
Putting Theory into Practice: The Results of a Practical Implementation of the
Secure Development Life Cycle

Cynthia Y. Lester
Department of Computer Science

Tuskegee University
Tuskegee, Alabama, USA

cylester@tuskegee.edu

Abstract – Software engineering is defined as a discipline
concerned with all aspects of software production from
inception to the evolution of a system. It has often been
referred to as the “cradle-to-grave” approach to producing
reliable, cost-efficient software delivered in a timely manner
that satisfies the customer’s needs. However, with the
introduction of the Internet and the World Wide Web,
software engineering has been required to make changes in the
way that new software products are developed and protected.
In order to protect systems from hackers and saboteurs in a
global society where e-commerce, e-business, and e-sharing are
the “norm”, professionals should have sound knowledge in
methods to protect data. Consequently, the area of
information assurance (IA) has become one of great
significance and it is important that the next generation of
technologists are trained in development techniques that can
ensure the confidentially and integrity of information.
Traditionally, courses in secure software development are
offered at the graduate level or in a stand-alone software
security course at the undergraduate level. The aim of this
paper is to present a framework for introducing software
security to undergraduate students in a traditionally taught
software engineering course. The paper focuses on and
presents the results of a practical implementation of software
security concepts learned through a service-learning project.
The results from the study suggest that software security can
be effectively introduced in a traditionally taught software
engineering course through the implementation of a hands-on
learning experience.

Keywords – agile methods; secure software development

service-learning; software development; software engineering;
software security; traditional software development
methodologies

I. INTRODUCTION

Securing information is not a new idea. In fact, securing
data has its origins in World War II with the protection and
safeguarding of data which resided on mainframes that were
used to break codes [1]. However, during the early years,
security was uncomplicated since the primary threats
included physical theft of the system, espionage and
sabotage against product resources [1]. Yet, it was not until
the early 1970s that the concept of computer security was
first studied. With the invention of the Advanced Research
Projects Agency Network (ARPANET) by the U.S.

Department of Defense in 1968 and its growing popularity
in the early 1970s, the chance for misuse increased in what
is now known to be the origin of the modern day Internet.

In 1990, it was reported that there were less that 50
million users of the Internet in the U.S. However, by 2008
the U.S. reported approximately 230,630,000 Internet users
[2]. Therefore, it stands to reason that with more users and
more advanced systems, the user population of today’s
technology would be more technically savvy than those user
groups of yesteryear. However, the average user is now less
likely to understand the systems of today as compared to the
users of a decade ago. Further with the rapid pace at which
new technologies are being introduced to the public, it
becomes even more difficult for users to understand how to
protect their systems and information from unwanted
interruptions, threats and vulnerabilities.

In the Report of the Presidential Commission on Critical
Infrastructure Protection, it was stated that “education on
methods of reducing vulnerabilities and responding to
attacks” and “programs for curriculum develop at the
undergraduate and graduate levels” were recommended to
reduce the number of vulnerabilities and malicious attacks
on software systems [3]. Additionally, in the 2003 National
Strategy to Secure Cyberspace four major actions and
initiatives for awareness, education, and training were
identified which included [4]:

• Foster adequate training and education programs to
support the Nation’s cybersecurity needs

• Promote a comprehensive national awareness
program to empower all Americans -businesses,
the general workforce, and the general population -
to secure their own parts of cyberspace

• Promote private-sector support for well-
coordinated, widely recognized professional
cybersecurity certifications

• Increase the efficiency of existing federal
cybersecurity training programs

Consequently, protecting data has become a topic of
importance. In order to protect data from hackers and
saboteurs in a global society where e-commerce, e-business,
and e-sharing are the “norm”, professionals should have
sound knowledge in methods to protect data. Therefore, the

23

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

area of information assurance (IA) has become one of great
significance.

Information assurance as defined in the CNSS Instruction
Handbook No. 4009 are measures that protect and defend
information and information systems by ensuring their
availability, integrity, authentication, confidentiality, and
nonrepudiation. Additionally, the measures include
providing for restoration of information systems by
incorporating protection, detection, and reaction capabilities
[5]. In order for students to gain training in information
assurance, a series of courses are often taken, which include
traditional computer science courses but also courses in
information security, network security, computer security,
cryptography, software security, etc. However, unless an
institution has an information assurance track or program,
students may not have the opportunity to gain exposure to
many of these concepts, especially those concepts found in a
software security course.

Therefore, the aim of this paper is to present a framework
for introducing students to concepts of software security in a
traditionally taught software engineering course. The paper
begins by presenting several conventional software
development methodologies discussed in a traditionally
taught software engineering course which lends to an
argument for a paradigm shift. Additionally, the paper
presents a project in which students were engaged during
the course of the sixteen week semester which focused on
the practical implementation of software security concepts.
The results of the project are discussed as well as challenges
and future work.

II. TRADITIONAL SOFTWARE DEVELOPMENT
METHODOLOGIES

Software engineering is defined as “being concerned

with all aspects of the development and evolution of
complex systems where software plays a major role. It is
therefore concerned with hardware development, policy and
process design and system deployment as well as software
engineering [6].”

The term software engineering was first proposed at the
1968 NATO Software Engineering Conference held in
Garmisch, Germany. The conference discussed the
impending software crisis that was a result of the
introduction of new computer hardware based on integrated
circuits [6]. It was noted that with the introduction of this
new hardware, computer systems were becoming more
complex which dictated the need for more complex software
systems. However, there was no formalized process to build
these systems which put the computer industry at jeopardy
because systems were often unreliable, difficult to maintain,
costly, and inefficient [6]. Consequently, software
engineering surfaced to combat the looming software crisis.

Since its inception, there have been many methodologies
that have emerged that lead to the production of a software

product. The most fundamental activities that are common
among all software processes include [6]:

• Software specification – the functionality of the
system and constraints imposed on system
operations are identified and detailed

• Software design and implementation – the
software is produced according to the
specifications

• Software validation – the software is checked to
ensure that it meets its specifications and provides
the level of functionality as required by the user

• Software evolution – the software changes to meet
the changing needs of the customer

Typically, students are introduced to these activities in
the undergraduate computer science curriculum through a
software engineering course. This course is sometimes a
survey course which exposes students to a variety of life
cycle models used in industry. The course is often taught
from a systems approach which places an emphasis on
creating requirements and then developing a system to meet
the requirements. In the traditional view of software
development, requirements are seen as the contract between
the organization developing the system and the organization
needing the system [7].

A traditional view of software development is the
waterfall method. The waterfall method was the first
published software development process and forms the basis
for many life cycles. It was noted as a great step forward in
software development [8]. The method has stages that
cascade from one to the other, giving it the “waterfall”
name. Figure 1 is an example of the waterfall life cycle [9].

Figure 1. Waterfall model

It has been noted that the method might work
satisfactorily if design requirements could be addressed
prior to design creation and if the design were perfect prior
to implementation [8]. Consequently, one of the main
disadvantages of this model is that requirements may
change accordingly to meet the needs of the customer and

24

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the change is difficult to incorporate into the life cycle. As a
result of this shortcoming, additional life cycles emerged
which allowed for a more iterative approach to
development.

Evolutionary development is based on the idea of
developing an initial implementation and then exposing the
build to the user for comment and refinement [6]. Figure 2
is an example of the evolutionary development method [6].

Figure 2. Evolutionary development

There are two fundamental types of evolutionary
development:

• Exploratory development – developers work with
customers to discern requirements and then the
final system is delivered

• Throwaway prototyping – used to quickly
development a concept and influence the design of
the system

The advantage of evolutionary development is that it is
developing specifications incrementally [6]. As customers
have an opportunity to interact with the prototype,
specifications are refined which leads to a better, more
useful, usable, and used software. However, while this
approach is somewhat better than the waterfall model, it is
not without its criticisms. Sommerville notes that the
process is not visible and that the systems being developed
are often poorly structured [6]. The next model presented is
stated to be an improvement over both the waterfall and
evolutionary development models.

The spiral development model is an example of an
iterative process model that represents the software process
as a set of interleaved activities that allows activities to be
evaluated repeatedly. The model was presented by Barry
Boehm in his 1988 paper entitled A Spiral Model of
Software Development and Enhancement [10]. The spiral
model is shown in figure 3. The spiral model differs from
the waterfall model in one very distinct way because it
promotes prototyping; and, it differs from the waterfall and
evolutionary development method because it takes into

consideration that something may go wrong which is
exercised through risk analysis.

Figure 3. Spiral model

It is noted that this life cycle provides more flexibility
than its more traditional predecessors. Further, this method
produces a preliminary design. This phase of the life cycle
was added specifically in order to identify and resolve all
the possible risks in the project development. Therefore, if
risks indicate any kind of uncertainty in requirements,
prototyping may be used to proceed in order to determine a
possible solution.

The activities that formulate this view of software
engineering came from a community that was responsible
for developing large software systems that had a long life
span. Moreover, the teams that used these methodologies
were typically large teams with members sometimes
geographically separated and working on software projects
for long periods of time [7]. Therefore, software
development methodologies that resulted from this view of
software engineering were often termed as “heavyweight”
processes because they were plan-driven and involved
overhead that dominated the software process [11].
However, great difficulty occurs when these methodologies
are applied to smaller-sized businesses and their systems,
because these methods lack the agility needed to meet the
changing needs of the user. The next section presents an
overview of an emerging process methodology which is an
alternative to heavyweight processes, agile development.

III. AGILE METHODS

In an effort to address the dissatisfaction that the

heavyweight approaches to software engineering brought to
small and medium-sized businesses and their system

25

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

development, in the 1990s a new approach was introduced
termed, “agile methods.” Agile processes are stated to be a
family of software development methodologies in which
software is produced in short releases and iterations,
allowing for greater change to occur during the design [11].
A typical iteration or sprint is anywhere from two to four
weeks, but can vary. The agile methods allow for software
development teams to focus on the software rather than the
design and documentation [11]. The following list is stated
to depict agile methods [11], [12]:

• Incremental design - the design is not completed
initially, but is improved upon when more
knowledge is acquired throughout the process

• User involvement - there is a high level of
involvement with the user who provides continuous
feedback

• Short releases and iterations - allow the work to be
divided, thereby releasing the software to the
customer as soon as possible and as often as
possible

• Informal communication - communication is
maintained but not through formal documents

• Minimal documentation – source code is well
documented and well-structured

• Change - presume that the system will evolve and
find a way to work with changing requirements and
environments

More specifically, the agile manifesto states:
“We are uncovering better ways of developing software
by doing it and helping others to do it.
Through this work we have come to value:
Individuals and interaction over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we
value the items on the left more.”

It is stated that agile processes have some very precise
advantages over its heavyweight predecessors which include
the following as stated by Tsui and Karam [12]:

• Low process complexity - processes are simple
which promotes easier implementation and
understanding

• Low cost and overhead - processes require only a
small number of activities that do not directly lead
to the production of software

• Efficient handling of changes - processes are
designed and developed with the presumption that
requirements will change and the methodology is
prepared to incorporate those changes

• Quick results - processes have low overhead which
results in a final product being produced quicker
than with traditional heavyweight processes. Also,
agile processes are designed for continuous
integration which allows for constant improvement

and the implementation of additional functionality
as the project progresses.

• Usable systems - the customer is involved and
therefore when changes occur, the process can
quickly adapt, yielding a product that the customer
really wants and wants to use

However, agile methods are not without their critics.
Just as the traditional methods have disadvantages, agile
methods do as well. According to researchers, listed below
are the main disadvantages of agile processes [11], [12]:

• May not be scalable - agile processes are typically
used by small teams and may have problems scaling
to adjust to larger systems without losing their
agility

• Heavy reliance on teamwork - the processes are
generally used by small teams who are centrally
located and who depend on informal
communication to accomplish a task; team work can
be destroyed if cross-team communication
mechanisms have not been designed and used

• Reliance on frequent customer access - it has been
stated that it is sometimes difficult especially after
software delivery to keep the customer involved in
the process; consequently without customer
involvement, agile methods may not be able to
properly validate requirements or adjust to change

• Cultural clash – Extreme programming (XP) is
probably one of the best known and most widely
used agile methods [13], [14]. It was originally
designed to address the needs of software
development by small teams who faced changing
requirements and system environments. However,
XP often clashes with the more commonly accepted
software engineering ideas and management
techniques. Therefore, the use of agile methods by
development teams may make it difficult to conduct
performance evaluations and team member progress
reviews.

However, just as with traditional software
methodologies, agile methods do not often address software
security. Moreover, when these approaches to software
development are taught in traditional software engineering
courses, security is mostly absent from the instruction.
Hence, the increasingly important need to include a
discussion of software security in the software development
process taught to undergraduate students. The next section
explores secure software development and its life cycle.

IV. CHARACTERISTICS OF SECURE INFORMATION

The Morris Worm was the first known network security
breach to impact thousands of computers that were
connected to (ARPANET) [15], [16]. It was reported that
Robert Morris, a graduate student at Cornell University,
wrote a program that exploited bugs that he noticed in
several UNIX applications [16]. The basic premise of the

26

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

program was that it connected itself to another computer on
the network, copied itself to the new location, and executed
both the original version and the copy. This action would
then be repeated in an infinite loop to other computers,
thereby causing thousands of computers to become infected.
He became the first person to receive a felony conviction in
which he was sentenced to serve 3 years probation, 400
hours of community service, and pay a fine of $10,000 [16].

Since it began operating in 1998, the Computer
Emergency Response Team (CERT) Coordination Center
has tracked and reported the number of security
vulnerabilities [15]. A snapshot of early security
vulnerabilities is depicted in Figure 4 [15]. The chart shows
the growth in security incidents from the first incident in
1998 until 1995, which was the last for which statistics were
available according to the reference.

Figure 4. Vulnerabilities Report

More recently, according to statistics published by the

Computer Emergency Response Team (CERT), between
1995 and 2008 approximately 44,074 vulnerabilities had
been cataloged [15]. It has been reported that these software
vulnerabilities and software errors cost the U.S.
approximately $59.5 billion annually [17].

Software errors have grown in complexity. In 2000,
NIST reported that the total sales of software reached
approximately $180 billion and the software was supported
by a workforce that consisted of 679,000 software engineers
and 585,000 computer programmers [17]. Some of the
reasons that software errors have grown in complexity are
that typically, software now contains millions of lines of
code, instead of thousands; the average product life
expectancy has decreased requiring the workforce to meet
new demands; there is limited liability among software
vendors; and, there is difficulty in defining and measuring
software quality [17].

Consequently, it is imperative that students in computer
science and information technology be trained in the

concepts of security and how to design and develop secure
software so that they can contribute viably to the fast
changing technological demands of this global society. The
traditional development strategies expose students to the
methods for software development, but as they consider
how to guard against hackers, how to protect critical
information, and how to lessen security threats, a question
of what is “good” information arises. Therefore, before
students can understand and have an appreciation for the
secure software development life cycle, they must first be
exposed to the qualities and characteristics of “good”
information.

The value of information has been stated to come from
the characteristics that it possesses [1]. While some
characteristics may increase the value of the information as
it relates to use by users, other characteristics may have a
more significant value among security professionals.
However, all characteristics as defined below are critical as
it relates to secure information [1].

• Availability - allows users who need to access
information to access the information without
impediment or intrusion. Further, availability
means that users can receive information in the
desired format.

• Accuracy - as defined by The American Heritage
College Dictionary is conformity to fact; precision;
exactness [18]. As accuracy relates to secure
software it means that the software has the value
that the user expects and that it is also free from
errors.

• Authenticity - is the state or quality of information
being original or genuine. The information should
not be a replication of other information. Whitman
further reveals that information is authentic when it
is the information that was originally created,
placed, stored or transferred.

• Confidentiality - only those persons with “certain”
rights can have access to the information. It means
that only authorized persons or systems can gain
access to the information.

• Integrity - is adherence to a strict code or the state
of being unimpaired [1]. As it relates to the
integrity of information it is the state of being
uncorrupted or the state of being whole.

• Utility – the condition of being useful. If the
information being provided is not useful or
presented in a format that cannot be used, then the
information loses its value or its quality of being
“good” information.

• Possession - the condition of being owned or
controlled. Whitman and Mattford note that while
a breach in confidentiality always results in a
breach of possession, the opposite may not be true
[1].

27

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. THE THEORETICAL APPROACH TO THE SECURE
DEVELOPMENT LIFECYCLE

 There are many approaches to the development of robust
software that can ensure that the information being used by
users is available, accurate, authentic, possesses
confidentially, integrity, is useful and can be controlled.
However, the question becomes how to introduce this model
at the undergraduate level when a specialized course in
software security is not available or when typically students
only take one course in software development. The
following section presents the secure software development
life cycle taught in a traditionally taught software
engineering course and introduces a method which allowed
students to gain practical experience in implementing
security concepts.
 A misconception among students as well as with
computing professionals is that security should be thought
of in the later phases of the software development life cycle.
However, if systems are to withstand malicious attack, a
robust software development model or a secure software
development must be used. One viewpoint of the secure life
cycle discussed in class was developed by Apvrille and
Purzandi and a modified version is presented in Figure 5
[19].

Figure 5. Secure life cycle

A. Security requirements and analysis

While requirements are being gathered from users and
stakeholders, focus should also be placed on establishing a
security policy. In order to develop a security policy,
attention needs to be given to what needs to be protected,
from whom, and for how long [20]. Additionally, thought
needs to be placed on the cost of protecting the information.
The result of this phase should be a set of guidelines that
create a framework for security [1].

B. Security design

During the design phase it has been stated that the
security technology needed to support the framework

outlined in the requirements phase is evaluated, alternative
solutions are explored, and a final design is agreed upon [1].
It is recommended by Viega and McGraw that the following
be the focus of this phase [20]:

• How data flows between components
• Users, roles and rights that are explicitly stated or

implicitly included
• The trust relationships between components
• Solutions that can be applied to any recognized

problem
At the end of this phase a design should be finalized and
presented. The design should be one that can be
implemented.

C. Implementation

The implementation phase in the secure development
life cycle is similar to that which is found in traditional
methodologies. However, when implementing a software
project with security in mind, it is important to consider a
language or a set of languages that may have security
features embedded, one that is reliable when it comes to
denial-of-service attacks, and that can perform error
checking statically, etc. Further, it is important to
understand the weaknesses of languages, for example buffer
overflows in C and C++.

D. Testing

Testing in the secure development life cycle is different
than in traditional methodologies. In traditional
methodologies, testing is done to ascertain the behavior of
the system and to determine if the system meets the
specifications. Security testing is used to determine if a
system protects data and maintains functionality as
intended. As mentioned previously the six concepts that
need to be covered by security testing are availability,
accuracy, authenticity, confidentiality, integrity, utility, and
possession. It has been stated that security testing is most
effective when system risks are uncovered during analysis,
and more specifically during architectural-level risk analysis
[20].

E. Maintenance

It has been stated that the maintenance and change phase
may be the most important phase of the secure development
life cycle given the high level of cleverness seen in today’s
threat [1]. In order to keep up with the changing threats to
systems, security systems need constant updating,
modifying, and testing. Constant maintenance and change
ensure that systems are ready to handle and defend against
threats.

28

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. THE PRACTICAL APPROACH TO THE SECURE
DEVELOPMENT LIFE CYCLE

A. Course Description

The course chosen for the practical implementation of the
secure development life cycle was the traditionally taught
CSCI 430 – Software Engineering course under the
instruction of the author. A brief description of the course is
to provide students with an engineering approach to
software development and design; and, to expose students to
current research topics within the field [21]. The software
engineering course was modified to reinforce the need to
think about security features and requirements early in the
development process so that security protection mechanisms
are designed and built into the system rather than added on
at a later time.

The prerequisites for the course are to have successfully
completed CSCI 230 - Data Structures and CSCI 300 -
Discrete Mathematical Structures with a grade of C or
better.

B. Course Learning Outcomes

Learning outcomes are extremely important when
developing a course. The learning outcomes describe the
specific knowledge and skills that students are expected to
acquire. The learning outcomes for the CSCI 430 course
include the following: at the end of the course, a student
should be able to:

• Describe in detail the software process
• Identify various software process models and

determine which model should be used for a
specific project

• Implement each phase of the software process
• Work effectively and efficiently in a team

environment to produce a large scale project
• Identify and discuss current research topics related

to the software engineering discipline
It was the anticipation of the author that through the

hands-on experience of developing a project that included
security concepts, students would gain an understanding of
the importance of secure software engineering and their
approach to development would be enhanced. Further, as
students use and understood the concepts presented during
class, conceptually they would be able to apply the
principles to a semester long project. It was decided to use
the concepts found in service-learning to design the project.
The next section provides a high level overview of service-
learning.

C. Service Learning

Service-learning is defined as a method of teaching
through which students apply their academic skills and
knowledge to address real-life needs in their own
communities [22]. Service-learning provides a compelling
reason for students to learn; it teaches the skills of civic
participation and develops an ethic of service and civic

responsibility. By solving real problems and addressing real
needs, students learn to apply classroom learning to real
world situations [22]. Service-learning has been shown to
be an educational technique that facilitates a student’s
growth in academics, communication, social maturity,
critical thinking, collaboration, and leadership skills [22].
Students who are involved in meaningful service-learning
have further been shown to perform better on tests, show a
sense of self-esteem and purpose, connect with the
community, and want to be more civically engaged than
students who do not participate in service-learning activities
[22].

There are many key components that are encompassed
within service-learning. The author has chosen some of
those activities that were included in CSCI 430 and, they are
presented in the next sections.

1) Reflection. Reflection fosters the development of
critical thinking in students. Reflection and critical thinking
(problem-solving) are essential tools that will help students
be successful in school, career, and life. Service-learning
reflection includes the following activities by the student:

• Assessing personal interests, knowledge, skills, and
attributes that will be useful in performing the
service-learning project.

• Thinking about how to take effective steps to meet
the identified needs.

• Self-evaluating one’s progress toward meeting the
goals of the project.

2) Working as a team. The students learn to work for a
common goal and by doing so acquire a variety of skills,
such as how to lead, how to be accountable, how to
communicate ideas, how to listen to others, and how to set a
goal and work effectively as a team to reach the goal.

3) Experiential learning. Service-learning uses direct
experience and hands-on learning to help the student learn
to take the initiative, assume responsibility, and develop
effective problem-solving skills.

The next section describes the course project that was
designed based on the concepts found in service-learning
and a modified version of the secure software development
life cycle.

VII. THE PROJECT

A. Project Statement
 The semester long project selected for the fall 2009
semester was to develop an electronic voting/tallying
system for the hotly contested position of the University’s
Queen. During past years, there have been errors in the
selection process of the University’s Queen; which has
resulted in a process where contestants and the student body
have little confidence. Students were required to develop a
software product that meets the needs of the customer and
helps to refine the election process and ballot-counting
process for the University’s Queen contest. Students were

29

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

part of a team which was expected to meet with the
customer (or representative) so that each phase of the
process could be implemented. The team was also expected
to produce a deliverable by the set deadline for each phase
of the process and to also deliver it and make presentations
to the customer (or representative).
B. Project Learning Outcomes

The learning outcomes of the semester long project
included that after the completion of the project students
would:

• Have a working knowledge of the secure software
development life cycle

• Understand and have a working knowledge of
secure software engineering principles

• Be able to describe software vulnerabilities
• Develop and execute security measures
• Work effectively and efficiently in a team

environment to produce the semester long project

C. Project Requirements

Students were given basic requirements from the
instructor for the software application; however, the
majority of the requirements were gathered from
stakeholders. Since the project was infused with software
security concepts there were both standard project
requirements as well as security requirements.

D. Project Deliverables
 Each item that the student team submitted was
considered a deliverable. The project had four deliverables
which were the requirements document, design document,
implementation, and the test plan. The following is an
overview of the project deliverables which were previously
presented in work by Lester [23], [24].

1) Requirements Document. The first document
students were required to submit was the requirements
document. The requirements document was considered the
official statement of what the students would implement. It
included both the stakeholder requirements for the software
application, which students named the MISS System, and a
detailed specification of system requirements. To gather the
requirements students met with stakeholders who included
Administrators in the Office of Student Life, contestants
from past elections, and student body leaders who were in
charge of election results. The initial document was meant
to get the students active in the planning and development of
the system. After completion of the requirements document,
students had an idea of the way they wanted the system to
look, how the system would be accessed, and by whom (i.e.,
password authentication, access control).

2) Design Document. The team was required to use one
of the decomposition styles discussed in the course. The
design document was required to have an introduction, an
overview of the design strategy chosen, and the diagrams,
charts, and/or details required as part of the decomposition

strategy chosen. The design document was also meant to be
an in-depth description of the system design. The design
showed how data flowed between system components and
the trust relationships between components. Both the system
and security requirements were described and explained
how they would be implemented. Further the document
identified vulnerabilities to the system and possible
solutions were presented.

3) Implementation. Students were required to
implement the project based on the requirements and design
documents. To implement the project students chose the
Java programming language.

4) Testing. Students were required to develop a test
plan which required them to perform requirements-based
testing and structural testing (inclusive of security testing).

Table 1. provides the timeframe for project deliverables.

TABLE 1. PROJECT DELIVERABLE TIME TABLE
Deliverable Deadline
Requirements document Week 8
Design document Week 12
Implementation Week 16
Test Plan Week 16

VIII. RESULTS AND DISCUSSION

In order to determine the effectiveness of the service-

learning project, the following actions were taken:
• For each deliverable a grade was determined based

on the submitted document and the oral
presentation of the document.

• After the completion of the each phase of the
project, an exit interview with team members was
conducted.

This section presents an overview of the results of these
activities.

1) Requirements Document. The requirements
documents was required to have the following sections as
outlined in the textbook for the course by Sommerville [6]:

• Introduction
• User definition
• System architecture
• System models
• System evolution

Additionally, the document was graded on organization,
grammar and style.

Results revealed that students had a good understanding
of the user definition and the system architecture. However,
system models proved to be a difficult topic for students to
master. Yet, the overall quality of the document showed
that students engaged in high-level critical thinking and
problem solving, which was one of the goals of the service-
learning project.

30

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Design Document. To implement the design,
students were required to choose one of the decomposition
strategies discussed in class. Students chose to use object-
oriented decomposition. Therefore, the parts of the
document were required to include the following:

• Class diagrams
• Static diagrams (collaboration or sequence)
• Dynamic diagrams (activity or state)
• Security plan and evaluation

Results revealed that students had a good understanding
of class and static diagrams, but had some difficulty with
dynamic diagrams. All students had previously taken a
theory course in which activity and state diagrams had been
discussed, but students still struggled with the
implementation of these diagrams as it related to the
service-learning project.

A review of the design document also revealed that
while the students gave heavy consideration and thought to
security, the plan was limited in scope. The security plan
addressed the characteristics of secure information, but
students had difficulty with the design of the plan and how
the plan would be evaluated.

3) Implementation. The requirement for this phase of
the life cycle was an executable software application that
met the requirements. To implement the MISS System
students chose the Java programming language. The results
from this phase of the project were mixed.

One of the challenges that students faced was the time
constraint. The project was to be completed during the
course of a sixteen week semester. Students naturally
thought that because they had been previously engaged in
semester-long projects in other courses that this project
would be similar and that there would be enough time to
complete all phases of the life cycle, especially the
implementation phase. However, students quickly realized
that this conjecture was incorrect as the end of the semester
quickly approached. Further, unforeseen challenges such as
changing requirements and teaming issues caused
implementation delays; consequently, impacting the
implementation of several requirements.

Students also had difficulty with the porting of the
software application from the platform on which it was
developed and the platform on which the application was to
execute. The host platform was controlled by the
Department of Computer Science. It was one of which the
students had extensive knowledge because it was the
platform on which they used for development and
implementation of projects for other classes. However, the
target platform on which the application was to execute was
controlled by Campus Technology. It was completely
different and one with which the students were quite
unfamiliar. Therefore, the porting of the software
application proved to the most difficult part of the project as
host-target development was not considered during the
requirements phase of the development life cycle.

4) Test Plan. The requirement for this phase was a test
plan that included test case design. The test plan was based
on Sommerville’s structure of a software test plan for large
and complex systems but modified to be less formal and
represent the smaller nature of the MISS System [6]. The
modified version of the software test plan included the
following components:

• The testing process
• Test case design
• Hardware and software requirements
• Constraints

Test case design was an integral part of the software test
plan. Test case design can be described as the process in
which the system is executed in a controlled environment
using established inputs into the system. The goal of the
process is to create test cases that can discover defects and
errors with the system and to also show that the
implemented system meets the requirements of the
stakeholders. The next section describes requirements-
based testing and structural testing, which were used as part
of the testing process.

Requirements should be designed so that they can be
tested. Therefore, requirements-based testing is used to
ensure that individual requirements are tested and to also
provide a level of confidence to the stakeholders that their
needs were being met. To test the requirements of the MISS
System students developed and completed the following
simple table as shown in Table 2.

TABLE 2. REQUIREMENT TESTING
Requirement Test Case Outcome

Structural testing is an approach that is used to test the

system based on developer’s knowledge of the structure and
implementation of the software. This type of testing is
typically used throughout a computer science curriculum as
students who are learning to program also develop test cases
based on the structure of their programs. By having
knowledge of the code, student-developers can design test
cases that can potentially uncover errors or problems.
However, structural testing is not designed to detect missing
or unimplemented requirements. Table 3 is an example of a
simple table that was developed and students were asked to
complete to the meet the objectives of structural testing.

TABLE 3. STRUCTURAL TESTING
Code Test Case

(Input)
Outcome

Results from testing revealed that this part of the life
cycle was also quite challenging for the students. Students
had some difficulty in determining test cases to test the
requirements. Further, since some requirements were not

31

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implemented, they could not be tested. Results also
revealed that structural testing was a little easier for the
students as this concept is one with which they are familiar
because as previously stated, a modified version of
structural testing is taught throughout the curriculum.

IX. CONCLUSION

In conclusion, the aim of this paper was to present a
theoretical and practical framework for introducing to
undergraduate students the secure software development
process. The paper presents the results of a practical
implementation of software security concepts learned
through a service-learning project.

The author acknowledges that while there are many
development methodologies that exist to train students in
software security, many consist of steps that cannot be
implemented in a one-semester course, especially with
undergraduate students. Further, the author found that it
was quite difficult for students to complete the secure
development life cycle and develop a “truly” secure system,
because it was costly as it related to resources (i.e., time,
platform and personnel). This finding is consistent with the
research perspectives of Devanbu and Stubbline [25].

Future work activities include that the author plans to
revise the project, the deliverables and the timeframe for the
deliverables. Additionally, the author plans to review the
life cycle chosen for the project and will create a modified
version of a life cycle for students to implement. The exit
interviews revealed that students wanted less time for
requirements/design and more time for implementation and
testing.

As software becomes more complex and vulnerabilities
and threats to these systems become just as complex, it is
important to introduce to the next generation of
technologists ways that systems can be made more secure.
As educators it becomes our responsibility to train these
students so that developing secure software is not just
introduced in theory, but in practice as well.

ACKNOWLEDGMENTS

The author wishes to thank the students enrolled in the fall
2009 CSCI 430 – Software Engineering class for their hard
work, the Tuskegee University Office of Student Life for
serving as customers for the project and the Tuskegee
University Office of Campus Technology for their
assistance on the project.

REFERENCES

[1] M.E. Whitman and H.J. Mattford. Principles of Information
Security. Boston: Course Technology. 2004.

[2] Internet users as percentage population.
http://www.geohive.com/charts/ec_internet1.aspx (Accessed
December 20, 2010).

[3] J. Elli, D. Fisher, T. Longstaff, L. Pesante, and R. Pethia. “A
Report to the President’s Commission on Critical
Infrastructure Protection.” [Electronic Version] http://
www.cert.org/pres_comm/cert.rpcci.ex.sum.html#edu
(Accessed on April 1, 2008).

[4] The National Strategy to Secure Cyberspace. (2003).
[Electronic Version]. http://www.uscert.gov/
reading_room/cyberspace_strategy.pdf (Accessed on June
13, 2011).

[5] http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf. (Accessed
January 17, 2008).

[6] I. Sommerville. (2007). Software Engineering 8th Ed.
Addison Wesley, 978-0-321-31379-9, Boston, MA.

[7] C. Angelov, R.V.N. Melnik, & J. Buur. (2003). The
synergistic integration of mathematics, software engineering,
and user-centered design: exploring new trends in education.
Future Generation Computer Systems. Vol. 19, 299 – 1307.

[8] B. K. Jayaswal and P.C. Patton (2007). Design for
trustworthy software: Tools, techniques for developing robust
software. Prentice Hall, 0-13-187250-8, Upper Saddle Rover,
NJ.

[9] Codebetter.com http://codebetter.com/blogs/raymond.
lewallen/downloads/waterfalllModel.gif. (Accessed on
October 10, 2009.

[10] B. Boehm. (1988). A Spiral Model of Software Development
and Enhancement. IEEE Computer 21, 5, 61-72.

[11] I. Sommerville. (2011). Software Engineering 9th Ed.
Addison Wesley, 978-0-13-703515-1, Boston, MA.

[12] F. Tsui and O. Karam. (2011). Essentials of Software
Engineering 2nd Ed. Jones and Bartlett Publishers, 13:978-0-
7637-8634-5.

[13] K. Beck (1999). Extreme programming explained: Embrace
the change. Addison Wesley.

[14] R. Jefferies, A. Anderson, C. Hendrickson. (2000). Extreme
programming installed. In: The XP Series. Addison Wesley.

[15] CERT Coordination Center, CERT/CC. [Electronic Version].
http://www.cert.org/ (Accessed July 12, 2011).

[16] M. Quin. Ethics for the Information Age 4th Ed. Boston:
Pearson Education. 2011.

[17] Software Errors Cost U.S. Economy $59.5 Billion Annually:
NIST Assesses Technical Needs of Industry to Improve
Software-Testing [Electronic Version]
http://www.nist.gov/public_affairs/releases/n02-10.htm
(Accessed on April 1, 2008).

[18] Accuracy; Integrity. American Heritage College Dictionary.
(1993). New York: Houghton Mifflin Company.

[19] A. Apvrille and M. Purzandi. “Secure Software Development
by Example,” IEEE Security & Privacy, vol. 3, no. 4,
July/August, 2005. p. 10 – 17.

32

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] J. Viega and G. McGraw. Building Secure Software: How to
Avoid Security Problems the Right Way. Boston: Addison-
Wesley. 2001.

[21] C. Lester. (2009). CSCI 430 – Software Engineering
Syllabus.

[22] K. McPherson. Service Learning. New Horizons for
Learning. http://www.newhorizons.org/strategies/service_
learning/front_service.htm. 2005.

[23] C. Lester. (2010) “Shifting the Paradigm: Training
undergraduate students in software security.” Proceedings of
the Fourth International Conference on Emerging Security
Information, Systems and Technologies. Venice, Italy, July
18 – 25, 2011.

[24] C. Lester. (2010). “A practical application of software
security in an undergraduate software engineering course.”
International Journal of Computer Science Issues, Vol. 7,
Issue 1.

[25] P.T. Devanbu and S. Stubbline. “Software engineering for
security: a roadmap,” Proceedings of the Conference on the
Future of Software Engineering. Limerick Ireland, June 4 –
11, 2000.

33

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

