
Fault Tolerance Framework using Model-Based Diagnosis: Towards Dependable
Business Processes

Angel Jesus Varela-Vaca, Rafael M. Gasca, Diana Borrego, Sergio Pozo
Computer Languages and Systems Department,

Quivir Research Group
ETS. Ingenierı́a Informática, Avd. Reina Mercedes S/N,

University of Seville, Seville, Spain
{ajvarela, gasca, dianabn, sergiopozo}@us.es

Abstract—Several reports indicate that one of the most
important business priorities is the improvement of business
and IT management. Management and automation of business
processes have become essential tasks within IT organizations.
Nowadays, business processes of a organization use external
services which are not under our its jurisdiction, and any
fault within these processes remain uncontrolled, thereby
introducing unexpected faults in execution. Organizations must
ensure that their business processes are as dependable as
possible before they are automated. Fault tolerance techniques
provide certain mechanisms to decrease the risk of possible
faults in systems. In this paper, a framework for developing
business processes with fault tolerance capabilities is provided.
Our framework presents various solutions within the scope
of fault tolerance, whereby a practical example has been
developed and the results obtained have been compared and
discussed. The implemented framework presents innovative
mechanisms, based on model-based diagnosis and constraint
programming which automate the isolation and identification
of faulty components, but it also includes business rules to
check the correctness of various parameters obtained in the
business process.

Keywords-Business process, Business Process Management,
Fault-tolerance, Dependability.

I. INTRODUCTION

The automation of business processes is emerging into the
enterprise arena as a mechanism for improvement. Compa-
nies may decide to deploy Business Process Management
System (BPMS) to automate their business processes, but
it system cannot guarantee perfect executions error-free or
fault-free execution. On the other hand, nowadays there
exist a trending in the integration of services of different
companies in the business processes. The integration of
external services set up new point of vulnerability in the
business process execution. Companies have to ensure that
their business processes are as dependable as possible using
mechanisms such as introduced in [1][2]. Gartner’s CIO re-
port [3] indicates that the most important business priorities
include: improvement of business processes, cost reduction,
enterprise workforce effectiveness, security and IT manage-
ment. Therefore, dependability is a significant requirement
for many types of companies, since any failure in their busi-

ness processes may lead to terrible consequences: economic
lost, lives lost, systems destroyed, security breaches, and so
on.

In recent years, a new paradigm has emerged in the scope
of business IT: Business Process Management (BPM). BPM
is defined as a set of concepts, methods and techniques to
support the modelling, design, administration, configuration,
enactment and analysis of business processes [4]. BPM has
become an essential tool for organizations, since it is defined
as a methodology for the improvement of the efficiency
through systematic management of business processes that
should be modelled, automated, integrated, monitored and
optimized in a continuous way. One of the most important
goals of BPM is the better understanding of the operations
that a company performs and the relationships between
these operations. BPM also aims at narrowing the gap
between business processes that a company performs and
the implementation of these processes in the BPMS.

The BPM paradigm follows a life cycle that consists of
several stages [5], shown in Figure 1. During each stage,
various kinds of faults can be introduced:

• In the design stage, business process models can present
some design faults (such as deadlocks, live-locks and
starvations). Some systematic approaches provide de-
sign guidelines that allow their designed processes to
be corrected and improved. Design problems are not
taken into account in this paper since it is an issue that
has already been subject to wide discussion [6][7][8].

• In the run-time stage, faults could be located in the
business processes when unexpected outputs, unex-
pected messages, unexpected events, or unexpected per-
formances are obtained. Executable business processes
tend to use external services that are not under their
jurisdiction. Thus, it is impossible to ensure that the
functionality of a certain external service changes dur-
ing the business process life cycle. As a consequence,
unexpected changes in services could entail changes in
business process behaviour.

Therefore, companies must pay attention on the inclusion

11

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of measures that promote the reduction of the risk of possible
faults and increase the dependability of business processes
from design stages. The majority of proposals have used
fault tolerance ideas in other areas such as: firewalls, grid
computing, composition of applications and service-oriented
architectures, [9][10][11][12][13]. In these studies, various
fault tolerance approaches have been applied: check-point
view [9], replication and recovery techniques [10][11], and
other sophisticated techniques such as dynamic binding [12],
and self-reconfiguration of systems [13]. Our approach pro-
poses to improve dependability properties in the execution
of business processes based on techniques for automatic
identification of faults by means of model-based diagnosis
which helps to establish specific fault tolerance mechanisms.
Fault tolerant mechanisms applied in this work are based
on classic fault tolerance ideas such as replication, check-
pointing and techniques of diversity focused on the context
of service-oriented business processes.

This paper is structured as follows: Section II introduces
some concepts of BPM and fault tolerance; Section III
presents our framework for dependable business processes
using fault-tolerant techniques; in Section IV, a practical
example is explained and developed; Section V shows ex-
perimental results that are discussed; and, in the last section,
conclusions are drawn and future work is proposed.

II. BUSINESS PROCESS MANAGEMENT SYSTEM AND
FAULT TOLERANCE

In order to understand the BPM paradigm, it is necessary to
show the typical business process life cycle [5], as shown
in Figure 1. The life cycle consists of different stages:

1) Design and Analysis: business process models are
defined and validated.

2) Configuration: once business process models are val-
idated, they need to be implemented by a dedicated
software system. In this configuration stage a software
systems (BPMS) is chosen and configured where busi-
ness processes will be deployed.

3) Enactment: once deployed, process enactment needs
to guarantee correct execution in accordance with
various constraints specified in the model.

4) Diagnosis: techniques are applied to identify and
isolate faults in business processes. Nowadays, most
diagnosis techniques applied are focused on identify-
ing design faults.

In BPM, several levels of business processes can be
identified depending on the point of view of the organization
[4]. In this paper, only two levels of BPM are considered:

• Operational business processes are described with busi-
ness process models where the activities and their rela-
tionships are specified, but implementation aspects are
not taken into account. Operational processes are the
basis for developing implemented business processes.

Figure 1. Business process life cycle.

• Implemented business processes contain information
about the execution of the activities and the technical
and organizational environment where they will be
deployed and executed.

Implemented business processes and specifically service-
based business process use external services which remain
outside the jurisdiction of the organization. Although, busi-
ness process models are validated and verified at the design
stage, organizations cannot guarantee the correct execution
of changes in services interms of functionality and faults
simply through the lack of response or security attacks, and
so on. The identification of where business processes are
failing, and which components are involved in the faults may
probe worthwhile for the numerous business stakeholders
(designers, analysts, developers, etc).

Fault diagnosis is a method which permits us to determine
why a correctly designed business process fail to work
as expected. Diagnosis aims to identify and isolate the
reason of any unexpected behaviour, or in other words, to
identify which parts are failing in a business process. In this
work, model-based diagnosis [14] is used in order to isolate
the faulty services. Model-based diagnosis is recognized as
a very powerful tool within the community of diagnosis
due to its ability to solve the problem of isolating faulty
components.

Our proposal is focused on achieving dependable business
processes, but to the achievement of dependability must first
be clarified [15]. The properties for achieving dependability
fall into four major groups: fault tolerance, fault avoidance
or prevention, fault removal, and fault forecasting.

By definition, fault tolerance [15] is a mechanism used
to order to guarantee service by complying with the spec-
ification in spite of the presence of faults. Fault-tolerance
techniques are a means of reducing the risk of faults. On the
whole, fault-tolerance frameworks are focused on physical
systems and not on software systems and most applied
techniques are based on replication and recovery. Replication
is employed in the recuperation of services by means of
duplication of each of its functionalities in form of replicas

12

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and in the case of a service replica fault another replica takes
control. Typical solutions in replication are considered as:

• Passive replication [16]: the client only interacts with
one replica (primary) which handles the client request
and sends back responses. The primary replica also
issues messages to the backup replicas (other secondary
replicas) in order to update their state.

• Active replication [16]: all replicas play the same role.
All replicas receive each request, handle the request,
and send back the response to the client. Other solutions
based on active replication [17] exist.

Initially, active replication provides a generally faster
response time than passive replication. However, in active
replication all replicas must to process the requests, and
hence more system resources are employed than for passive
replication. Moreover, the nested redundant replicas could
cause a problem of invocations since the use of active
replication requires replicas to be deterministic. No such
determinism is required for passive replication, and therefore
it is more flexible.

In the majority of cases, fault tolerance is used as only a
hardware approach, but software is also a crucial factor in
the effective good running of organizations. Increasing the
dependability of software presents some unique challenges
when compared to increasing the dependability of traditional
hardware systems [18]. Hardware faults are mainly physical
fault, which can be characterized and predicted over time.
Software has only logical faults which are difficult to vi-
sualize, classify, detect, and correct. Changes in operational
usage or incorrect modifications may introduce new faults.
To protect against these faults, it is insufficient to simply add
redundancy, as is typically done for hardware faults, since
doing so would simply duplicate the problem.

III. FAULT TOLERANCE FRAMEWORK

In the previous section, the basic ideas of the business
process life cycle are introduced and the main stages to man-
age business processes are shown. This section is focused
on presenting the framework by defining all its components
and clarifying how it works. The proposed framework is
based on the main ideas of the BPM life cycle, whose
structure is depicted in Figure 2. As can be observed, the
framework is structured in four main layers: Modelling,
Applications, Fault Tolerance, and Services. In the following
subsections, the various parts of the framework are detailed
and discussed. Although it can be noticed that the main
characteristic is the utilization of a specific fault-tolerance
layer. This layer contains specific mechanisms in order to
mitigate the risk of possible process faults detected in the
execution of business processes.

Before continuing any further, some assumptions about
business processes should be stated:

1) A business process model has a single start event,

Figure 2. General view of the framework.

a single end condition and every activity contributes
towards finishing the process correctly.

2) The business process design is correct, and hence no
design faults exist(deadlocks, live locks, starvations,
and so on).

3) Operational business processes cannot suffer byzantine
faults (arbitrary faults).

4) Operational business processes are stateless.
Therefore, the main problems left for discussion in this

paper involve the diagnosis and mitigation of incorrect
outputs/results and events in business processes. In the
following subsections, each framework layer is described.

A. Modelling Layer

The design stage is focused on describing different models
used in our framework. Our approach is based on three kinds
of models:

• Business process models are graphical descriptions of
business processes (BP). These models represent the
graphical formalization of the various constraints to
which a business process has to comply at any time
they are employed. Within the arena of BPM, various
modelling languages have emerged: Flowcharts, Petri
Nets, Event-driven Process Chain (EPC), UML Activity
Diagrams, Data Flow Diagrams (DFD), IDEF, and
Business Process Management Notation (BPMN). In
the design stage, the most widely used for business
processes representation is currently the standard Busi-
ness Process Management Notation (BPMN) by OMG
[19]. This notation is highly useful for business analysts
since BPMN contains many different elements such as
activities, data objects, and gateways. However, BPMN
diagrams save no information on where they will be
executed and are platform-independent. Figure 3 shows
an example of a BPMN diagram where elements are de-
scribed. Our framework can support BPMN diagrams,

13

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and a prototype is developed and shown in [6].

Figure 3. BPMN element description.

• Business rule models; a business rule is a statement
that defines those aspects of business processes that are
impossible to gather or express in the model [20]. In
fact, by separating business logic from business design,
if the business process logic changes then, only the
business rules must be changed but not the business
process. Business rules can be formalized as ”if-then”
statements in a selected Business Rule Management
Systems (BRMS), by using natural language or for-
mal methods. BRMS is a software system employed
to define, deploy, execute, monitor, and maintain the
variety and complexity of decision logic that is used
by operational systems within an organization. In our
proposition, business rules act as an ”oracle”. Thus,
they indicate the correctness of outputs of the business
processes.

• Constraint models are necessary in the model-based
diagnosis stage where Constraint Satisfaction Problems
(CSP) are used. In our proposition, constraint models
are employed to describe behaviour activities gathered
within business processes. Constraint models can be
constructed off-line or on-the-fly. Process constraint
models can be built online since logs captured where
information of inputs, outputs and service constraint
model can be given. Both Diagnosis and CSPs will be
described in Section III-C.

Business process validation analysis methods are focused
on discovering whether the designed business processes can
be automatically enacted as expected. Through this analysis,
any possible constraint violations should be detected. In
various studies, process models have been analyzed in order
to prevent structural faults in the form of : Petri Nets
[21]; a set of graph reduction rules to identify structural
conflicts in process models [22]; and an improved version
of the latter method [23]. However, in a earlier work [6]
a business process validation has been studied, and an
automatic mechanism to fault structural diagnosis has been
integrated in a editor of BPMN diagrams.

B. Application Layer

In this layer, various technologies which are used to im-
plement and deploy models are introduced. Business Process
Execution Language (BPEL) is a de facto standard language
for the implementation of service-based business processes.
The main advantages in using BPEL as an implementation
language are:

• BPEL supports all necessary elements in the imple-
mentation of sophisticated business processes, such as
those in BPMN, and provides a sufficient number of
mechanisms to implement fault tolerant mechanisms
[24].

• BPEL processes are specific implementations of busi-
ness processes for service-oriented environments, as
suggested in [4].

• The majority of the distinguished commercial and non-
commercial tools support service-oriented architectures
and BPEL processes as shown in Table I.

Table I
COMPARATIVE OF BPM TOOLS.

Although BPMN is a standard notation for the design
of process models, it could automatically be translated into
BPEL [19][25][26], and most commercial BPMSs support
BPMN and BPEL processes. Therefore, BPEL processes
represent the best candidate and will be used in our proposal.
A BPEL environment is necessary for the implementation
and deployment operational business process. In this pro-
posal, GlassFishESB have been integrated in our framework.
NetBeans provides an environment in order to develop BPEL

14

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



processes graphically. Moreover, GlassFishESB provides
support as an application server with several components of
Enterprise Service Bus (ESB) [27] and a runtime for BPEL
processes.

There is no accepted standard for business rule systems.
For this reason, in our proposal business rules have been
developed using WebSphere Ilog JRules and have been
integrated within business processes as services.

Neither is there any standard CSP representation nor CSP
Solver. For the development of constraint models, any CSP
Solver could be used. In our case, constraint models have
been implemented using ChocoSolver [28] which has been
integrated into our framework. However, the model could be
implemented as a standalone from other CSP Solver tools,
and used as a service.

C. Diagnosis

In our approach, model-based diagnosis is applied. Di-
agnosis is used for the identification and isolation of be-
havioral faults in the components of business processes.
Constraint Satisfaction Problem (CSP) techniques have been
applied in the diagnosis since CSP is an extended technique
which solves a wide variety of problems, including those
in business processes [29]. In order to apply CSP, business
processes have been transformed into Constraint Optimiza-
tion Problems (COP) [30]. COPs are specific CSPs where
an objective function to optimize remains to be optimized.
COP is evaluated using a CSP solver (a solver is an engine
of constraints that implements algorithms in order to solve
constraint satisfaction problems). The diagnosis will only be
invoked when a fault in the outputs of the business processes
has been detected.

D. Fault Tolerance Layer

Framework has been built with a specific fault tolerance
layer. This layer is developed with the intention of con-
trolling possible faults and taking corresponding corrective
actions in order to recover the execution business processes,
and then to achieve dependable properties. In our case, some
replication solutions have been adopted, but on the other
hand, software fault tolerance techniques have also been
considered. Likewise, replication and recovery techniques
are focused on the redundancy of components without
considering the business process state. Therefore, one fault
tolerance mechanism is focused on the simulation of check-
point and recovery [31], but in this case oriented towards
business processes. Various fault-tolerant mechanisms are
described below:

1) Without fault tolerance
BPEL processes are defined as a composition of web
services. Thus, web services (of either external or
internal organization) are linked at design time. If
a fault output or event occurs (supposing no design
faults exist in the processes), this fault is located on

the service side, for instance, a change of function-
ality, or a miss-match of parameters. Once the BPEL
process has been deployed, it is impossible to replace
the faulty service during run-time. Faults are only
solved by stopping for every instance of a business
process. Firstly, the faulty service has to be located
(diagnosis), then eliminated, and finally replaced with
another correct service. Therefore, it is necessary to
introduce mechanisms to mitigate effects produced by
faults without having to stop the execution of business
processes and this can be carried out by means of fault
tolerance techniques.

2) Primary/Backup approaches
This solution applies the concept of redundancy, in the
sense of replication of services. This approximation
has a primary service as principal and one or more
replicas as backups. In the case of a fault, it is possible
to use the backup services. The adopted solution in the
proposal is based on dynamic binding ideas [32][33].
Dynamic binding is a technique that allows services
to be linked at run-time.
In our approach, a binder component is introduced
between the BPEL processes and the services acting as
proxies, as shown in Figure 4. Binder is not developed
as an external program or external monitor, but as
another business process. The binder component de-
cides at run-time what services to invoke: whether they
be the original service or the replicas (backups). The
solution is fault tolerant since in the case of detecting
a faulty service, every faulty service invocation can be
replaced with an invocation to a backup service.

Figure 4. Communication process-service with binder.

This is a good solution despite presenting some defi-
ciencies such as the introduction of a unique point
of fault at binder component which in turn could
introduce a very high overhead in the performance of
a business process. In order to solve the first problem,
the replication of the binder can be applied, thereby
also, replicating the binder component (one primary
and several backup replicas). In our case, passive
replication is used in the proposed solution. In the
case of a fault, in the first binder, a backup binder

15

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



takes the control of the execution, thereby enabling
the execution to continue, see Figure 5. The binder
backup can be an exact copy of the original but
located in another external server or machine that of
the primary copy. BPEL provides various mechanisms,
such as fault and compensation handlers, to achieve
the implementation of primary-backup binders.

Figure 5. Communication process-service with binder replicated.

3) Multi-Version (N-Version Programming) approach
Software components cannot be degraded in the same
way as physical systems and redundancy fails to
provide a good solution, since if a fault is detected in
a software component, it is due to an implementation
fault with a very high probability, and this kind of fault
cannot be solved by means of redundancy. Diversity
is a very important factor in obtaining dependable
software systems [18]. The main goal of diversity is
to provide identical services (variants) but with a sep-
arate design and implementation in order to minimize
causing identical faults. For instance, when a software
variant presents a fault, this will be isolated as much
as possible. There are different techniques for fault-
tolerance software based on multi-version (diversity
of software) [18][34]: N-Version Programming (NVP),
Recovery Blocks, N-Self Checking Programming.
In the proposed framework, a solution based on NVP
is adopted, which is a static technique where a activity
is executed by various processes or programs and the
result is only accepted by majority of votes. This
mechanism for obtaining results is defined in NVP as
an adjudicator or decision mechanism (DM). Various
decision mechanisms are defined in [18].
The N-Version paradigm considers the utilization of
diversity for implementations and designs in order to
isolate faults in the components. Every service used
in the implementation will be developed as an N-
Version Component. The implementation selected for
N-Version components follow the basic ideas of N-
Version Programming. An N-Version component pro-
vides at most 2X + 1 replicas, X ranges from 1 to N,
and where N is an integer greater than 1. Components
have been developed with an adjudicator (DM) in

order to obtain the output results, see Figure 6. The
logic within the adjudicator (DM) can be very basic
or seriously complicated. However, NVP components
can be improved by adding new features, for example,
by developing new strategies in the adjudicator. How-
ever, the more complexity added into the adjudicator
component, the more overhead is introduced into the
execution of the N-Version components.

Figure 6. Example of N-Version component.

By using N-Version components, not only is fault-
tolerance achieved, but it also supposes another ad-
vantage since the diagnosis stage is rendered totally
unnecessary. For example, if one of the variants fails
return a response in time, the adjudicator takes the
results from the other variants. In consequence, diag-
nosis can be eliminated from the framework by using
this mechanism, although it could result in a very high
cost in developing and performance.

4) Checkpointing approach
The checkpoint mechanism is based on the idea of
saving the state of the system, and, in the case of
fault detection, recovering the execution of the system
from the checkpoint where the state was saved. We
propose the simulation of a checkpoint approach in
services, whereby a recovery mechanism is launched
only in the case of faults. The fault tolerance approach
mechanism is composed of two parts:

• Sensors (Checkpoints). An integrity sensor is
modelled as a CSP. Sensors receive data infor-
mation about data inputs and outputs from the
services, with which the CSP is then defined. CSP
resolutions help to identify and isolate the services
which are failing in run-time.

• Compensation handlers (Rollback). These are spe-
cific elements of business processes which allow
the limitation of the effects created by a pro-
cess when faults or errors occur. Compensation
handlers allow the process execution to be rolled
back from a specific point, thereby executing
a set of tasks to undo the transactions already
initiated. Compensation handlers are explained in
next section.

16

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The checkpoint approach presents some drawbacks
in comparison with the other approaches: it requires
the introduction of extra elements (sensors) into the
business process design, extra time to check each
sensor, and recovery of business process services in
rollback. In fact the correct and minimal localization
of sensors inside a business process could be a very
highly complex task [35].
For high dependability, the checkpointing solution is
not suitable since for long business processes, the
rollback mechanism could introduce a very high over-
head in the case of a fault. However, if very high
dependability in our business processes is needed, then
a solution with binder backup is the best solution.
Nevertheless, if very high dependability is not needed,
then a binder approach alone could be sufficient. If the
business process with a very high level of correctness
in outputs is needed, then NVP is the best solution.
Although an evaluation of the number of replicas
needed must be carried out since with a specific
number of replicas a very high level of correctness
could be ensured despite of the introduction of very
high load on the development and in the adjudicator
logic.
Table II provides a summarization of some character-
istics of fault tolerance mechanisms applied:

• Type. The kind of fault tolerance used. For ex-
ample, the replication of services in the case of a
binder.

• Model-Based Diagnosis. Whether the diagnosis is
necessary or not for this technique. For example,
in NVP solution the diagnosis stage is unneces-
sary.

• Overhead. It indicates the additional logic intro-
duced for the development of this technique. For
example, in the case of binder, a dynamic binding
additional logic is necessary.

IV. ILLUSTRATIVE EXAMPLE OF APPLICATION

In order to clarify the various alternatives, an example is
developed. Although it is a small example, it can perfectly
illustrate the problematic under consideration. In this pro-
cess, there is a set of services, S = {S1, S2, S3, S4, S5,
M1, M2, M3}, a set of inputs, I = {a, b, c, d, e, f}, and
a set of outputs, O = {g, h, i}. The system is made up
of three services (M1, M2, M3) with the same functionality
M(x) but they are independent; and (S1, S2, S3, S4, S5) are
another five elements with the same functionality S(x) but
also independent, see Figure 7.

To illustrate a real example, the process has been dis-
tributed. The global process has been divided into three
separated processes which are deployed in three different
systems. The new distributed process is shown in Figure 8.
In this case, there is a global process; ”Complete Process”,

Figure 7. Example of business process.

which orchestrates the other three BPEL processes. BPEL
Process 1 contains the invocations to the services S1, S2
and S3. BPEL Process 2 contains the invocations to the
services M1, M2 and M3 and relies on BPEL Process 1.
BPEL Process 3 contains the invocation to the services S4
and S5 and relies on BPEL Process 2 and BPEL Process 1.

Figure 8. Distributed process.

In the scenario, it is possible to observe numerous aspects.
For instance, a fault within service S1 has a direct effect
on the BPEL Process 1 result, and as a consequence the
BPEL Process 2 is also affected, and finally BPEL Process
3 will be affected, and hence the final result of the complete
process will be not correct. However with the correct fault
tolerance mechanism this will not be the case. Therefore,
fault tolerance mechanisms are necessary in order to improve
the fault tolerance in the execution a business process.

1) Primary-Backup Services with unique binder ap-
proach. This solution combines the concept of re-
dundant services with dynamic binding mechanisms.
This approximation has a primary service as principal
and one or more backups. In the case of a fault
diagnosis of a service, it will be possible to replace the
invocations from this primary with the backup service.
A binder component is introduced between the process
and the services. In Figure 9 only some services (S1,
S2, and S3) have been represented, but every service
has to be invoked for the binder component. The

17

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Table II
COMPARATIVE OF THE FAULT TOLERANCE TECHNIQUES.

binder component is common to every BPEL process.
The solution is fault-tolerant although it introduces a
drawback since a unique point of fault is located in
the binder component. Thus, if a binder fails then all
invocations to services will not be produced and all
business process executions will not be able to finish.

Figure 9. Fault-Tolerant solution with binder.

2) Primary-Backup Services with replicated binder
approach. In this case a replication of the binder
is introduced. If the binder component enters a fault
state, then backup replica can take control of the
execution, see Figure 10. In the developed proposal,
the binder backup is an exact copy of the original. The
binder component is common to every BPEL process.

3) N-Version components approach. The N-Version
components use three variants with an adjudicator to
obtain the output results (see Figure 11). The logic
within each adjudicator is basic so that no intro-
duce high overhead into the final performance of the
process. The adjudicator therefore only compares the
outputs from the variants by means of a voting system.
In this implementation, a fault-tolerant software com-

Figure 10. Fault-Tolerant solution with replicated binder.

ponent is achieved and the diagnosis stage is rendered
totally redundant.

Figure 11. Fault-Tolerant solution with N-Version components.

4) Checkpointing approach. It is supposed that the
sensors have been correctly located. Sensors, by means
of a CSP resolution, indicate whether a service is

18

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



behaving as expected. In a checkpointing approach,
the process state is saved at this checkpoint, but in
our approach this is not necessary. Likewise, sensors
provide certain information in order to help the model-
based diagnosis stage determine a fault in a finite set of
activities of the business process. In Figure 12, sensor
IS1 covers the services S1,S2 and S3, while IS2 covers
the services from IS1 and IS2.
In order to explain the functionality of a compensation
handler, the following example is used: a bank has a
business process which takes the data from the client
so that a transaction from the client’s account to his
credit card can be carried out which increases the
credit of the card. The service should take a specific
client’s data and return the amount of an account, but
due to fault this service returns the amount plus other
data about another account. This service is therefore
not working in compliance with the specification. If
this fault is determined, it could be possible to throw
a fault exception and, using compensation handlers,
undo all transactions carried out from the moment
of the fault. Compensation handlers can only be em-
ployed when an internal fault is detected. In the case
described, the services were working well but the fault
came from the functionality of the service.

Figure 12. Approach with sensors already allocated.

Compensation is the really useful mechanism to undo
transactions, but here it will be applied in another
sense. In our case, when an sensor determines any
fault in the execution of the business process, an
exception is thrown at the end of that process. After
throwing the fault, it is determined by the process
and the compensation handler is invoked. Within of
the compensation, the services with failures are then
re-executed from a backup those correct functionality
has already been tested. This process is shown in
the Figure 13, where the faulty activities has been
marked with a red cross within the activities. One
consideration has to be taken into account, for example
if the service M1 has a fault and the service S5
waits for any data generated from M1, there is a

dependency between M1 and S5, therefore when M1
has a fault, then S5 has to be re-executed. In the scope
of fault tolerance this solution is not purely a solution
based on checkpointing since the state of the process
is not saved and the execution continues from the
checkpoint. The checkpointing approach does not use
the same process because diagnosis is distributed from
various sensors.

Figure 13. Recovery business process.

How does the framework work? Firstly, when the frame-
work obtains an output, it is checked by consulting the
oracle. If the oracle returns KO as response, then the
framework attempt to isolate those components involved in
the fault. To isolate faulty services, model-based diagnosis
is employed using CSPs. In order to automate the process of
diagnosis, a CSP model is solver together with the business
process output. Once diagnosis retrieves which components
are producing faults, then this information is translated to
the fault tolerance layer and the corresponding mechanism
is activated to replace erroneous services with other correct
services. This process is outline depicted in Figure 14, and
it is common to binder, binder backup and to NVP.

Figure 14. Example of the framework execution execution.

19

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 15. I. Performance one thread for execution. II. Performance more than one thread for execution.

V. EVALUATION AND RESULTS

A set of test cases has been executed for each case of the
fault-tolerant approach, as described in previous sections.
The tests developed have been separated in two groups:
first considering one thread of execution, and second one
considering more than one thread of execution. Also on,
for each thread a number of invocations 300,1000,1500 and
2000 are carried out. The tests simulate the idea of there be
an integrity fault in a single component for each request, for
instance S1. For each input of the process, a set of random
value tests has been created. Although many parameters
could be useful in order to measure dependability properties,
in our proposal the most interesting in the comparison is
the performance time. Performance give a clear indication
about the difference between one solution and another to be
measured in terms of deliver. Figure 15 shows two graphics
which contain results about average performance time . The
hardware used in the execution of the tests is a server
Intel Xeon E5530 2.4 GHz, with 8GB RAM and a Debian
Gnu/Linux 64bits OS and a client Intel Core 2 Duo T9300
2,5GHz with 4 GB RAM.

Taking the performance parameter into account, the binder
solution obtains the best result (Figure 15), although, in this
case, the performance could be affected by the diagnosis
stage time. In order to avoid the utilization of a binder
solution, we can opt for a checkpointing approach, but would
then need to value not only the time required to locate
sensors, but also the overhead for checking and extra work
designing handlers. On the other hand, in order to avoid
the diagnosis stage, we might opt for an NVP solution. In
the development sense, time spent on developing correct
components using NVP must be balanced against or a
solution with binder using only a primary-backup solution.
In the case of multiple faults, the binder solution may
be insufficient for the replication (primary and backup) of
services to ensure the correction of services. However, with

NVP components and the correct number of replicas we may
achieve a result with a very high level of correctness.

VI. RELATED WORK

Dependability is studied in the context of business process
management in [36], and a framework entitled Dynamo
is presented. This framework provides a run-time business
process supervisor that guarantees that the requirements of
dependability are satisfied. The main contribution is the
definition of two languages, WSCoL and WSRS, although
they are not a supported standard. Likewise, [36] presents
some remedial strategies that are mainly focused on the
recovery context, but fail to pay attention to the typical
solutions in the fault tolerance scope.

In the scope of fault tolerance for BPEL processes and
Web Service composition, there are many contributions
[37][38][39][40]. The feasibility of BPEL processes to im-
plement fault tolerance techniques with BPEL language is
studied in [37]. The work presents a tool for mapping fault
tolerance techniques using BPEL language concepts and
elements but it fails to show any example of an application
or data tests with real conclusions for the work. Middleware
to integrate some remedial strategies to handle violation con-
straint faults in the BPEL processes was developed in [39].
Whereby a framework structured in various components is
developed. The most relevant components are: composition,
analysis and instrumentation. The composition composes
services and “business goals”, the analysis form the business
process with a remedial strategy using remedial databases,
and the last component, that of instrumentation, translates
the process into a final BPEL process. Another studies is
focused on the dynamic selection of Web Services for the
construction of optimal workflows, [38]. The selection of
the optimal service is based on searching from services from
various repositories and data stored in databases. Although,
this technique appears to provide a fault tolerance solution,
this is solely due to the workflows being built on the fly

20

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



through the selection of the best service each time, but it
fails to take into account the unique point of fault in the
proxy component. However, we have provided a solution
with a binder, and for the case of a faulty binder, we have
developed another solution with a redundant binder. An
architecture for self-healing BPEL processes is presented
in [40]. Self-healing properties imply the development of
many elements integrated into the same engine such as a
monitor, a diagnoser, a planner of changes, and validation
mechanisms. Some recovery strategies have been adopted
in this work and integrated into the engine. Our work is
more focused on mechanisms for fault-tolerance solutions,
without using monitors or planners. In this sense, we have
adopted an innovatory solution based on business rules (such
as oracle) and CSP-based fault diagnosis.

There are some initiatives into introduction of fault-
tolerance techniques in the area of Web Service, [41][42].
In these studies, the main contributions are the definition of
a framework or middleware to achieve fault-tolerant service
platforms. A fault-tolerance architecture for SOAP protocol
is proposed and the solution is compared against the flexi-
bility of CORBA solutions, [41]. In [42], the authors have
defined and developed a mechanism to improve resilience
to faults for Web service clusters to enhance the reliability
of the services.

The majority of fault tolerance solutions are based on
replication and recovery techniques. Although the replication
is a very important concept in fault-tolerant systems, when
it is necessary to create fault-tolerance in software, the
solution of replication is insufficient. The philosophy in
fault tolerance software is totally different; the techniques
are based mainly on software diversity and data diversity,
[18][34].

In fault tolerance of distributed systems, checkpointing
and rollback recovery approaches are popular [43][31][44].
A well-designed checkpointing algorithm allows a faulty
business process to recover the recently saved state. Further
proposals have been developed in other domains such as grid
computing [45] and Web Services [36].

VII. CONCLUSION AND FUTURE WORK

In this paper, an innovative framework for the development
of business processes with dependable capabilities based
on fault tolerance has been introduced. The framework is
composed of three main elements: business rules, model-
based diagnosis based on constraint programming, and fault-
tolerant mechanisms. The innovation in this framework is
the use of a business rule engine as an oracle of solutions,
and model-based diagnosis to automate the determination
and isolation of components using CSP techniques in the
case of a fault. In the sense of fault tolerance, the frame-
work presents various solutions: the first solution create
fault-tolerant operational business processes (BPEL) using
dynamic binding techniques and replication of services;

the second solution presents an improvement introducing
replication of the binder; a third solution uses the concept
of software tolerance and implements NVP components;
and a fourth solution provide a simulation of a checkpoint
approach. To the best of our knowledge, this work is the
first contribution with fault tolerance based on software
fault-tolerance and checkpointing approaches for business
processes.

As future work, it could be interesting to add new features
of fault tolerance within the framework. The work will
be extended to include with other software fault tolerance
techniques such as as Recovery Block, or to introduce
new features into the N-Version components, for example,
changing the complexity of the adjudicator or studying the
number of variations in function in terms of the service.
Likewise, the framework could be extended to embrace other
capabilities to achieve self-healing and self-adaptability ap-
proaches.

ACKNOWLEDGEMENTS

This work has been partially funded by the Department of
Innovation, Science and Enterprise of the Regional Govern-
ment of Andalusia project under grant P08-TIC-04095, by
the Spanish Ministry of Science and Education project under
grant TIN2009-13714, and by FEDER (under the ERDF
Program).

REFERENCES
[1] A. J. Varela-Vaca, R. M. Gasca, D. Borrego, and S. Pozo,

“Towards dependable business processes with fault-tolerance
approach,” in Proceedings of the 2010 Third International
Conference on Dependability, ser. DEPEND 2010. IEEE
Computer Society, 2010, pp. 104–111.

[2] A. J. Varela-Vaca and R. M. Gasca, “Opbus: Fault tolerance
against integrity attacks in business processes,” in Computa-
tional Intelligence in Security for Information Systems 2010,
ser. Advances in Intelligent and Soft Computing, vol. 85.
Springer Berlin / Heidelberg, 2010, pp. 213–222.

[3] Gartner Inc. Report, “Gartner EXP worldwide survey
of nearly 1.600 CIOs shows IT budgets in 2010
to be at 2005 levels,” 2010. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=1283413

[4] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2007.

[5] W. M. P. van der Aalst, A. ter Hofstede, and M. Weske,
“Business process management: A survey,” in Proceedings
of the 1st International Conference on Business Process
Management, ser. Lecture Notes in Computer Science, vol.
2678. Springer Berlin / Heidelberg, 2003, pp. 1019–1031.

[6] A. J. Varela-Vaca, R. M. Gasca, and L. Parody, “OPBUS:
Automating Structural Fault Diagnosis for Graphical Models
in the Design of Business Processes,” in 21th International
Workshop in Principles of Diagnosis (DX’10), 2010, pp. 337–
341.

[7] S.-M. Huang, Y.-T. Chu, S.-H. Li, and D. C. Yen, “Enhancing
conflict detecting mechanism for web services composition:
A business process flow model transformation approach,”
Information Software Technology, vol. 50, no. 11, pp. 1069–
1087, 2008.

[8] J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek, and
B. F. Vandongen, “Faulty EPCs in the SAP Reference Model,”
in International Conference on Business Process Management
(BPM 2006). Springer-Verlag, 2006, pp. 451–457.

21

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[9] Condor Team, “Condor project,” 2010. [Online]. Available:
http://www.cs.wisc.edu/condor/

[10] C. Pautasso and G. Alonso, “Flexible binding for reusable
composition of web services,” Software Composition, vol.
3628/2005, no. 1820, pp. 151–166, 2005.

[11] P. Neira, R. M. Gasca, and L. Lefèvre, “Demystifying cluster-
based fault-tolerant firewalls,” IEEE Internet Computing,
vol. 13, no. 6, pp. 31–38, 2009.

[12] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Mecella, “Automatic service composition based on be-
havioral descriptions,” International Journal of Coorporative
Information Systems, vol. 14, no. 4, pp. 333–376, 2005.

[13] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann,
and A. Buchmann, “Extending BPEL for run time adaptabil-
ity,” in Ninth IEEE International EDOC Enterprise Comput-
ing Conference EDOC05. IEEE Computer Society, 2005,
pp. 15–26.

[14] J. De Kleer and J. Kurien, “Fundamentals of model-based
diagnosis,” Fault detection supervision and safety of technical
processes, pp. 25–36, 2004.

[15] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transaction on Dependable and Secure
Computating, vol. 1, no. 1, pp. 11–33, 2004.

[16] L. Liu, Z. Wu, Z. Ma, and Y. Cai, “A dynamic fault tolerant
algorithm based on active replication,” in 7th International
Conference on Grid and Cooperative Computing (GCC’08).
Washington, DC, USA: IEEE Computer Society, 2008, pp.
557–562.

[17] R. Baldoni, C. Marchetti, and S. T. Piergiovanni, “Asyn-
chronous active replication in three-tier distributed systems,”
in Proceedings 9th IEEE Pacific Rim Symposium on Depen-
dable Computing (PRDCF’02), 2002.

[18] L. L. Pullum, Software fault tolerance techniques and imple-
mentation. Norwood, MA, USA: Artech House, Inc., 2001.

[19] Object Management Group (OMG), “Business process
model and notation,” 2009. [Online]. Available:
http://www.omg.org/spec/BPMN/1.2

[20] T. Debevoise, Business Process Management with a Business
Rules Approach: Implementing the Service Oriented Archi-
tecture. Business Knowledge Architects, 2005.

[21] W. M. van der Aalst and A. H. M. Ter Hofstede, “Verification
of workflow task structures: A petri-net-based approach,”
Information Systems, vol. 25, pp. 43–69, 2000.

[22] W. Sadiq, Maria, and E. Orlowska, “Analyzing process mod-
els using graph reduction techniques,” Information Systems,
vol. 25, pp. 117–134, 2000.

[23] H. Lin, Z. Zhao, H. Li, and Z. Chen, “A novel graph reduction
algorithm to identify structural conflicts,” in Proceedings of
the 35th Annual Hawaii International Conference on System
Sciences (HICSS’02), vol. 9. Washington, DC, USA: IEEE
Computer Society, 2002, pp. 289–299.

[24] OASIS, “Business Process Execution Lan-
guage,” 2008. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[25] C. Ouyang, W. M. P. Van Der Aalst, and M. Dumas, “Trans-
lating BPMN to BPEL,” Business, vol. 2006, pp. 1–22.

[26] S. A. White, “Using bpmn to model a bpel process,” Tech.
Rep., 2006.

[27] D. Chappell, Enterprise Service Bus. O’Reilly Media, Inc.,
2004.

[28] CHOCO Team, “Choco: an open source java
constraint programming library,” 2010. [Online].
Available: http://www.emn.fr/z-info/choco-solver/pdf/choco-
presentation.pdf

[29] D. Borrego, R. Gasca, M. Gomez, and I. Barba, “Choreog-
raphy analysis for diagnosing faulty activities in business-to-
business collaboration,” in 20th International Workshop on
Principles of Diagnosis. DX-09, Stockholm, Suecia, 2009, pp.
171–178.

[30] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of
Constraint Programming. Elsevier, 2006.

[31] J. L. Kim and T. Park, “An efficient protocol for checkpoint-
ing recovery in distributed systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no. 8, pp. 955–960,
1993.

[32] A. Erradi and P. Maheshwari, “Dynamic binding framework
for adaptive web services,” in ICIW ’08: Proceedings of the
2008 Third International Conference on Internet and Web
Applications and Services. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 162–167.

[33] U. Küster and B. König-Ries, “Dynamic binding for BPEL
processes - a lightweight approach to integrate semantics
into web services,” in Second International Workshop on
Engineering Service-Oriented Applications: Design and Com-
position (WESOA06) at 4th International Conference on Ser-
vice Oriented Computing (ICSOC06), Chicago, Illinois, USA,
2006, pp. 116–127.

[34] W. Torres-Pomales, “Software fault tolerance: A tutorial,”
Tech. Rep., 2000.

[35] D. Borrego, M. T. Gomez-Lopez, R. M. Gasca, and R. Ce-
ballos, “Determination of an optimal test points allocation
for business process analysis,” in 2010 IEEE/IFIP Network
Operations and Management Symposium Workshops (BDIM
2010), 2010, pp. 159–160.

[36] L. Baresi, S. Guinea, and M. Plebani, “Business process mon-
itoring for dependability,” in Proceedings of the Workshops on
Software Architectures for Dependable Systems (WADS’06),
2006, pp. 337–361.

[37] G. Dobson, “Using ws-bpel to implement software fault
tolerance for web services,” in EUROMICRO-SEAA, 2006,
pp. 126–133.

[38] L. Huang, D. W. Walker, O. F. Rana, and Y. Huang, “Dy-
namic workflow management using performance data,” in
IEEE International Symposium on Cluster, Cloud, and Grid
Computing, 2006, pp. 154–157.

[39] M. Wang, K. Y. Bandara, and C. Pahl, “Integrated constraint
violation handling for dynamic service composition,” in SCC
’09: Proceedings of the 2009 IEEE International Conference
on Services Computing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 168–175.

[40] S. Modafferi, E. Mussi, and B. Pernici, “Sh-bpel: a self-
healing plug-in for ws-bpel engines,” in MW4SOC ’06:
Proceedings of the 1st workshop on Middleware for Service
Oriented Computing (MW4SOC 2006). New York, NY, USA:
ACM, 2006, pp. 48–53.

[41] C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin, “Fault tolerant
web services,” J. Syst. Archit., vol. 53, no. 1, pp. 21–38, 2007.

[42] M.-Y. Luo and C.-S. Yang, “Enabling fault resilience for web
services,” Computer Communications, vol. 25, no. 3, pp. 198
– 209, 2002.

[43] G. Cao and M. Singhal, “Checkpointing with mutable check-
points,” Theoretical Computer Science, vol. 290, no. 2, pp.
1127–1148, 2003.

[44] R. Baldoni, “A communication-induced checkpointing proto-
col that ensures rollback-dependency trackability,” in FTCS
’97: Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS ’97). Washington, DC,
USA: IEEE Computer Society, 1997, pp. 68–77.

[45] X. Shi, J.-L. Pazat, E. Rodriguez, H. Jin, and H. Jiang,
“Adapting grid applications to safety using fault-tolerant
methods: Design, implementation and evaluations,” Future
Generation Computer Systems, vol. 26, no. 2, pp. 236 – 244,
2010.

22

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


