(SC) conf_data A context must not obtain information that it cannot obtain directly

Duties Separation P4.20(SC) duties_separation A context must not modify and then execute another context
Privilege No Context Transition P4.22(scs1) no_transition A context must not access another context by transition
Abuse Trusted Path Execution P4.23(TPE) tpe All trusted executables contexts must grouped in a specific set

Policy Abuse P4.24(SC,POL) conformity The violation attempts of the local policy are forbidden
Meta-Policy Abuse P4.25(SC,MP) meta-conformity The possible violation attempts of the meta-policy are forbidden

The administrator can setup the Apache configuration (read
and write permissions on apache_conf_t) and can transit to
the context apache_d in order to launch the service. Then,
Apache can read its configuration and use the files under the
var_www_t context.

A web service context webserv_d enables remote users to
get information from their account. From that web service, a
user authenticates and retrieves personal information (but he
cannot modify it) located in the user_info_t context. Apache
is able to transit in the special context webserv_d to obtain
the permission to read the information of the user or of the
administrator. Of course, a user logged in the system with a
shell can also read or write his personal information typed
with the user_info_t context.

The administrator is also allowed to transit to the webserv_d
context, because he needs to manage the web service. The
administrator is not supposed to run processes in this context
that would read the personal information of the users (which
represents a violation of confidentiality).

B. Integrity

The integrity property P4.1(sc1, sc2) corresponds to the SPL
function of listing 1. This function takes two arguments: a
set of subject contexts and a set of object contexts. For each
write operation eo between a subject context sc1 and an object
context sc2, the function checks that such an interaction does
not exist in the policy. The same check is done considering a
write privilege access (c.f. definition 3.8).

Listing 1. Integrity check function of P4.1(sc1, sc2)
1 define integrity($sc1 IN SCS, $sc2 IN SCO) [
2 Foreach $eo IN is_write_like(IS)
3 SA { $sc1−> { $eo } $sc2 } ,
4 { not(exist()) };
5 Foreach $eo IN is_write_like(IS)
6 SA { $sc1 => { $eo } $sc2 } ,
7 { not(exist()) };
8];

1) Apache example: Using the policy of figure 4, the
administrator can express that he wants to guarantee that
any user using SSH will not be able to modify the Apache

configuration (as only the local root is supposed to do so).
Moreover, the administrator is not supposed to modify the
personal information of the user (user_info_t).

Listing 2. Integrity security properties for Apache
1 integrity($sc1:="ssh_d", $sc2:="apache_conf_t");
2 integrity($sc1:="admin_d", $sc2:="user_info_t");

2) Operating system example: For a whole operating sys-
tem, the first rule of listing 3 guarantees that no user is able to
modify the binaries of the system, the second rule guarantees
that no user can modify the configuration files of the system
in /etc. That integrity function prevents any ordinary user
from modifying those files. This kind of guarantee cannot be
obtained by means of a classical integrity checker like AIDE,
TRIPWIRE. Nevertheless, the root user, logged locally on the
host is able to modify these files.

Listing 3. Integrity security properties example
1 integrity($sc1:="user_u:user_r:user.∗_t", $sc2:=".∗:.∗:.∗_exec_t");
2 integrity($sc1:="user_u:user_r:user.∗_t", $sc2:=".∗:.∗:.∗etc_t");

C. Domain integrity

The integrity property P4.7(chrootin) corresponds to the
listing function 4. This property allows it to virtually chroot
a set of contexts.

Listing 4. Domain integrity check function of P4.7(chrootin)
1 define int_domain($CHROOT IN SC) [
2 Foreach $eo IN IS, Foreach $sc1 IN $CHROOT, Foreach $sc2

IN SC
3 SA { $sc1 −> { $eo } $sc2 } ,
4 { $sc2 IN $CHROOT };
5 Foreach $eo IN IS, Foreach $sc1 IN SCS, Foreach $sc2 IN

$CHROOT
6 SA { $sc1 −> { $eo } $sc2 } ,
7 { $sc1 IN $CHROOT };
8];

1) Apache example: This property prevents an exploit
against Apache enabling a user to gain root privileges, for
example.

Listing 5. Domain integrity for apache
1 int_domain($CHROOT:="apache.∗", "webserv_d", ".∗info_t");

334

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

This property cannot be enforced at start-up. During the
boot sequence, the property is not available. It is enforced
after the starting of the Apache process. Moreover, it prevents
an attacker from restarting the web server. The principle of
guaranteeing online properties is described in [22].

2) Operating system example: A user can be chrooted in his
home directory. Again, this system instantiates this property
after the boot sequence and the login of the user (otherwise,
the user cannot log into the system). Thus, an exploit in the
user domain cannot leave that domain.

Listing 6. Domain integrity security property example
1 int_domain($CHROOT:="user_u:.∗:.∗");

D. Confidentiality

The confidentiality property P4.8(sc1, sc2) corresponds to
the function of listing 7. This property checks that no infor-
mation transfer or flow exists between two contexts.

Listing 7. Confidentiality check function of P4.8(sc1, sc2)
1 define confidentiality($sc1 IN SCS, $sc2 IN SCO) [
2 SA { $sc2 > $sc1 },
3 { not(exist()) };
4 SA { $sc2 >> $sc1 },
5 { not(exist()) };
6];

1) Apache example: For Apache, the configuration files of
the web server must be confidential for the users entering
the system via SSH. Moreover, the administrator must not
access the personal information of the users in the context
user_info_t. In contrast, the users must not access the personal
data of the administrator.

Listing 8. Confidentiality for Apache
1 confidentiality($sc1 := "ssh_d", $sc2 := "apache_conf_t");
2 confidentiality($sc1 := "admin_d", $sc2 := "user_info_t");
3 confidentiality($sc1 := "user_d", $sc2 := "admin_info_t");

2) Operating system example: The goal is to protect the
files /etc/shadow which contain the hashed user passwords, the
special file /dev/mem that gives access to the memory space of
the processes. For software such as Firefox, the confidentiality
property prevents any leak of information of the cookies and
cache files. For example, if the user launches a malware, the
malware will be unable to read the Firefox cookies or cache.

Listing 9. Confidentiality security properties example
1 confidentiality($sc1:="user_u:user_r:user.∗_t", $sc2:=system_u:

object_r:shadow_t);
2 confidentiality($sc1:="user_u:user_r:user.∗_t", $sc2:=system_u:

object_r:memory_device_t);
3
4 confidentiality($sc1:=user_u:user_r:user_t, $sc2:=user_u:object_r:

user_mozilla_cookie_t);
5 confidentiality($sc1:=user_u:user_r:user_t, $sc2:=user_u:object_r:

user_mozilla_cache_t);

E. Data access consistency

The data consistency property P4.14(sc1, sc2) corresponds
to the function of listing 10. This property allows indirect
access only if direct access is allowed.

Listing 10. Data access consistency check function P4.14(sc1, sc2)
1 define conf_data($sc1 IN SC, $sc2 IN SC) [
2 SA { $sc1 >>> $sc2 },
3 { exist[$sc2 > $sc1] };
4];

1) Apache example: For Apache, the property of listing 11
controls the access to personal information files for all the
users. The user will be able to access to his personal informa-
tion (user_info_t) using the web service, because he is allowed
to read it directly. In contrast, he cannot access the personal
information of the administrator using the web service (or
using a vulnerability of the web service) because the user has
no direct permission on the admin_info_t context.

Listing 11. Data access for apache
1 conf_data($sc1 := "user_d", $sc2 := ".∗_info_t");

2) Operating system example: The property of listing 12
protects the system from the users. For example, if a user
becomes root, he will not be able to read or write the
/etc/shadow file, because he has no direct permission on it.

Listing 12. Data access consistency security property example
1 conf_data($sc1:="user_u:user_r:user.∗_t" , $sc2 := "system_u:.∗:.∗");

F. Duties separation

The separation of duties property P4.18(scs) corresponds
to the function of listing 13. This function controls the
modification of a file and prevents its execution. A special
security property has been written for bash scripts and is
explained in the example of section V-F2.

Listing 13. Duties separation check function of P4.18(scs) and a special
security property for interpreted scripts
1 define duties_separation($sc1 IN SC) [
2 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_execute_like(IS), Foreach $sc2 IN SCO
3 SA { ($sc1 −> { $eo2 } $sc2 o $sc1 −> { $eo1 }

$sc2) } ,
4 { not(exist()) };
5];
6 define dutiesseparationbash($sc1 IN SC) [
7 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_execute_like(IS), Foreach $eo3 IN is_read_like(IS),
8 Foreach $sc2 IN SCO, Foreach $sc3 IN SC,
9 Foreach $a1 IN ACT, Foreach $a2 IN ACT

10 SA { ([$a2 := $sc1 −> { $eo3 } $sc2] o ([$a1 :=
$sc1 −> { $eo2 } $sc3] o $sc1 −> { $eo1 }
$sc2)) } ,

11 { INHERIT($a2 , $a1) };
12];

1) Apache example: The property of listing 14 prevents the
execution of a file written by Apache in /var/www. It avoids
the exploit of a vulnerability against Apache that force Apache
to write a script and then to execute it.

Listing 14. Duties separation for Apache
1 duties_separation($sc1 := "apache_d");

2) Operating system example: For a system, the property
of listing 15 restricts the rights of a user: if the user downloads
a program, he will not be able to execute it. The second
rule of listing 15 prevents the writing of a script and its
execution. This is a special rule because the binary file that
is executed is not the script but the bash shell itself that

335

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

reads the modified script. The function dutiesseparationbash
of listing 4.18 checks that the created bash process is inherited
from the user process (to identify the user that launched the
script) and prevents the reading of the script by the bash
process.

Listing 15. Duties separation security property example
1 duties_separation($sc1:="user_u:user_r:user.∗_t");
2 dutiesseparationbash($sc1:="user_u:user_r:user.∗_t");

G. Trusted path execution

The trusted path execution property P4.23(TPE) corre-
sponds to the function of listing 16. The first function defines
the set of binaries that are executables. The second function
adds a set of source context that are allowed to execute the
binaries and to read the libraries of the set TPE (because an
executed binary reads libraries).

Listing 16. Trusted path execution check function of P4.23(TPE)
1 define tpe($TPE IN SC) [
2 Foreach $sc1 IN SCS, Foreach $sc2 IN SC, Foreach $eo IN

is_execute_like(IS)
3 SA { $sc1 −> { $eo } $sc2 } ,
4 { ($sc2 IN $TPE) };
5];
6
7 define tpeuser($sc1 IN SCS, $TPE IN SC) [
8 Foreach $sc2 IN SC, Foreach $eo1 IN is_execute_like(IS),

Foreach $eo2 IN is_read_like(IS)
9 SA { ($sc1 −> { $eo1 } $sc2 OR $sc1 −> { $eo2 }

$sc2) } ,
10 { ($sc2 IN $TPE) };
11];

1) Apache example: The property of listing 17 allows only
the execution of the authentication programs, the web server
and web service. Even if the MAC policy or the UNIX rights
(uog+x) authorize the execution permission for programs in
/var/www, this property will prevent the execution of these
programs. If an attacker exploits a vulnerability, he can force
Apache to execute malware (downloaded file). The trusted path
property prevents the execution of that malware.

Listing 17. Trusted path execution for Apache
1 tpe($sc1 := {"login_d", "ssh_d", "apache_d", "webserv_d"});

2) Operating system example: The first tpe rule of list-
ing 18 defines the classical executables of the system that all
users and daemons can use. The second rule tpeuser is more
restrictive than the first one: it allows only the users to execute
libraries, Firefox, Claws Mail and Open Office. The last rule
is a special rule for Open Office that needs the execution of a
shell to be able to launch itself.

Listing 18. Trusted path execution security property example
1 tpe($TPE:= { ".∗:.∗:.∗bin_t", ".∗:.∗:.∗exec_t", ".∗:.∗:.∗lib_t", "system_u:

object_r:ld_so_t" });
2 tpeuser($sc1:=user_u:user_r:user_t, $TPE:= { ".∗:.∗:.∗lib_t", "

system_u:object_r:mozilla_exec_t", "system_u:object_r:
clawsmail_exec_t", "system_u:object_r:ooffice_exec_t", "
system_u:object_r:ld_so_t" });

3 tpeuser($sc1:=user_u:user_r:user_ooffice_t, $TPE:= { "user_u:user_r:
user_ooffice_t", "system_u:object_r:bin_t","system_u:object_r:
ld_so_t","system_u:object_r:lib_t","system_u:object_r:
ooffice_exec_t","system_u:object_r:ooffice_lib_t","system_u:
object_r:shell_exec_t" });

H. No context transition

The no context transition property P4.22(scs1) corresponds
to the function of listing 19. This function checks that no
transition is possible for the context given in the parameters.

Listing 19. No context transition check function
1 define no_transition($sc1 IN $SCNoTransition) [
2 Foreach $sc2 IN SCS
3 SA { $sc1 __> $sc2 },
4 { not(exist()) };
5];

1) Apache example: The property of listing 20 guarantees
that the web service cannot transit to another context. For
example, an attacker that exploits a vulnerability can try to
force the web service to transit to the admin_d or user_d
contexts to obtain the privileges associated with these contexts.

Listing 20. No context transition for Apache
1 no_transition($sc1 := "webserv_d");

2) Operating system example: The first rule of listing 21
prevents an attacker from exploiting a vulnerability on Apache,
Php or Mysql services to get more privileges on the system
(for example, the root privileges). The second rule prevents
the user from transitting to another context, such as the root
or Apache domain.

Listing 21. Confidentiality property example
1 no_transition($SCNoTransition:= { "system_u:system_r:httpd_t","

system_u:system_r:httpd_php_t","system_u:system_r:mysql_t" }
);

2 no_transition($SCNoTransition:= { "user_u:user_r:user_t" });

VI. SUMMARY OF OUR META-POLICY APPROACH

Before moving on to the verification section of dynamic
policies in section VII, this section recalls the basics of
our meta-policy [3] approach. The meta-policy provides a
means to reduce the space of possible MAC policies, adding
constraints on the allowed policies. This way, it becomes
possible for the security properties for dynamic policies to
be verified, as presented in section VII. This section gives a
short overview of our meta-policy model and an example of
use.

A. Meta-policy model

This section gives a short overview of the concept of meta-
policy. Further details are given in [3]. It allows dynamic
policies i.e. the evolution of multiple local MAC policies whose
states are constrained by modification rules.

1) Initial Policy: Our meta-policy contains an initial policy
i.e. a set of Interaction Vectors. The generic rule for enabling
a set of Interaction Vectors is as follows:
1 enableIV(patternS , patternO , patternoper)

patternS is a regular expression that designates the subject
security contexts that are considered in this rule. patternO

designates the object security contexts and patternoper defines
the different operations to be allowed between these contexts.

336

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

2) Modification rules: Each local policy can evolve ac-
cording to modification rules. A modification rule includes
different elements: the security context allowed to request
the modification and the Interaction Vectors. The considered
modifications are: addition, removal or change.

1 enableAddIV(screquester , (patternS , patternO ,patternoper))
2 enableModIV(screquester , (patternS , patternO ,patternoper))
3 enableDelIV(screquester , (patternS , patternO ,patternoper))

The security context screquester ∈ SCs is
the one that can request the modification for
iv = (patternS , patternO, patternoper). For example,
enableAddIV (scadmin, (apache_(.∗), var_www_(.∗), {file :
(.∗)})) can be used to authorize a local administrator scadmin

to add the interactions permitting a HTTP process to access
any file located in the directory /var/www with the required
privileges. A second set of rules is used to control security
context modifications:

1 enableAddSC(screquester , patternSC)
2 enableDelSC(screquester , patternSC)

For example, enableAddSC(scadmin, apache_(.∗)) enables
a local administrator to add required Apache server security
contexts. Note that similar rules are defined in order to label
an “object” with a security context or to modify this labelling.

B. Example

Listing 22. Meta-policy example
1 enableIV(login_d, admin_d, transition)
2 enableIV(login_d, user_d, transition)
3 enableIV(ssh_d, user_d, transition)
4 enableIV(user_d, webserv_d, transition)
5 enableIV(admin_d, webserv_d, transition)
6 enableIV(admin_d, apache_d, transition)
7 enableIV(apache_d, webserv_d, transition)
8 enableIV(admin_d, apache_conf_t, { read, write })
9 enableIV(apache_d, apache_conf_t, { read })

10 enableIV(apache_d, var_www_t, { read, write, execute })
11 enableIV(webserv_d, .∗_info_t, { read })
12 enableIV(user_d, user_info_t, { read, write })
13
14 enableAddSC(webserv_d, .∗_info_t)
15 enableAddIV(webserv_d, (webserv_d, .∗_info_t, { read }))
16 enableDelIV(webserv_d, (webserv_d, .∗_info_t, { read }))

The listing 22 contains an example of meta-policy. In this
example, a user can open a session with ssh or local login,
but the administrator can only authenticate locally. Both of
them can modify objects containing personal information and
execute a web-service allowed to access this information.
Moreover, the administrator can execute an Apache web-
server and modify its configuration. Apache can only read
this configuration, but it is allowed to read, write or execute
temporary objects. Finally, Apache can also execute the web-
service.
C. Flow graphs between the security contexts

Starting from a MAC policy e.g. the initial policy of our
meta-policy, we have built two different graphs that will be
used to check the security properties (as described in the next
section). These graphs are the following:

Fig. 5. Interaction graph

Fig. 6. Information flow graph

1) Interaction Graph: The interaction graph is a represen-
tation of all legal interactions allowed by the local policy.
An interaction between two security contexts sc1 and sc2 is
represented in G by an arc , noted sc1 →eo sc2, valuated
by the set of authorized operations eo. Figure 5 presents an
interaction graph for the previous meta-policy of listing 22.
This graph is composed of six subjects and four objects.

2) Flow Graphs: Several flow graphs are computed starting
from the previous interaction graph. The direct flows are in-
cluded within the transitive flows i.e. an indirect path between
two contexts. In order to simplify the explanations and focus
on the enforcement of dynamic policies, limited details are
given about those different graphs. Let us give an explanation
for the information flow graph. This graph represents all the
allowed transfer of information.

A transfer of information between two security contexts sc1

and sc2 is in fact a read (write) operation from sc2 to sc1

(from sc1 to sc2). Note that a transition from sc1 to sc2 allows
a transfer of information in both directions. The information
graph is a conversion of the interaction graph: the read arcs
are flipped, an arc scs2 → scs1 is added for each transition
arc scs1 → scs2.

Figure 6 represents the information flow graph correspond-
ing to the previous example. Another flow graph is computed
that includes all the allowed flows of control. A flow of control
is a causal sequence including several reading or writing-like
operations that provides a path for executing or writing an
object.

337

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 7. Impossibility of computing the illegal activities for dynamic policies
without a tool based on the meta-policy approach

Fig. 8. Strategy of verification for dynamic policies

D. Motivation for a verification algorithm

After presenting the meta-policy model, one can wonder if
it is possible for the security properties to be enforced whereas
the policies are evolving. If the policy is dynamic, that is
if the administrator changes the MAC policy frequently, the
generated list of activities that violate the security properties
will change. In figure 7, we show that the number of MAC
policies is infinite and that the strategy of enforcement of the
security properties is no longer possible.

In figure 8, a solution is proposed using the meta-policy
that controls all the possible policies, the computation of
the infinite number of possible policies is no longer needed.
We will directly use the meta-policy itself and the security
properties in order to verify if a possible policy could violate
one of the security properties. The goal is to get a positive or
negative answer.

VII. VERIFICATION OF MAC POLICIES

This section presents a method to check the required secu-
rity properties for dynamic MAC policies.

First, the verification of a security property can be made
on a static policy (with no evolution). The algorithm is
presented in section VII-A and is straightforward: it consists
in a computation of paths on a graph that corresponds to the
search for possible information flows, forbidden transitions,
etc... The precise algorithm for each verification depends on
the security property to be checked.

Second, the aim of this section is to present how to verify
security properties for dynamic policies. Using the meta-policy

Fig. 9. Policy Graph example

model presented in section VI, we show how to verify a
security property in order to 1) have a meta-policy that satisfies
the required security properties or 2) compute all the illegal
activities.

For each algorithm, a concrete example for Apache is
given that guarantees the integrity property of the Apache
configuration files.

A. Verification of Static Policies

As explained in section VI-C, enforcement of security prop-
erties corresponds to the computation of all the illegal paths
in the flow graphs. In those graphs, our method produces all
the illegal activities associated with a given security property.
When deploying the MAC policy on a system, the SPLinux
kernel enforces the required security properties for the local
Policy [22].

B. Verification of Dynamic Policies

Remember that the meta-policy allows the local policies to
evolve. The consequences on the policy graph are detailed
below, for each rule of the meta-policy:
• enable[Add|Del]SC(screquester , patternSC): creates / deletes

nodes in the graph labelled by patternSC

• enable[Add|Del]IV(screquester , (patternS , patternO ,patternoper)):
adds / removes operations between all nodes matching
patternS and nodes matching patternO, if the operation
matches patternoper. If no operation remains, arcs are
deleted.

• enableModIV(screquester , (patternS , patternO ,patternoper)):
modifies the operation label of arcs which joins nodes
matching patternS → patternO.

Consequently, enforcement is not limited to the computation
of the previous static graphs because those graphs can change
in the next version of the policy.

1) Principles of the proposed method: Let us consider the
general case to check if there is an information flow between A
and B in the graph shown in figure 9 that represents a policy.
If we only consider this static graph, obviously, there is no
information flow. Now let us consider the following general
meta-policy rules:

Listing 23. General meta-policy rules
1 enableAddSC(scadmin, expr1,)
2 enableAddSC(scadmin, expr2,)
3 enableAddIV(scadmin, expr1, expr2, {.∗}))

expr1 and expr2 are regular expressions matching two
sets of nodes. These expressions allow the administrator to

338

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 10. Graph for listing 23

Fig. 11. Meta-nodes computation for graph of listing 23

create nodes, and modify arcs between these created nodes.
Eventually, some already existing nodes can be matched by
one of the regular expressions. The problem of verification of
the possible existence of an information flow between A and
B is now more complex because the administrator may add
nodes and arcs and create a path between A and B as shown
in figure 10.

We propose to solve the problem by using some extra nodes
or arcs associated with the meta-policy rules. To take into
account these rules, the two sets are grouped in a "meta-node"
named expr1 and expr2. We obtain a new graph as shown in
figure 11. It shows that a path can occur between A and B:
A→ expr1 → expr2 → B.

2) Example: An example for the preceding principle is
given below. It is a based on the graph of the policy given in
figure 5. The goal is to guarantee that there is no possible ac-
cess to apache_conf_t for the user_d context when connecting
via SSH. It prevents, for example, an attack that allows a user
that have permission to put web pages on the web server and
that exploits a vulnerability to modify or to read the Apache
configuration. With the model presented in section IV, this can
be written as follows:

{
P4.1(ssh_d, apache_conf_t) (integrity)
P4.8(ssh_d, apache_conf_t) (confidentiality)

that is, using the SPL language:

Listing 24. Integrity and Confidentiality for the configuration of Apache
1 integrity($sc1:="ssh_d", $sc2:="apache_conf_t");
2 confidentiality($sc1:="ssh_d", $sc2:="apache_conf_t");

Obviously, with the policy of figure 5, such an attack is
impossible. Nevertheless, consider the listing 25 that presents
a possible meta-policy installed by the administrator. This
allows the security contexts to be added for php and to
add interactions between the web server and php. Special
rules allow php contexts to write new information in the
configuration files of Apache and in /var/www.

Fig. 12. Updated policy graph with rules of listing 26

Fig. 13. Updated policy graph with rules of listing 26

Listing 25. Meta-policy for php installation
1 enableAddSC(admin_d, php.∗)
2 enableAddIV(admin_d, (php.∗,php.∗, {.∗}))
3 enableAddIV(admin_d, (webserv.∗,php.∗, {.∗}))
4 enableAddIV(admin_d, (php.∗,apache_conf.∗, {r,w}))
5 enableAddIV(admin_d, (php.∗,var_www.∗, {r,w,e}))

The listing 26 is the modification performed by the admin-
istrator that updates the policy according to the meta-policy.
The figure 12 represents the new policy graph resulting from
the listing 26 for the policy of figure 5. With this new policy,
there is a possible attack from the ssh_d context against the
apache_conf_t configuration files that was not possible before
with the policy of figure 5.

Listing 26. Policy modification by admin_d user when installing php
1 enableSC(php_d)
2 enableSC(php_exec_t)
3 enableIV(webserv_d,php_d, {transition})
4 enableIV(php_d,php_exec_t, {e}))
5 enableIV(php_d,apache_conf_t, {r,w}))
6 enableIV(php_d,var_www_t, {r,e}))

The proposed methodology creates a meta-node that corre-
sponds to the regular expression php.*. It adds arcs 1) between
this meta-node and the nodes apache_conf_t and var_www_t
and 2) between webserv_d and the meta-node. The new graph
including the meta-node is given in figure 13. In this new
graph, it is easy to check if a path exists between ssh_d and
apache_conf_t. The computation of this path will be reported
to the administrator as a possible vector of attack.

C. Rules with intersecting regular expressions

If we consider a meta-policy with several rules containing
regular expressions, and if some of them intersect each other,
then the solution presented before is not correct. This section
presents a modified version of the presented methodology to
take this case into account.

339

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 14. Example of a meta-policy with two intersecting regular expressions

Fig. 15. Aggregated meta-graph

1) Principles of the proposed method: Let us suppose a
general meta-policy, presented in listing 27 and represented
in figure 14 where the regular expressions expr1 and expr′1
interleave.

Listing 27. Meta-policy rules where expr1 intersects expr2
1 enableAddSC(scadmin, expr1)
2 enableAddSC(scadmin, expr2)
3 enableAddIV(scadmin, (expr1, expr2, {.∗}))
4 enableAddSC(scadmin, expr′1)
5 enableAddSC(scadmin, expr′2)
6 enableAddIV(scadmin, (expr′1, expr′2, {.∗}))

With the preceding methodology, four meta-nodes will be
built: expr1, expr′1, expr2, expr′2. Then, because of line 3
(resp. line 6) of the meta-policy of listing 27, an arc is created
between expr1 and expr2 (resp between expr′1 and expr′2).
But, as expr1 and expr′1 interleave, a possible security context
Q can be created inside expr1 and expr′1 at the same time.
Thus, a new arc has to be created between expr1 and expr′1
as shown in figure 15.

The last remaining difficulty is to compute the possible in-
tersections between the regular expressions. If the length of the
regular expression is limited, then computing the intersection
is polynomial with the number of meta-policy rules [30]. If we
consider that the length of the regular expression is not limited,
the algorithm cannot be computed in polynomial time [31].

2) Example: We now consider a more complex ex-
ample of meta-policy for the installation of PHP ver-
sion 5. To improve the security for php5 and to
guarantee the properties P4.1(ssh_d, apache_conf_t) and
P4.8(ssh_d, apache_conf_t) initially presented in sec-
tion VII-B2, we deleted some rules, mainly to avoid the php5
process to be able to write the Apache configuration. The

Fig. 16. Updated policy graph with rules of listing 29

listing 28 shows the new meta-policy. Only three rules have
been kept as we now consider that php5, in this new version,
has no reason to be able to write the Apache configuration.
Nevertheless, the corresponding rules have been kept in the
policy file for backward compatibility for the php4 process.
At this point, it is not easy to see that there is a possibility of
attack from the SSH context against the Apache configuration.

Listing 28. Meta-policy for php5 installation
1 // Php5 meta−policy rules
2 enableAddSC(admin_d, .∗php5.∗)
3 enableAddIV(admin_d, (webserv.∗,.∗php5.∗, {.∗}))
4 enableAddIV(admin_d, (.∗php5.∗,var_www.∗, {r,w,e}))
5 // Backward compatibility rules for php4
6 enableAddSC(admin_d, php4.∗)
7 enableAddIV(admin_d, (php4.∗,apache_conf.∗, {r,w}))

The php5 process seems isolated from the apache_conf_t
context. But, the administrator can create the rules of
listing 29, that respect the meta-policy of listing 28. In
this new policy, the php5_d process remains isolated from
apache_conf_t, but a transition is possible to the context
php4php5_d. This context matches two regular expressions:
.*php5.* and php4.*. As the meta-policy allows php4.* to
write to the Apache configuration, the last rule of the listing
allows php4php5_d to do it. The figure 16 shows the resulting
contexts and the intersection of regular expressions appears
clearly.

Listing 29. Policy modification by admin_d user when installing php
1 enableSC(php5_d)
2 enableSC(php5_exec_t)
3 enableIV(webserv_d,php5_d, {transition})
4 enableIV(php5_d,php5_exec_t, {e}))
5 enableIV(php5_d,var_www_t, {r,e}))
6 enableSC(php4php5_d)
7 enableIV(php5_d, php4php5_d {transition})
8 enableIV(php4php5_d,apache_conf_t, {r,w}))

Remember that there is a strong hypothesis in this example:
the administrator creates the context php4php5_d for backward
compatibility. It enables a malicious user to write the Apache
configuration. The problem is that the administrator could not
anticipate the problem when reading the listing 28, because the
problem is not trivial. That is why the administrator needs a
tool to analyze the meta-policy in order to check the potential
violation of the security properties.

D. Algorithm

Our algorithm computes all the possible intersections of the
regular expressions. This algorithm have been implemented

340

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

in the PIGA tool and technical implementation details can
be found in [22]. A set of arcs corresponding to these
intersections is added in each graph (between the corre-
sponding meta-nodes). After this first phase, each security
property is processed by looking for the security pattern in
the corresponding graphs. The result of this second phase is
a set of illegal activities that violate the requested security
property. Each illegal activity can be static, i.e. without any
regular expression, or dynamic, i.e. with at least one regular
expression. This second class of illegal activities is what we
call a “meta-activity”. The PIGA tool is able to compute
any illegal activity either static or dynamic i.e a meta-activity
expressed using meta-nodes that are designated with regular
expressions.
Require: G: the interaction graph i.e. the initial policy
Require: MPRsc: meta-policy rules of type EnableAddSC
Require: MPRiv: meta-policy rules of type EnableAddIV
Ensure: G’: the computed meta-graph

1: G’=G.clone()
2: for sc ∈MPRsc do
3: G’.addNode(new Node(sc))
4: end for
5: for each rule ∈ MPRiv, rule =

enableAddIV (s, (expr1, expr2, perms))) do
6: G’.addNode(vexpr1 = new Node(expr1))
7: G’.addNode(vexpr2 = new Node(expr2))
8: G’.addArc(vexpr1 , vexpr2)
9: G’.addArc(vexpr2 , vexpr1)

10: for each v ∈ G′ do
11: if v matched by expr1 then
12: for each v′ ∈ G′.neighbors(v) do
13: G’.addArc(v’, vexpr1 , G’.dir(v’,v))
14: end for
15: end if
16: if v matched by expr2 then
17: for each v′ ∈ G′.neighbors(v) do
18: G’.addArc(v’, vexpr2 , G’.dir(v’,v))
19: end for
20: end if
21: end for
22: end for
23: for each rule ∈ MPRiv, rule =

enableAddIV (s, (expr1, expr2, perms))) do
24: for each rule′ ∈ MPRiv, rule =

enableAddIV (s, (expr3, expr4, perms))) do
25: if expr1 ∩ expr3 6= ∅ then
26: if ∃v ∈ G′ / v matches expr1 and expr3 then
27: G’.addArc(vexpr1 , vexpr3)
28: G’.addArc(vexpr3 , vexpr1)
29: end if
30: end if
31: // Same treatment for (expr1, expr4), (expr2, expr3),

(expr3, expr4)
32: end for
33: end for

This algorithm computes the new meta-graph G’ that is
used to search paths between two security contexts. The
algorithm first creates the meta-nodes associated to the regular
expressions into G’ (lines 1-9). Then, if the nodes of G’ can
be included in one of the regular expressions, the arcs are
updated to link the meta-nodes (i.e. the regular expressions)
to the corresponding neighbours (lines 10-22). In other words,
all the matching nodes are grouped within the corresponding
meta-nodes. The second part of the algorithms checks if two
meta-nodes can intersect each other in which case the two
meta-nodes are linked together.

VIII. EXPERIMENTATION ON A HONEYPOT

In order to secure a high-interaction Honeypot, we defined
the security properties of listing 30 in order to give high
protection to the system resources and prevent the system from
being corrupted. The precise experiment, the technical details,
and the discussion about the results are given in [4]. Some
of the results are recalled in this section to give to the reader
an illustration of the use of the security properties modelled
using the SPL language.

Several standard Linux hosts without special protection have
been setup to see if attackers can compromise them. Those
kind of hosts are compromised in less than a week. Windows
hosts are surviving only one day. The compromised hosts have
been removed from the experiment after some weeks because
it is too much work to maintain and monitor them. In contrast
with these standard Linux and Windows hosts, the SPLinux
protected honeypot systems have never been compromised
during two years of experiment.

The protected hosts that are considered in the presented re-
sults are the one that have been analyzed by the PIGA tool [22]
which formal algorithm has been described in section VII. The
protection is then enforced using our SPLinux kernel which
monitors in real time the activities of the system processes.
If a process violates a security property, the SPLinux kernel
prevents the execution of an interaction of the incriminated
activity.

The first property, integrity, expresses the fact that no
subject context can modify the binary files. The second rule,
confidentiality, prevents the user from reading any file of
the system. The third property, int_domain, expresses the
fact that no chrooted context is able to interact with any
context outside the chrooted domain. The fourth property,
no_transition, expresses the fact that a system process cannot
transit to a bad domain (a blacklist of dangerous contexts). At
last, the third property, duties_separation, expresses the fact
that a context is not able to be executed by another one if it
has only just been modified by this same another one.

Listing 30. Security properties for the honeypot
1 integrity($sc1:=".∗", $sc2=".∗:.∗:.∗_exec_t");
2 confidentiality($sc1:=user_u:user_r:user_t, $sc2:="system_u:object_r

:.∗");
3 int_domain($CHR:=".∗:.∗:.∗user.∗");
4 no_transition($sc:=user_u:user_r:user_t);
5 duties_separation($sc1:=".∗");

341

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE III
ILLEGAL META-ACTIVITIES.

Gateway User Initial

Graph SC 577 3 017 595
IV 17 684 314 582 18 215

Security integrity 137 9 461 140
Property int_domain 16 283 510 215 16 546
Rules confidentiality 29 510 726 842 29 510

duties_separation 243 16 405 270
no_transition 3 555 126 228 3 941

Size of the database 1,1MB 3,6MB 1,1MB
Results Number of audit 13 664 44 503 14051

Computation time 47s 10min31s 52s

Let us consider those properties using several complete
meta-policies for two kinds of host. The first kind of host
is a gateway and the second kind is a user host.

Each host contains the same initial policy as a part of the
meta-policy. That initial policy is processed as a static policy.
The results are given in column Initial. The PIGA tool finds
140 activities that can violate the integrity property, 16,546
activities violating the int_domain property, 29,510 activ-
ities violating the confidentiality property, 270 activities
violating the duties_separation property and 3.941 activities
violating the no_transition property.

The meta-policy of the gateway host includes few
modification rules. The PIGA tool processes the corre-
sponding meta-activities, including 137 activities that can
violate the integrity property, 16,283 activities violat-
ing the int_domain property, 29,510 activities violating
the confidentiality property, 243 activities violating the
duties_separation property and 3,555 activities violating
the no_transition property. The resulting meta-graphs are
smaller than the initial graph since the update rules of the
gateway permit some security contexts and interactions to be
removed. Thus, it is consistent to have fewer meta-activities
than initial activities.

The meta-policy of the user host includes much larger
modification rules. PIGA computes 9,461 activities that can
violate the integrity property, 510,215 activities violat-
ing the int_domain property, 726,842 activities violating
the confidentiality property, 16,283 activities violating the
duties_separation property and 126,228 activities violating
the no_transition property. The user host authorizes many
updates of the initial policy in order to support all the classical
applications such as the Gnome desktop, Firefox, OpenOffice,
etc. The majority of the updates enable new security contexts
and interactions to be added for those applications. Thus,
PIGA finds many meta-nodes authorizing the user contexts to
interact with the system. Since all the properties aim at limiting
the flows between the user and the system, it is consistent to
have many more illegal meta-activities between the system and
the user.

In addition, Table III shows the size of the database of
the corresponding illegal activities plus the time needed for
computation. At present, computation is not optimal since
the solution computes each meta-policy as an independent
set of rules. Optimizations could be provided by reusing the
results already obtained for previous meta-policies. Finally,
the resulting illegal activities associated with the permitted
updates of the initial policy can be extracted from the database.
Thus, the administrator can isolate the illegal activities that
are permitted by the modification constraints. He can either
modify the modification constraints or decide that it is consis-
tent. In the later case, each time a new local policy is set up,
the corresponding illegal activities will be prevented by our
SPLinux kernel. Thus, a satisfactory solution is provided for
dynamic MAC policies.

IX. CONCLUSION

This paper introduces a precise formalization of a wide
range of integrity and confidentiality properties. A dedicated
language has been developed to describe these properties.
The abstract Security Property Language (SPL) deals with
the activities of the operating system and models complex
correlations between these activities that can lead to illegal
activities. Even if it easy to define abstract properties, the
paper gives 13 pre-defined security templates. Some of them
are properties well known in the literature, but others are new
security properties.

Moreover, a concrete SPL language is proposed that gives
a concrete syntax for enforcing the required properties. Thus,
concrete security properties are supported for the predefined
template. New templates can be easily defined using the
concrete SPL language. A compiler is available for processing
mandatory access control policies such as SELinux policies.
That compiler computes all the illegal activities that could
violate the requested properties. The paper demonstrates how
to write concrete properties for protecting systems.

This paper also shows how the security properties are
linked to mandatory access control mechanisms. The security
properties and the MAC policy of the target host allow the
compiler to generate the list of illegal activities. This list is
the input of our SPLinux kernel that will enforce the security
properties. Thus, a system call fails if illegal activities are
recognized.

In the case of dynamic policies, the list of illegal activities
is not computable. The paper shows that, with the use of
a meta-policy, a policy that constraints the MAC policies, it
becomes possible to verify if the meta-policy violates one of
the security properties. The verification algorithm is based on
a special graph where meta-nodes and meta-arcs are added in
accordance with the meta-policy. The result of the algorithm
is that the administrator knows if the meta-policy authorizes
a policy that violates one of the defined security properties.
It is a strong result as it is difficult to be able to give such
a guarantee for dynamic policies. Moreover, with a simple
meta-policy, all the possible illegal activities can be computed
in order to improve the meta-policy.

342

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Finally, the paper gives results about the computation of the
illegal activities that violate security properties for two kind
of hosts of our honeypot. A large variety of combinations
of interactions allow the security properties to be violated.
Nevertheless, these properties are enforced by our SPLinux
kernel. SPLinux prevents the honeypot hosts from being
compromised. During two years of experiments, our honeypot
systems have never been compromised whereas a standard
linux host have been always compromised in less than one
week. It is this experiment that shows the efficiency of our
approach. Thus, a global solution is provided. Verification is
not mandatory since the administrator can trust the SPLinux
kernel to enforce all the required security properties. However,
verification is a powerful tool to adjust both the meta-policy
or the required security properties.

Future works deal with optimization of our compiler to
reuse the verification methods. Indeed, the illegal activities
can be pre-computed for all the permitted meta-nodes. Thus,
a complete database can be provided for enforcing the host.
That database will include both static and dynamic activities to
prevent the compilation phase when a local policy is updated.
Moreover, ongoing works address DAC systems. Despite the
fact that DAC systems are more complicated to protect, we are
developing a new enforcement mechanism for those kinds of
host. Thus, the security properties will be enforced for both
DAC and MAC systems. Finally, extensions will be proposed
to enable the SPL language to deal with availability and
distributed properties.

REFERENCES

[1] J. Briffaut, J.-F. Lalande, C. Toinard, and M. Blanc, “Enforcement of
security properties for dynamic mac policies,” in Third International
Conference on Emerging Security Information, Systems and Technolo-
gies, IARIA, Ed. Athens/Glyfada, Greece: IEEE Computer Society
Press, June 2009, pp. 114–120.

[2] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Communications of the ACM, vol. 19, no. 8, pp. 461–471,
1976.

[3] M. Blanc, J. Briffaut, J.-F. Lalande, and C. Toinard, “Distributed control
enabling consistent MAC policies and IDS based on a meta-policy
approach,” in Proceedings of the Seventh IEEE International Workshop
on Policies for Distributed Systems and Networks. London, Canada:
IEEE Computer Society, Jun. 2006, pp. 153–156.

[4] J. Briffaut, J.-F. Lalande, and C. Toinard, “Security and results of a large-
scale high-interaction honeypot,” Journal of Computers, Special Issue
on Security and High Performance Computer Systems, vol. 4, no. 5, pp.
395–404, may 2009.

[5] F. Schneider, “Enforceable security policies,” Information and System
Security, vol. 3, no. 1, pp. 30–50, 2000.

[6] R. Focardi and S. Rossi, “Information flow security in dynamic con-
texts,” in Proceedings of the IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, 2002, pp. 307–319.

[7] M. Giunti, “Preventing intrusions through non-interference,” in Proceed-
ing of the IEEE Mexican Conference on Informatics Security. IEEE
Computer Society Press, 2006.

[8] C. Ko and T. Redmond, “Noninterference and intrusion detection,” in
IEEE Symposium on Security and Privacy, 2002, pp. 177–187.

[9] G. Hiet, V. Viet Triem Tong, B. Morin, and L. Me, “Monitoring both os
and program level information flows to detect intrusions against network
servers,” in Proceedings of the 2nd workshop on MONitoring, Attack
detection and Mitigation, Nov. 2007.

[10] G. Hiet, V. V. T. Tong, and L. Mé, “Policy-based intrusion detection
in web applications by monitoring java information flows,” in CRISIS
’08: 3nd International Conference on Risks and Security of Internet and
Systems, Oct. 2008.

[11] S. Zdancewic, “Challenges for information-flow security,” in Proceed-
ings of the 1st International Workshop on the Programming Language
Interference and Dependence, 2004.

[12] V. C. Hu, E. Martin, J. Hwang, and T. Xie, “Conformance checking of
access control policies specified in xacml,” in Proceedings of the 31st
Annual International Computer Software and Applications Conference,
vol. 2. Washington, DC, USA: IEEE Computer Society, 2007, pp.
275–280.

[13] G.-J. Ahn, W. Xu, and X. Zhang, “Systematic policy analysis for high-
assurance services in selinux,” in Proceedings of the 2008 IEEE Work-
shop on Policies for Distributed Systems and Networks. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 3–10.

[14] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation. Berke-
ley, CA, USA: USENIX Association, 2006, pp. 19–19.

[15] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 321–334,
2007.

[16] P. Efstathopoulos and E. Kohler, “Manageable fine-grained information
flow,” ACM SIGOPS Operating Systems Review, vol. 42, no. 4, pp. 301–
313, 2008.

[17] M. L. Damiani, C. Silvestri, and E. Bertino, “Hierarchical domains
for decentralized administration of spatially-aware rbac systems,” in
ARES ’08: Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 153–160.

[18] L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo,
“Policy administration control and delegation using xacml and delegent,”
in Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing. Washington, DC, USA: IEEE Computer Society, 2005, pp.
49–54.

[19] N. Li, Z. Mao, and H. Chen, “Usable mandatory integrity protection
for operating systems,” in IEEE Symposium on Security and Privacy,
Berkeley, California, May 2007, pp. 164–178.

[20] Z. Mao, N. Li, H. Chen, and X. Jiang, “Trojan horse resistant discre-
tionary access control,” in Proceedings of the 14th ACM symposium on
Access control models and technologies. New York, NY, USA: ACM,
2009, pp. 237–246.

[21] X. Cai, Y. Gui, and R. Johnson, “Exploiting unix file-system races via
algorithmic complexity attacks,” in Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 27–41.

[22] J. Briffaut, J. Rouzaud-Cornabas, C. Toinard, and Y. Zemali, “A new
approach to enforce the security properties of a clustered high-interaction
honeypot,” in Workshop on Security and High Performance Computing
Systems, R. K. Guha and L. Spalazzi, Eds. Leipzig, Germany: IEEE
Computer Society, June 2009, pp. 184–192.

[23] ITSEC, “Information Technology Security Evaluation Criteria (ITSEC)
v1.2,” Technical Report, Jun. 1991.

[24] K. J. Biba, “Integrity considerations for secure computer systems,” The
MITRE Corporation, Technical Report MTR-3153, Jun. 1975.

[25] R. Focardi and R. Gorrieri, “Classification of security properties (part
I: Information flow),” in Foundations of Security Analysis and Design.
Springer Berlin / Heidelberg, 2001, pp. 331–396.

[26] C. Ko and T. Redmond, “Noninterference and intrusion detection,” in
IEEE Symposium on Security and Privacy. Berkeley CA, United-States:
IEEE Computer Society, May 2002, pp. 177–187.

[27] D. E. Bell and L. J. La Padula, “Secure computer systems: Mathemat-
ical foundations and model,” The MITRE Corporation, Bedford, MA,
Technical Report M74-244, May 1973.

[28] D. D. Clark and D. R. Wilson, “A comparison of commercial and
military computer security policies,” in The Symposium on Security and
Privacy. IEEE Press, 1987, pp. 184–193.

[29] R. Sandhu, “Separation of duties in computerized information systems,”
in Database Security, IV: Status and Prospects, Halifax, U.K., September
1990, pp. 179–190.

[30] K. Dexter, “Lower bounds for natural proof systems,” in Proceedings
of the 18th Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1977, pp. 254–266.

[31] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (2nd Edition). Addison Wesley,
November 2000.

343

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

