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Abstract— The problem of quantum cloning is closely
connected to quantum cryptography. While an eavesdropper
on a quantum channel cannot copy perfectly the sent quantum
states, in many cases a cloning machine is known to be the
most powerful eavesdropping strategy with which to counter
quantum cryptographic protocols. In this paper, effective
computational geometrical methods are used to analyze
cloning activity on a quantum channel. A geometric approach
is demonstrated which analyzes the security of the quantum
channel, based on quantum relative entropy and Delaunay
triangulation on the Bloch sphere. In the security analysis, an
approximation algorithm derived from classical computational
geometry is used to determine the smallest enclosing ball of
balls using core-sets. An improved version is presented which
is able to obtain a more effective approximation algorithm in
quantum space, while the performances of the proposed
geometric algorithms are compared.

Keywords - quantum cryptography; quantum cloning;
quantum informational distance

I. INTRODUCTION

In the past few years, quantum key distribution schemes
have invited much study [1]. Quantum theory takes
advantage of quantum mechanical principles such as the
superposition of states and their no-cloning principle,
introduced by Wooters and Zurek [2]. According to the no-
cloning theorem, an unknown quantum state cannot be
copied perfectly. The method of imperfect cloning was first
published by Buzek and Hillery in 1996 [3], while
Mozyrsky and Privman have subsequently analyzed other
possible imperfect quantum copying approaches and their
practical realization [4].

The problem of quantum cloning is closely connected
to quantum cryptography, a cryptographic method based on
the principles of quantum theory. Using current network
technology, interfaces able to manage both quantum and
classical channels simultaneously must be implemented in
order to spread quantum cryptography.

In our fundamentally new security analysis of quantum
cryptography, the fidelity of the eavesdropper’s cloning
machine is derived from Laguerre-type Delaunay diagrams
on the Bloch sphere. Voronoi diagrams are the geometric
dual of ordinary Delaunay diagrams, and their application in
quantum space has been studied by Kato et al. [5]. In
computational geometry, many complex high dimensional

problems can be expressed with graphs and tessellation
diagrams. Using Laguerre diagrams [6][7], the radii of the
smallest enclosing balls of mixed states on the Bloch sphere
can be calculated efficiently, while the level of
eavesdropping activity can also be measured. The geometric
interpretation of quantum states investigates informational
distances between two different quantum states [8][9]. The
fidelity of the quantum cloning transformation is here
computed using a classical informational geometric
algorithm presented by Badoui and Clarkson [10], and the
Laguerre Delaunay triangulation on the Bloch sphere. The
geometric interpretation of the smallest ball problem in
informational space has been investigated previously by
Nielsen and Nock [11].

As classical cryptographic methods used in wired and
wireless security have been found to have vulnerabilities,
new methods based on quantum mechanical principles have
been deployed [12]. Quantum cryptography is an emerging
technology that may offer new forms of security protection.
However, quantum cloning-based attacks against quantum
cryptography protocols will play a crucial role in the future
[13][14][15][16].

Our goal is to identify these imperfect quantum cloning-
based attacks, and find potential and efficient solutions for
their detection in secret quantum communications. Analysis
of the fidelity of the eavesdropper’s cloning machine
indicates how far the eavesdropper preserves the size of the
space of quantum states. In the proposed method, quantum
informational distance plays an important role in the
estimation of this fidelity. Also presented is a fundamentally
new method of deriving quantum relative entropy based on
Delaunay tessellation on the Bloch ball and the computation
of the radius of smallest enclosing quantum informational
ball, to detect eavesdropping activity on the quantum
channel.

This paper is organized as follows. In Section II, basic
facts about computational geometry and quantum
information theory are discussed. In Section III, the basic
properties of quantum cloners are explained, while in
Sections IV and V, the application of the method for the
security analysis of eavesdropping detection on the quantum
channel is shown. In Section VI, the optimized algorithm is
presented, and the performances of the proposed methods
compared. In Section VII, an illustrative example is
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provided which presents the main steps of the proposed
quantum informational geometric security analysis. Finally,
in Section VIII a conclusion is drawn from the results.

II. ATTACKER MODEL AND GEOMETRIC BACKGROUND

The map of the quantum cloner compresses the Bloch
ball as an affine map. This affine map has to be a
completely positive, trace-preserving map which shrinks the
Bloch ball along the x, y and z axes. Quantum informational
theoretical analysis of the eavesdropper’s cloning machine
indicates to what extent the size of the space of quantum
states is preserved. In the proposed model, due to
eavesdropper activity the sent pure quantum states become
mixed states. Eve’s output is represented by a 2 2 density
matrix, her operation being a trace-preserving completely
positive (CP) map. Eve’s map is denoted by L , which is

trace-preserving if     Tr Tr L for all density

matrices  , and positive if the eigenvalues of  L are

non-negative, whenever the eigenvalues of  are non-

negative. As Eve’s map L has to be CP, n LI is thus a

positive map for all n, where nI is the identity map on n n

matrices [15].
A computational geometric method is used to analyze

cloning activity on a quantum channel, using the Bloch ball
representation. The activity of an eavesdropper on a single
qubit in the Bloch sphere representation can be expressed by
an affine map as

  ,E A b  r r r


L (1)

where A is a 3 3 real matrix, b


is a three-dimensional
vector, r is the initial Bloch vector of the sent pure

quantum state, and Er is the Bloch vector of the cloned

state.

A. Related Work

To analyze the informational geometric impacts of
cloning activity on the quantum channel, the mathematical
results of Aurenhammer and Klein [6], Badoiu and Clarkson
[10], Panigrahy [17], Badoiu et al. [18], Kumar et al. [19],
Kato et al. [5] and Nielsen and Nock [11] are used. The
proposed geometric analysis of this paper is based on the
most important studies of the security analysis of QKD
protocols. Our approach integrates the results of Cerfand
Bourennane [14], D’Ariano and Macchiavello [15], Acín et
al. [16], Kraus et al. [20], Hillery et al. [21], Cerf et al. [22],
D’Ariano and Macchiavello [23], Gisin et al. [24], Gisin and
Popescu [25], Niederberger et al. [26] and Mozyrsky and
Privman [4]. The geometric approach of Kato et al. [5] is
based on the computation of Voronoi diagrams using a
lower envelope technique. However, the current paper
shows that an enhanced version of the method presented by
Nielsen and Nock [11] can be applied in quantum space, and

by the introduction of quantum Delaunay diagrams for
convex hull calculation, a more powerful method can be
achieved.

In our security analysis, the informational theoretical
meaning of quantum cloning activity in the quantum
channel is studied. Alice’s side is modeled by the random

variable   , 1, .i iX p P x i N    , while Bob’s side can

be modeled by another random variable Y. The Shannon
entropy for the discrete random variable X is denoted by

 H X , which can be defined as

   
1

log
N

i i
i

H X p p


  . (2)

For conditional random variables, the probability of the

random variable X given Y is denoted by  p X Y . Alice

sends a random variable to Bob, who subsequently produces
an output signal with a given probability.

The effects of Eve’s quantum cloner on Bob’s received
quantum state are then geometrically analyzed. The
presence of Eve’s cloner in the quantum channel increases
the uncertainty in X, given Bob’s output of Y. The
informational theoretical noise of Eve’s quantum cloner

increases conditional Shannon entropy  H X Y , where

     
1 1

, log
X YN N

i j i j
i j

H X Y p x y p x y
 

 . (3)

The general model for the quantum cloner based attack
is illustrated in Figure 1.

L

Alice’s pure
qubit

Eve’s quantum
cloner

Bob’s mixed
input state

Quantum
Cloner

Cloned
state

 A B LA

Random state

 H X    H X H X Y H X Y

Figure 1. The analyzed attacker model and entropies.

The proposed geometric security analysis focuses on the
cloned mixed quantum state, which is received by Bob. The
type of quantum cloner machine depends on the actual
protocol. For example, in the four-state protocol Eve
chooses the phase-covariant cloner, while in the six-state
protocol she uses the universal quantum cloner (UCM)

machine. Alice’s pure state is denoted by A , Eve’s cloner
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modeled by an affine map L , and Bob’s mixed input state

denoted by  A B L .

Our calculations utilize the fact that for random variables

X and Y,      ,H X Y H X H Y X  , where

  ,H X  ,H X Y and  H Y X are defined by probability

distributions. Information which can be transmitted in the
presence of an eavesdropper on the quantum channel is
measured in a geometric representation. In a secret

quantum channel,  H X and  H X Y are sought to be

maximized and minimized, respectively, in order to

maximize the radius *r of the smallest enclosing ball of
Bob, whose radius describes the maximum transmittable
information from Alice to Bob in the attacked quantum
channel:

     * .
iall possible x

r Max H X H X Y  (4)

To calculate the radius *r of the smallest informational ball
of quantum states and the entropies between the cloned
quantum states, von Neumann entropy and quantum relative
entropy are used rather than classical Shannon entropy.

Geometrically, the presence of an eavesdropper causes
detectable mapping to change from a noiseless one-to-one
relationship to a stochastic map. If there is no cloning

activity on the channel, then   0H X Y  and the radius of

the smallest enclosing quantum informational ball on Bob’s
side will be maximized.

B. Properties of Quantum States

In the quantum space, a quantum state can be described by
their density matrix d d  , which is a d d matrix,

where d is the level of the given quantum system. For an n

qubit system, the dimension is 2nd  . The two-level
quantum states can be given by their density matrices in the
following way:

2 2 211
, 1,

12

z x iy
x y z

x iy z


  
    

  
(5)

where i denotes the complex imaginary 2 1.i   In quantum
cryptography, the encoded pure quantum states are sent
through a quantum communication channel. Using the
Bloch sphere representation, the quantum state  can be

given as a three-dimensional point  , ,x y z  in 3 , and

it can be represented by spherical coordinates

 , ,r   , (6)

where r is the radius of the quantum state to the origin,
while  and  represents the latitude and longitude

rotation angles. On the Bloch ball B , the pure states are on
the boundary of the Bloch ball B , while the mixed states
are inside the Bloch ball.

C. Measuring Distances between Quantum States

For two pure quantum states  and  , the geometrical

distance  ,d   is defined as

   cos ,Pured Tr   , (7)

respectively. For the  ,Pured   geometrical distance

between two pure quantum states, an obvious condition can
be given in the following way:

 0 , .
2

Pured


   (8)

We can define geometrical distances between mixed states
and pure states in the following way:

 , , 1P Md Tr      , (9)

where the quantum states  and  are arbitrary quantum

states. If both  and  are pure states, then the distance

 , ,P Md   between the quantum states can be given by

   , , 1 Tr ,P Md     (10)

as we illustrated it in Figure 2.





  1  

Figure 2. Geometrical representation of distance between pure quantum
states.

Hence, for pure quantum states there is a coincidence
between distances, since

   ,, , ,Pure P Md d    (11)
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thus, the distances  , ,P Md   and  ,Pured   are the

same for pure quantum states.
In our security analysis, the distances between quantum

states is defined by the quantum relative entropy. The
relative entropy of quantum states measures the
informational distance between quantum states.
The classical Shannon-entropy of a discrete d-dimensional
distribution p can be given by

 
1 1

1
log log

d d

i i i
i ii

H p p p p
p 

    . (12)

The von Neumann entropy S of quantum states is a
generalization of the classical Shannon entropy to density
matrices [8][9]. The entropy of quantum states can be given
by:

   log .Tr   S (13)

The quantum entropy  S is equal to the Shannon

entropy for the eigenvalue distribution:

   
1

log ,
d

i i
i

   


  S S (14)

where d is the level of the quantum system.
The relative entropy in classical systems is a measure,

that quantifies how close a probability distribution p to a
model or candidate probability distribution q [8][9]. For p
and q probability distributions the relative entropy can be
given by

  2log i
i

i i

p
D p q p

q
 . (15)

The relative entropy between quantum states can be
measured by

   log log .D Tr        (16)

The quantum relative entropy plays a key role in the
description of the quantum state space. The quantum
informational distance has some distant-like properties,
however it is not commutative [8][9], thus

    ,D D    and   0D    iff ,  and

  0D    iff .  The quantum information

theoretical distance is not symmetric, nor do they satisfy the
triangular inequality of metrics.

D. Quantum Informational Distance between Quantum
States

The quantum relative entropy reduces to the classical
Kullback-Leibler relative entropy for simultaneously
diagonal matrices. Using the negative entropy of quantum
states, the relative entropy of quantum states can be
described by a strictly convex and differentiable generator
function F :

     log .Tr     F S (17)

The quantum informational distance  D   for density

matrices  and  can be given by generator function F in

the following way:

       , ,D           F F F (18)

where  *, Tr   is the inner product of quantum

states, and   F is the gradient. In Figure 3, we have

depicted the geometrical interpretation of quantum
informational distance between quantum states  and 

[1][5][6]. The point of intersection of quantum state  on

 H  is denoted by  H  . The tangent hyperplane to

hypersurface  xF at quantum state  is

   , .H x      F F (19)

We have depicted the quantum informational distance,

 D   , as the vertical distance between the generator

function F and  H  , the hyperplane tangent to F at  .

Figure 3. Depiction of generator function as negative von Neumann entropy.
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We note, if  has zero eigenvalues, quantum relative

entropy function  D   may diverge, otherwise it is a

finite and continuous function.
The quantum relative entropy for general quantum state

 , ,x y z  and mixed state  , ,x y z     , with radii

2 2 2r x y z    and 2 2 2r x y z      , can be

expressed as

   
 
 

   
 

2

2

11 1 1
log 1 log

2 4 2 1

11 1 1
log 1 log , ,

2 4 2 1

r
D r r

r

r
r

r r



 






 

 

 


  




  



(20)

where  , xx yy zz       . For a maximally mixed state

   , , 0,0,0x y z     and 0r  , the quantum divergence

can be expressed as

   
 
 

2
11 1 1 1 1

log 1 log log .
2 4 2 2 41

r
D r r

r



 



 


   


(21)

Using Bloch vector representation  1

2
r   1
 

and

 
1

2
r   1
 

of two mixed states  and  , the

quantum relative entropy between them can be given by the
following formula:

 

 

2

2

1 11 1
log log

2 1 2 1

11
cos log ,

2 1

r r
D r

r r

r
r

r

 



 






 



   
           

 
  

 

(22)

where r and r denote the lengths of Bloch vectors, and

 is the angle between the two mixed quantum states. The
quantum informational distance between two mixed
quantum states depends on the lengths of their Bloch
vectors and the angle  between them, as illustrated in
Figure 4.

The density matrices of quantum states are represented
by 3D points in the Bloch ball. The eavesdropper’s cloner
transformation is modeled by an affine map, which maps
quantum states to other quantum states. Geometrically, the
eavesdropper maps the Bloch ball to a deformed ball. The
cloning activity in the channel can then be analyzed by the
radius of the deformed Bloch ball, which can be computed
by the proposed geometric methods.

r r




0

Figure 4. The quantum relative entropy between two mixed quantum states.

In our security analysis a Delaunay tessellation is used,
whose diagram is symmetrical only for pure states, and
asymmetrical for quantum states if the lengths of the radii
differ. To construct a Delaunay triangulation, three-
dimensional Laguerre diagrams are used.

E. The Smallest Enclosing Quantum-Information Ball

We would like to compute the radius r of the smallest

enclosing ball, thus first we have to seek the center *c of the
point set S . The set S of quantum states is denoted by

 
1

n

i i



S . The distance function  ,d   between any two

quantum states of S is measured by quantum relative
entropy, thus the minimax mathematical optimization is
applied to quantum informational distance to find the center
c of the set S of quantum states. We denote the quantum
informational distance from c to the furthest point of S by

distance function  ,d   as

   , max ,i id d sc cS . (23)

Using the minimax optimization, we can minimize the
maximal quantum relative entropy from c to the furthest
point of S by

 * arg min ,d cc c S (24)

In Figure 5, we illustrated the circumcenter *c of S , and
the smallest enclosing balls for the Euclidean distance and
quantum relative entropy [11].

Figure 5. Circumcenter for Euclidean distance ball and quantum relative
entropy ball.
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In Figure 6, we compare the smallest quantum informational
ball and the ordinary Euclidean ball [11]. We can conclude

that the quantum states 1 2,  and 3 , which determine the

Euclidean smallest enclosing ball are different from the
states of the quantum informational ball.

Figure 6. The maximum distance states of the smallest balls differ for the
quantum informational distance and Euclidean distance.

The informational theoretical effect of the eavesdropper’s
cloning machine is described by the radius of the smallest

enclosing quantum informational ball, denoted by *r . This
quantum informational theoretical radius is equal to the
maximum quantum informational distance from the center,
and can be expressed as:

   
    

2 2

* min max .r D
 

 
 


 S S

L L (25)

In the proposed procedure of calculating the smallest
enclosing information ball, a Delaunay tessellation is used
because it is the fastest known tool with which to seek the
center of a smallest enclosing ball of points.

III. QUANTUM CLONING IN QUANTUM CRYPTOGRAPHY

The quantum cloning machine does a trace-preserving,

completely positive map  , .U  When apriori

information about the input states is given so that input
quantum states can be particularly characterized, we call it
state-dependent quantum cloning. By the outputs, there are
symmetric and asymmetric cloning machines. A cloning
machine is called symmetric if at the output all the clones
have the same fidelity, and asymmetric if the clones have
different fidelities.

The quantum channel’s error rate is denoted by attack
CD ,

and the maximal information theoretic fidelity of the

eavesdropper’s cloning machine is denoted by EveF . The

parameter EveF represents the theoretical upper bound on the

cloning machine’s fidelity. The cloning machine based
attack has a critical value for the error rate

1 ,attack
C EveD F  (26)

thus Eve’s cloning machine fidelity is

1 .attack
Eve CF D  (27)

For example, if Eve uses universal quantum cloner, then

the value of parameter EveF is independent of input quantum

state  , and the fidelity of her optimal quantum cloning

machine can be defined by

       
1

1 ,
2

in inout

EveF       (28)

where  is the reduction factor. The quantum cloning

transformation is optimal [14][15], if
2

,
3

  hence the

maximal fidelity of optimal universal cloning is
5

,
6

EveF 

and the maximal radius universal
Ever is

2
.

3
universal

Ever  (29)

The quantum informational theoretical radius can be defined
as

 * 1 ,universal universal
Eve Ever r S (30)

where S is the von Neumann entropy of corresponding

quantum state with radius length universal
Ever .

In general, the universal cloning machine [14][15][16]
output state is can be given as

   1 .
out

Eve Evea a
F F        (31)

Asymmetric cloning has direct application to
eavesdropping strategies in quantum cryptography. The best-
known example of state-dependent quantum cloning
machine is the phase-covariant cloning machine. Here, the

states lie in the equator  x y of the Bloch sphere, thus the

fidelity of the cloning will be independent of  .

A. Optimal Individual Eavesdropping Strategy for QKD

The phase-covariant cloning machine has a remarkable
application in quantum cryptography, namely its use in
optimal individual eavesdropping strategies in the BB84
protocol [20][22][23]. Using an individual-type cloning-
based attack, Eve applies the same unitary transformation to
each sent quantum state. She does not introduce correlation
among the copies, measuring her state after she clones it [9].
Alice, Bob and Eve immediately measure their respective
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quantum states, since the parties have no ability to store
qubits.

The results of their measurements can be described by a

probability distribution  , ,P A B E . Eve’s quantum state is

denoted by E , while the unitary operation, which

describes the interaction between the sent qubit and Eve’s
state, is denoted by L , and thus the whole transformation
can be expressed as [24][26]:

0,0 0,1

1,0 1,1

0 0 1 ,

1 0 1 ,

E E E

E E E

  

  

L

L
(32)

where ,i jE denotes Eve’s cloned quantum state. E can

be written as a 2 2 matrix, whose elements are Eve’s

states ,i jE [9].

Eve’s cloning activity can be written in the following
form:

0,0 0,1

1,0 1,1

0 0 1 ,

1 0 1 ,

E F E D E

E D E F E

  

  

L

L
(33)

where ,i jE represents Eve’s normalized state in case Alice

sent an i-bit and Bob detected a j-bit. F is the fidelity
parameter, while D is the disturbance. The fidelity F
provides the probability that Bob detected Alice’s bit
correctly using the same basis, while D provides the
probability of an incorrect detection [9].

B. Different Types of Quantum Cloners

In quantum cryptography the optimal eavesdropping
attack is done by a phase-covariant cloning machine, which
clones the x equator. The importance of equatorial qubits lies
in the fact, that quantum cryptography requires these states,
rather than the states that span the whole Bloch sphere [9].

The transformations were restricted for pure input states
of the form

 1
0 1 ,

2

ie 
   (34)

where the parameter  0,2  represents the angle

between the Bloch vector and the x-axis. These qubits are
called equatorial qubits, because the z-component of their
Bloch vector is zero. The phase-covariant quantum cloners
[14][15][16] can clone arbitrary equatorial qubits, and they
keep the quality of the copies same for all equatorial qubits.
The reduced density operator of the copies at the output can
be expressed as [9]

 
, ,

1 1 1 1
,

2 8 2 8

out

        

   
         
   

(35)

where ,  is orthogonal to state . Thereby, the

optimal fidelity of 1 to 2 phase-covariant cloning
transformation is given by

1 2

1 1
0.8535.

2 8
phaseF    (36)

If Eve has a phase-covariant quantum cloner, then the

maximal value of her radius phase
Ever is

1
2

8
phase

Ever  . (37)

The quantum informational radius * phase
Ever of the phase-

covariant cloner can be defined as

 * 1 ,phase phase
Eve Ever r S (38)

where S is the von Neumann entropy of corresponding

quantum state with radius length phase
Ever .

The phase-covariant quantum cloning transformation
produces two copies of the equatorial qubit, with optimal
fidelity. The phase-covariant cloning transformation without
ancilla is a two-qubit unitary transformation, it can be given

by 0 0 0 0 and 1 0 cos 1 0 sin 0 1 ,  

where  0, / 2  is the shrinking parameter, which is

related to the fidelity [14][15][16][23].

IV. COMPUTATION OF QUANTUM CHANNEL SECURITY

In this section the informational geometric model of the
proposed security analysis is defined, fundamentally based
on the results of Gyongyosi and Imre [1]. In the
computation of the smallest enclosing quantum
informational ball, the results of Kato et al. [5] and Nielsen
and Nock [11] are also used.

In the proposed model, the fidelity of the eavesdropper’s
cloning machine is derived from the quantum informational

theoretical radius *r of the smallest enclosing quantum
informational ball and the theoretical upper bound of the
quantum informational radius of the eavesdropper’s cloning

machine, denoted by *
Ever .

Theorem

For a secure quantum channel, the radius *r of the
smallest enclosing quantum informational ball of mixed

states must be greater than *
Ever , thus
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* *
Ever r , (39)

where *r is the radius of the smallest enclosing
informational ball, computed by the proposed method. In
terms of the second part, for an insecure quantum channel

the radius *r is smaller than or equal to *
Ever and thus

* *
Ever r . (40)

Figure 7 shows a geometric interpretation of the proposed
model for a secure quantum channel.

* *
Ever r

*r
*
Ever

1r 

smallest enclosing ball

insecure quantum
channel

Bloch ball

secure quantum
channel

Figure 7. The radius of the smallest enclosing informational ball for secure
quantum communication.

In our security analysis, a spherical Delaunay tessellation
is used to compute the quantum informational theoretical

radius *r , since it can be simply obtained as an ordinary
Euclidean Delaunay triangulation mesh. The quantum
relative entropy-based Delaunay tessellation of pure states is
identical to conventional spherical Delaunay tessellation
[1][6].

Figure 8 shows a geometric interpretation of the
proposed model for an insecure quantum channel [1].

*r

*
Ever

1r 

smallest enclosing ball

insecure quantum
channel

Bloch ball

* *
Ever r

Figure 8. The radius of the smallest enclosing informational ball for
insecure quantum communication.

In this scheme, the radii UCMr and phasecovr of corresponding

quantum cloners are derived from the smallest enclosing
quantum informational balls.

The informational theoretical radius *
UCMr of a universal

quantum cloner can be expressed as

 * 1UCM UCMr r S . (41)

For a phase-covariant cloner, the informational

theoretical radius *
phasecovr can be defined as

 * 1phasecov phasecovr r S , (42)

where S is the von Neumann entropy of the corresponding
quantum state. In our numerical calculations, the notations

UCMr and phasecovr are used for the maximal radii.

The values of UCMr and phasecovr can be computed from

the informational theoretical radii of the smallest enclosing

quantum informational balls, denoted by *
UCMr and *

phasecovr .

Theorem
For UCM and phase-covariant cloner machines, the

connection between informational theoretical radii *r , *
Ever

and the Bloch vectors r and Ever can be defined as:

 * 1 ,r r S (43)

and

 * 1 ,Eve Ever r S (44)

where S is the von Neumann entropy, and r and Ever are

the Euclidean lengths of the vectors from the Bloch sphere
origin.

The smallest quantum informational ball with radius *r is
shown in gray, with the ball of the ideal UCM cloner with

radius *
UCMr shown in light gray.

It can be concluded that if ,UCMr rE E , then * *
UCMr r ,

and hence the informational theoretical radius will be
smaller.

Figure 9 compares ideal and imperfect universal and
phase-covariant cloner quantum balls.
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Figure 9. Smallest enclosing quantum informational balls of optimal and
imperfect universal and phase-covariant cloners.

It can be concluded that the informational theoretical radii
for ideal and imperfect phase-covariant cloning are
different.

Figure 10 illustrates the radii *
UCMr and *

phasecovr of the

smallest enclosing quantum informational ball for UCM-
based and phase-covariant cloner based attacks, in Bloch
sphere representation.

Figure 10. Comparison of smallest enclosing quantum informational ball of
UCM-based and phase-covariant cloners.

Geometrically, the smallest quantum informational ball can
be computed from the intersection of the contours of the
quantum relative entropy ball with the ellipsoid of the secret
channel, the latter being generated by the eavesdropper’s
cloner machine.

A. Geometrical Calculation of Channel Security

In the Bloch sphere representation, the smallest value of

 D   corresponds to the contour closest to the location

of density matrix.
In Figure 11, the smallest quantum informational ball

with radius  *
maxr D   r r , intersects the channel

ellipsoid at the magnitude m of Bloch vector r . The

Euclidean distance between the origin and center *c is

denoted by m . Similarly, the Euclidean distance between

the origin and state  is denoted by m , respectively.

We note, that for a perfect UCM cloner and a perfect
phase-covariant cloner, the center of the channel ellipsoid is
equal to the Bloch sphere origin. In our next example, we

will use an imperfect quantum cloner model, where the
center slightly differs from the Bloch sphere origin.

Figure 11. Intersection of radius of smallest enclosing quantum
informational ball and channel ellipsoid.

In our geometrical iteration algorithm, we would like to

determine the location of vector r inside the channel

ellipsoid such that, the largest possible contour value

 maxD  r r touches the channel ellipsoid surface, and the

remainder of the maxD contour surface lies entirely outside

the channel ellipsoid. The point on the channel ellipsoid
surface is defined as the set of channel output  . The

vector r is defined in the interior of the ellipsoid, as the

convex hull of the channel ellipsoid.
To determine the optimal length of the radius, the

algorithm moves point  . As we move vector r from the

optimum position, a larger contour corresponding to the
larger value of the quantum relative entropy D will intersect

the channel ellipsoid surface, thereby  max D
  r r r will

increase. We can conclude that vector r should be

adjusted to minimize  max D
  r r r , as we illustrated it in

Figure 12.

Figure 12. Moving of the vector from the optimum position will increase
quantum relative entropy. The optimal ball is shown in light-grey.
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The maximum length radius r can be determined by an

iterative algorithm, suing the quantum relative entropy as
distance measure. The computed radius is equal to the
radius of the smallest quantum informational ball, hence the
quantum informational radius can be used to derive the
fidelity of the eavesdropper’s quantum cloner machine.

B. Geometrical Representation of the Iteration Process

The vector r should be adjusted to minimize the value

of  max D
  r r r . To find the optimal value of vector r

in our geometrical analysis, we choose a start point for

vector r in the interior of the ellipsoid.

In Figure 13(a), we show the initial start point inside
the channel ellipsoid chosen by the algorithm. The vector of

state  is denoted by r . In the next step, the algorithm

determines the set of points to the vector 
r on the ellipsoid

surface most distant from r , using the quantum relative

entropy as distance measure. In Figure 13(b), the new state

is notated by  .

Figure 13. The algorithm determines the points on the ellipsoid surface
most distant from the point, using the quantum relative entropy.

The maximum distance between the states can be
expressed as

 max D
  


r r r . (45)

We choose a random Bloch sphere vector from the

maximal set of points according to vector 
r . The selected

point is denoted by 
r . The algorithm makes a step from

r towards the surface point vector 
r in the Bloch sphere

space. In this step, the algorithm updates vector r to

 * 1 ,      r r r (46)

where  denotes the size of the step.

In Figure 14(a), the updated state and the vector of the

state are denoted by  and 
r . The center of the quantum

informational ball is denoted by *
r .

In Figure 14(b), we illustrate the quantum informational
distance between the final center point and the maximal

distance state  , using the notation  max D
  r r r .

Figure 14. The algorithm makes a step towards the found surface point
vector and updates the vector.

Using the updated vector *
r , the algorithm continues to

loop until  *

*max D


 


r
r r no longer changes. We conclude

that the iteration converges to the optimal r , because the

algorithm minimizes  max D
  r r r . At the end of the

iteration process, the radius of the smallest quantum
informational ball can be expressed as

 min max .D
  r r r (47)

We would like to compute the radius *r of the smallest

enclosing ball, thus first we have to seek the center *c of the
point set S .

C. Delaunay Triangulation on the Bloch Sphere

The mesh of the Bloch sphere B can be described as a
number of points connected in some way by lines, the points
and the lines of the mesh are referred to as edges and
vertices.

The triangle t is said to be Delaunay, when its
circumcircle is empty. For an empty circumcircle, the circle
passing through the quantum states of a triangle t T ,
encloses no other vertex of the set S [6][7].
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1

2

3

4

1 2

3

4

5

Figure 15. The Delaunay triangulation of a set of quantum states.

The Delaunay triangulation  Del S of a set of

quantum states S is unique, if at most three quantum states

 S are co-circular. The Delaunay triangulation  Del S

of a set of quantum states  1 2, , n   S maximizes the

minimum angle among all triangulation of a given set of
quantum states, and the circle centered at vertex c , gives an

empty circumcenter for quantum states 1 2 3   , as we

illustrated it in Figure 16.

1

2

3c

Figure 16. The triangle of quantum states corresponds to the vertex c.

In our paper we use the Laguerre Delaunay diagrams [6][7]
to compute the radius of the smallest enclosing ball. In

general, the Laguerre distance for generating point ix with

weight 2
ir , is defined by

 
2 2,L i i id x x r    . (48)

The Delaunay diagram for the Laguerre distance is called
the Laguerre Delaunay diagram. We illustrated the dual
diagram of the Laguerre Delaunay tessellation in Figure 17.

Quantum
states on the

Bloch ball

Figure 17. Laguerre diagram for quantum states on the Bloch ball.

We show a fundamentally new method for deriving the
quantum relative entropy based Delaunay tessellation on the
Bloch ball B , to analyze the informational theoretical
impacts of eavesdropping activity on the quantum channel.

V. GEOMETRICAL COMPUTATION OF SMALLEST

QUANTUM INFORMATIONAL BALL

In our algorithm we present an effective solution to seek the
center c of the set of smallest enclosing quantum
information ball, using Laguerre diagrams. Our geometrical-
based security analysis has two main steps:

1. We construct quantum Delaunay triangulation
from Laguerre diagrams on the Bloch ball.

2. We seek the center of the smallest enclosing ball.
In our procedure, we use Delaunay tessellation, because

it is the fastest tool to seek the center of a smallest enclosing
ball of points. By the usage of quantum Delaunay
triangulation on the Bloch sphere, the convex hull of the
quantum states, and the radius of the smallest enclosing
quantum informational ball could be determined very
efficiently.

A. Delaunay Triangulation from Laguerre Diagrams

The Laguerre distance of a point x to an Euclidean ball

 ,b b r is defined as  
2 2, .Ld x x r    For n

balls, the Laguerre diagram of  , ,i i ib b r where

1, ,i n  , ib can be defined as the minimization diagram

of the corresponding n distance functions as [6][7]

 
2 2i

Ld x x r   . (49)

We use the result of Aurenhammer to construct the quantum
relative entropy based dual diagram of the Delaunay
tessellation, by the Laguerre diagram of the n Euclidean
spheres of equations [6]
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  , , 2 ,i i i i i i ix x              F . (50)

In Figure 18, we illustrated the Laguerre diagram on the
Bloch ball, and the construction of dual Delaunay diagram.

Quantum
states on the

Bloch ball

Quantum
states on the

Bloch ball

Figure 18. Tessellation on the Bloch ball, obtained by Laguerre diagram.

The most important result of this equivalence is that we can
efficiently construct a quantum relative entropy-based
Delaunay triangulation on the Bloch sphere, using fast
methods for constructing the classical Euclidean Laguerre
diagrams.

In Figure 19, we show the ordinary Delaunay
triangulation. The quantum Delaunay triangulation is
derived from the Laguerre diagram of Euclidean balls.

Quantum
states on the

Bloch ball

Figure 19. The regular triangulation on the Bloch ball.

We note, the image of quantum relative entropy based

Delaunay triangulation by the inverse of gradient 1
F
 , is a

curved triangulation whose vertices are the points of S .

B. Center of the Smallest Quantum Informational Ball

In our security analysis, we apply the approximation
algorithm presented by Badoui and Clarkson [10][18],
however in our algorithm, the distance measurement
between quantum states is based on quantum relative
entropy.

The E -core set C is a subset of the set C S , such

that for the circumcenter c of the minimax ball [10][18]

   , 1 ,d r c S E (51)

where r is the radius of the smallest enclosing quantum
information ball of the set of quantum states S [10][18].

The approximating algorithm, for a set of quantum

states  1, , n  S and circumcenter c , first finds the

farthest point m of ball set B, and moves c towards m in

 dnO time in every iteration step.

We denote the set of n d-dimensional balls by

 1, , nB b b  , where  ,i i ib Ball S r , iS is the center of

the ball ib and ir is the radius of the i-th ball. The smallest

enclosing ball of set  1, , nB b b  is the unique ball

 * * *,b Ball r c with minimum radius *r and center *c

[11].
In Figure 20, we illustrate the smallest enclosing ball of

balls in the quantum space.

*c

*r

 * * *,b Ball r c

ir
iS

Quantum
states

Figure 20. The smallest enclosing ball of a set of balls in the quantum
space.

The main steps of our algorithm can be summarized as:

Algorithm 1.

1

1 1

2

1. a random center from the set of quantum states

1
1,2, ,

2. the farthest point of

Select

S

i

Find S



  
  

  

c

c

for

do



S

E

S

 

   1
1

1

arg max ,

3. the circumcircle:

1
.

1 1

4. .

s F i

i F F i F

i

S D S

Update

i
S

i i

Return










 
    

  

c

c c

c

S

63

International Journal on Advances in Security, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/security/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The smallest enclosing ball of ball set  1, , nB b b  , fully

enclosing B, thus  * *,B Ball r c . The algorithm does

2

1 
  E

(52)

iterations to ensure an  1E approximation, thus the

overall cost of the algorithm is
2

dn 
 
 

O
E

[18]. The smallest

enclosing ball of a ball set B can be written as

 min ,Bc F c (53)

where        1, ,
, max ,B ii n

X d X B d X B


 F


, and the

distance function  ,d   measures the relative entropy

between quantum states [6].
The minimum ball of the set of balls is unique, thus the

circumcenter *c of the set of quantum states is:

 * arg min .B cc F c (54)

At the end of our algorithm, the radius *r of the smallest

enclosing ball *B with respect to the quantum informational

distance is equal to
   

    
2 2

min max .D
 

 
  S S

L L

The security of the quantum channel is determined by
our geometrical model, with assumptions

* * ,Ever r (55)

and
* *

Ever r , (56)

as we have defined it at Eq. (39) and Eq. (40).
Finally, the approximated value of the fidelity

parameter EveF , can be expressed as:

       
1

1 ,
2

in inout

EveF r     (57)

where r can be derived from the quantum informational

theoretical radius *r by  * 1r r S , where S is the von

Neumann entropy.

C. The Computational Complexity of our Algorithm

The quantum relative entropy-based algorithm at the i-th

iteration provides an  1 iO -approximation of the real

circumcenter, thus to obtain an  1E approximation, a

time

2 2 3

1dn d d

   

     
      

     
O O O (58)

is required, by first sampling
1

n


 points [10]. Based on

the computational complexity of the smallest enclosing ball,

the  1  approximation of the fidelity of the eavesdropper

cloning machine can be computed in a time

2

d



 
 
 

O . (59)

VI. OPTIMIZED ALGORITHM

In this section an improved core-set algorithm is shown
which determines the smallest quantum informational ball in
a more efficient manner [18]. This improved method obtains
a

d



 
 
 

O (60)

time  1  approximation algorithm in quantum space. In

comparison with current geometric methods in the literature,
this approach has a lower complexity than that presented by
Kato et al. [5] or Nielsen and Nock [11].

In Figure 21, we illustrate the improved algorithm on a
set of quantum states. The approximate ball has radius r, the
enclosing ball has radius r  . The approximate center c
is denoted in black, the core-set is denoted by grey circles.
The optimal radius between the center c and the farthest

quantum state is denoted by *r [18].

r  *cr

Farthest
quantum state

*r

Core-set

Figure 21. The approximate (light) and enclosing quantum information ball
(darker).
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The main steps of our improved algorithm can be
summarized as:

.Algorithm 2

 

 

1

1

1

1

1. a random center from the set of quantum states

1
2. max , ;

2

1
3. max , ;

2

1
4. 1,2, ,

5.

6. arg m

i F

i F

Select

r D

D

i

S











  
   

  



c

c

c

c

for

do



S

S

S

S

 

 

ax , ;

7. Move , on the geodesic until it touches

the point ;

i FD c

Ball c r

farthest S

S

 8. max , ;

3
9.

4

3
10.

4

11.

12.

i F is D c S r

s

r






 





if then

else

;
4

3
13. ;

4

14. .

r





 

 



until

The improved algorithm increments the radius of the
quantum information ball from a lower bound r of the

optimal radius *r [18]. In this algorithm, the optimal radius

is between *r r r    , and the process is terminates as
  , in at most

1



 
 
 

O (61)

iterations.

A. Rate of Converge

We made simulations and numerical analysis on the
performances of the proposed algorithms. We have
compared the core-set algorithm and the improved core-set
algorithm to find the smallest enclosing quantum
information ball. We have analyzed the approximation
algorithms for 30 center updates.

In the simulation work, the quantum information ball is
generated random, and the quantum relative entropy based
approximation used uniformly sampled quantum states. In
our numerical analysis, we have measured the quality of the

approximation with respect to quantum relative entropy. At
first we have simulated the algorithm presented in Section
V, then we analyzed the improved algorithm presented in
Section VI.

The results of our simulation are shown in Figure 22.
The x-axis represents the number of center updates to find
the center of the smallest enclosing quantum informational
ball, the y-axis represents the quantum informational
distance between the found center c and the optimal center

*c .

0

0,05

0,1

0,15

0,2

0,25

0,3

0 10 20 30

Number of center updates

Q
u

a
n

tu
m

in
fo

rm
a
ti

o
n

a
l
d

is
ta

n
c
e

Core-set algorithm

Improved algorithm

Figure 22. The converge rate of the approximation algorithms.

From the results, it can be seen that each presented
algorithm finds the approximate center c to the optimal

center *c extremely quickly. The quantum relative entropy-
based approximation algorithms have a very accurate

convergence of c towards *c , but the improved core-set
algorithm presented in Section VI converges more rapidly
with a smaller number of center updates.

It can be concluded that only a small set of quantum
states are required to compute the center of the quantum
informational ball, with the proposed algorithms providing
very solid approximations of the smallest quantum
informational ball.

VII. ILLUSTRATIVE EXAMPLE

In this section, the steps of the proposed algorithm are
summarized. Here the six-state quantum cryptography
protocol is used, together with the universal (UCM)
quantum cloner-based attacker model. The smallest
enclosing quantum informational ball for six mixed
quantum states is computed. The proposed example
illustrates the theoretical results of Section IV, integrating
the mathematical background investigated by Gyongyosi
and Imre [1], Kato et al. [5] and Nielsen and Nock [11].

As declared in Section IV, the quantum channel is

secure if * * .UCMr r In the first step, the convex hull for the

cloned states is computed by Delaunay tessellation, with
respect to quantum informational distance.
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Figure 23 illustrates the Voronoi cells for the cloned
states, using the six-state quantum cryptography protocol.
The cloned states were generated by Eve’s universal
quantum cloner machine. Cloned mixed states are denoted

by 1 2 3 4 5, , , ,     and 6 .

Figure 23. The dual Delaunay diagram in Bloch sphere representation.

In the next step of security analysis, the quantum
Delaunay triangulation for the six cloned states is computed.
Using quantum relative entropy-based Delaunay
tessellation, the three-dimensional convex hull for cloned

mixed quantum states 1 2 3 4 5, , , ,     and 6 can be

calculated.
Figure 24 illustrates the three-dimensional convex hull

(light-gray) of cloned states 1 2 3 4 5, , , ,     and 6 .

Figure 24. The convex hull computed by quantum Delaunay triangulation.

Finally, the center of the convex hull and radius *r of
the smallest enclosing quantum informational ball are
computed.

In Figure 25, the center and informational theoretical
radius of the smallest enclosing quantum informational ball

are denoted by *c and *r , respectively.

Figure 25. The smallest enclosing quantum informational ball.

Figure 26 shows an example of a two-dimensional
smallest enclosing quantum informational ball.

The center point is  0.3287,0.3274*c , and the radius
*r of the smallest enclosing quantum informational ball is
* 0.4907.r 

Figure 26. The smallest enclosing quantum informational ball inside the
Bloch sphere.

As can be noticed, the center *c of the smallest enclosing
quantum informational ball differs from the center of an
Euclidean ball.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a fundamentally new method of
calculating the security of a quantum channel, based on
Laguerre diagrams and quantum relative entropy. Using a
Delaunay tessellation on the Bloch sphere, the geometric
space can be divided and can be calculated extremely
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efficiently, in a reasonable computational time. A
generalization of an effective approximation algorithm of the
smallest enclosing quantum information ball of the set of
quantum states was presented, equipped with quantum
relative entropy as a distance measure. This improved
approximation algorithm was demonstrated to obtain a more
efficient optimized geometric method. Finally the
performances of the proposed methods were compared.

In this paper a new algorithm with which to compute the
quantum informational theoretical impacts of an
eavesdropper’s cloning machine on the quantum channel was
also proposed. In this analysis, the fidelity of the
eavesdropper’s cloning machine is numerically computed by
tessellation on the Bloch sphere. A very effective core-set
algorithm and an optimized core-set method were also
designed. The adaptability of classical computational
geometric methods in the quantum space was presented,
while the performance of the basic and improved core-set
algorithms were analyzed and compared. It was shown that
both of the proposed algorithms provide very strong results
concerning the approximation of the smallest quantum
informational ball.

In terms of future work, it is hoped that the method will
be extended to analyze coherent and individual attacks for
quantum cryptography, while an in-depth study on the
geometric impacts of physically allowed quantum cloning
transformations is also intended.
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