
PIGA-HIPS: Protection of a Shared HPC Cluster
M. Blanc*, J. Briffaut, D. Gros, C. Toinard

Laboratoire d’Informatique Fondamentale d’Orléans
*CEA, DAM, DIF F-91297 Arpajon, France, mathieu.blanc@cea.fr

ENSI de Bourges – LIFO, 88 bd Lahitolle, 18020 Bourges cedex, France
{jeremy.briffaut,damien.gros,christian.toinard}@ensi-bourges.fr

Abstract—Protecting a shared High Performance Computing
cluster is still an open research problem. Existing solutions
deal with sand-boxing and Discretionary Access Control
for controlling remote connections. Guaranteeing security
properties for a shared cluster is complex since users demand
an environment at the same time efficient and preventing
confidentiality and integrity violations. This paper proposes
two different approaches for protecting remote interactive
accesses against malicious operations. Those two approaches
leverage the SELinux protection. They have been successfully
implemented using standard MAC from SELinux, and guarantee
supplementary security properties thanks to our PIGA HIPS.
The paper compares those two different approaches. It presents
a real use case for the security of a shared cluster that allows
interactive connections for users while preventing confidentiality
and integrity violations. That paper takes advantage of previous
works and goes one step further for protecting shared clusters
against malicious activities. It proposes a new framework to
share a cluster among partners while guaranteeing advanced
security properties. This solution aims to prevent complex or
indirect malicious activities that use combinations of processes
and covert channels in their attempt to bypass the required
properties.

Keywords - Security Property, Mandatory Access Control,
High Performance Computing Security.

I. INTRODUCTION

Protecting a HPC cluster [1] against real world cyber threats
is a critical task nowadays, with the increasing trend to
open and share computing resources. As partners can upload
data that is confidential regarding other partners, a company
managing a shared cluster has to enforce strong security
measures. It has to prevent both accidental data leakage and
voluntary data stealing.

Security of the clusters accesses usually relies on Dis-
cretionary Access Control (DAC) and sand-boxing such as
chroot, BSD Jail or Vserver. The DAC model has proven to
be fragile [2]. Moreover, virtual containers do not protects
against privilege escalation where users can get administration
privileges in order to compromise data confidentiality and
integrity.

Mandatory Access Control (MAC) can be used to confine the
various cluster populations. MAC such as in NSA’s Security-
Enhanced Linux (SELinux) provides a powerful protection
scheme. However, defining efficient SELinux policies is com-
plex. Moreover, advanced security properties cannot be en-
forced by that approach. For example, SELinux in its current

design does not control information flows involving multiple
processes and ressources.

Solutions such as [3] propose enforcement of advanced
security properties for SELinux. However, efficient protection
of remote accesses has not yet been proposed using those
kinds of solutions. Moreover, specific contexts of use such
as a cluster shared between various entities require a new
protection scheme since the protection must scale well.

That paper answers those two questions. First, it presents
two different solutions for the protection of a shared cluster
against malicious usage. Second, it discusses the advantages
and presents the solution chosen to protect a large scale cluster
such as the ones deployed by the CEA. Finally, it shows
how to compute the remaining risks associated with a given
SELinux policy, how to analyze the remaining risks and how
to prevent them. The result is that, however complete, the
proposed SELinux policy still cannot prevent about a million
of indirect illegal activities. But, the PIGA HIPS enables to
prevent against these remaining risks. Then, the paper presents
a real case study showing realistic scenarii of attacks, and how
the PIGA HIPS can prevent them.

II. RELATED WORK

High performance computing architectures are extremely
specialized, compared to general computing facility. As such,
they present specific security issues and properties. As outlined
by William Yurcik [4], these issues must be addressed in a way
that is relevant, with a combination of general techniques and
one that are specific to cluster architectures.

Sandboxing such as [5] or [6] provides a mean to confine
processes. However, in the context of a shared cluster where
processes can communicate and share files, the confinement
cannot be hardened and information can flow between pro-
cesses and resources.

Under Linux, there are at least four security models avail-
able to ensure a Mandatory Access Control policy: SELinux,
grsecurity, SMACK and RSBAC. But none of these solutions can
ensure a large set of security properties. In the best case, they
can ensure one or two limited properties such as the Bell and
LaPadula confidentiality or the Biba integrity. Under the BSD
family, solutions such as Trusted BSD (available within the
following Operating Systems: FreeBSD, OpenBSD, MacOSX,
NetBSD) provide more or less the same kind of a Mandatory
Access Control as SELinux. But, again, they fail to ensure the
large majority of requested security properties.

44

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The major limitation is related to indirect information flows,
allowed by the considered protection policies, that enable
to violate a security property. All those approaches fail to
correctly manage indirect information flows, consequently
authorizing illegal activities.

Several studies address how to manage indirect information
flows within an Operating System. The HiStar Operating Sys-
tem [7] associates each object or subject with an information
flow level. The problem of HiStar is that it is very close to the
the Biba integrity model and suffers from the same limitations.
The Flume Operating System [8] is very close to HiStar.
However, Flume does not control efficiently the information
flows.

Asbestos [9] reuses the idea of HiStar by considering
four different levels of information. The protection rules can
only express pairwise relationship patterns. Again, information
flows involving multiple interactions and processes cannot be
controlled easily.

Works about the enforcement of dynamic policies such
as [10], [11], generally consider how to detect simple conflicts
within dynamic policies. For example, they detect if it is
safe to remove or add a role or a context, otherwise the
considered access control could become invalid, conflicting
or not supported. So, they address conflicting rules but do not
enforce a large set of security properties.

Briffaut and al. [3] presents how to reinforce the security
of SELinux MAC policies. However, security properties for
protecting a HPC cluster must be defined. Moreover, the
protection system must scale well in order to minimize the
performance overhead and ease the deployment.

III. SECURITY OBJECTIVES

In this section, we present our security goals regarding our
experimental shared HPC clusters. These goals are the basis
of our security policy, and thus of our SELinux configuration.
They can be resumed in five points:

• Ensure the confidentiality of data uploaded by partners;
• Confine user profiles and services so that a malicious

elevation of privileges does not compromise the security
of the operating system;

• Differentiate public SSH access and administrator SSH
access;

The following subsections give details on each point.

A. User containers and data confidentiality

Users from the same projects should be able to exchange
files freely. Hence there is a particular set of Unix groups
called “containers”. These containers represent people working
on the same project or users that are granted access by
the same administrative procedure (for example a national
research agreement). In these containers, accidental leakage
of information due to incorrect permissions is considered
harmless.

Definition 3.1 (Container): In a container A, with
(a1, a2) ⊂ A, a1 accessing a file f belonging to a2 does not
break the confidentiality of file f .

which means, in terms of confidentiality:
Definition 3.2 (Confidentiality): Data confidentiality means

that a user a from container A must not be able to read a file f
belonging to a user b from container B, whatever permissions
are set on f .

Of course, this does not mean that any user can access all
the files of all other users in the same container. Typically,
aMAC mechanism will confine users in their container, and
then inside a container users can restrict access to their own
files with DAC permissions.

B. Confined users and services

Users and services should be confined in order to prevent
any tampering with the security mechanisms. A first example
is a malicious hacker exploiting a flaw in a network service in
order to gain administrative access to a login node. Exploiting
a flaw should not allow him to break the data confidentiality
of another container. Another example is a legitimate user
downloading a malicious code from the Internet and using
it to gain administrative privileges on his node. Even if this
succeeds, this user should not be able to access files outside
his container.

Definition 3.3 (Confinement): Any person gaining admin-
istrative privileges on a system must not be able to break
the confidentiality property, either legitimate user or external
attacker.

C. SSH access

There should be two different points of access on the cluster
nodes: a public access for standard users, and an administrative
access reserved to system administrators. These accesses are
always setup with a ciphered protocol like SSH. Even in the
case a vulnerability is exploited in the server and gives an
administrative access to an attacker, the public access should
never allow users to configure the security mechanisms. Only
the administrative access should.

Of course interactive user access is not always enabled. For
example, there are some parts of the clusters like computing
nodes where standard user access should be disabled. These
nodes should only be accessed through the batch scheduler.
The same restriction goes for the storage nodes, accessible
only through mounted network file systems, and so on. These
are only examples, each cluster has its specific areas.

IV. SELINUX SOLUTIONS OF PROTECTION

A. Solution 1: SSH users confinement with chroot and SELinux

When the SSH daemon receives a connection the user is
authenticated, it forks and executes the user’s shell from
/etc/passwd. Our confinement system provides a chroot
confinement for this shell, strengthened by SELinux rules via a
SELinux module. First, we create a Linux sub tree in which the
SSH daemon will chroot the user. The main idea is to build one
confinement tree per user, and each user has different SELinux
types. We use the base types defined for / tree, adding the
username of the user linked to the confinement. For example,
if we confine Bob in /cage, files in /cage/etc will have

45

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Jail and SELinux contexts.

the Bob_etc_t type, as files in /etc have the etc_t type.
See figure 1 for an example of SELinux types we use.

The goal of our SELinux module is to make an automatic
transition of the user confined shell to a unique type, and to
give rights to this type to interact only with objects that own
a type in the user’s sub tree. So, each user’s processes and
objects have a different SELinux type and consistent protection
rules prevent from unauthorized accesses. Even in case of
chroot or application corruption, a process (e.g. user1 subject)
is prevented from accessing unauthorized resources (e.g. user2
objects).

Here are the main steps to confine a user. The first step is
to create the sub tree. Jail is a simple Linux tool (not to be
confused with FreeBSD Jail) to build such a sub tree. Then,
we build the SELinux module to strengthen the confinement.
We write the source code of the module, compile it and load
it to SELinux. The next step is to configure OpenSSH to
chroot this user in the requested sub tree, and apply the correct
SELinux labels to the user file tree (relabeling operation). As
the SELinux module has been loaded before relabeling the tree,
it will get types we defined in our policy module, not default
types.

A bash script provides automation for these different steps.
The script just needs the user name and the path you want
to confine him in. For our tests we used the SSHJail patch

Fig. 2. Jail and SELinux transitions.

for OpenSSH, which use the /etc/sshjail.conf file
to define user’s chroot. The script must be adapted if using
another system. Of course, the script checks if this user is
already confined in another sub tree or if the sub tree is already
used to confine another user. The SELinux rules defined for the
modules are very restrictive, they just allow the user to login
and run a few commands such as ls. Other commands can
be added on demand based on application requirements.

This system requires to set up each user on the machine. So,
our script needs to be executed after the useradd command
in order to confine every user. It is a good thing to gather
these two steps into a single one. The solution is to provide
an alias for the useradd command that runs the two steps.
A SELinux rule prevents the real useradd from being run
directly. Thus, only the alias is allowed for execution.

B. Solution 2: SSH users confinement with Port differentiation
and SELinux

The idea is to have different SSH ports for each user
categories. In the sequel, we consider only two types of users.
One has the context ccc_guest_t and offers a restricted
access. The other one is unconfined_t which gives full
privilege access. To separate these two kinds of interactive
accesses, we introduce two new contexts for two SSH servers,
sshd_public_t and sshd_admin_t. The first one offers
restricted access whereas the second one gives a privileged
access.

This is implemented in two different SELinux policy mod-
ules described in the following parts: ccc_guest and
sshd_admin.

1) ccc_guest: By default, all the users are placed in the
context (user_u, system_r, unconfined_t). The
goal of our SELinux module is to provide two confined user
profiles: ccc_guest and ccc_xguest. The first one is
associated to SSH connections, and the second one is asso-
ciated to X11 sessions. They are originally derived from the
guest and xguest profiles of Fedora 10, provided by Dan

46

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Walsh [12]. They were subsequently adapted to our specific
needs.
1 unprivileged_user(ccc_guest_t, ccc_guest);

This template deals with the creation of the basic rules
for the ccc_guest_t type. When the user logs on the
system, he receives a set of access rights that allows him to
perform basic actions. This unprivileged_user template
also enables to use a part of the network (important for the
use of SSH).
1 userdom_restricted_xwindows_user_template(ccc_xguest);
2 use_kde(ccc_xguest_t);

The xguest profile derived of Fedora 10 allows us to
define rules for the X11 forwarding in SSH. There are specific
rules for the use of X11 and graphical environment such as
KDE.
1 corecmd_shell_domtrans(sshd_public_t, ccc_guest_t);

This template enables the ccc_guest_t
type to interact with the sshd_public_t. The
corecmd_shell_domtrans allows the public SSH
context to transit to the guest type, and only this one. That
way, the public SSH server only gives restricted access.
1 use_local_home_dir(ccc_guest);

The use_local_home_dir template allows the user
to manipulate and more especially to create, manage file
permissions and relabel certain types of files and directories,
for example the user_home_t type.

For the use of NFS and LUSTRE file system, specific rules
have been defined.

These different templates allow us to use SSH with a specific
type (sshd_public_t) and to confine the shell of the user.
The objective of these confined user profiles is to limit the
administrative privileges accorded to users to the minimum.
For example, a standard user logged on the system via SSH
will have the context (ccc_guest_u, ccc_guest_r,
ccc_guest_t). Trying to exploit a vulnerability in any
system command or service, he may obtain a root access,
but he will still have the same confined SELinux context and
will not be able to take advantage of this root access.

Moreover, several rules protect the system against malicious
code execution by the user. For example, the stack is protected
against the execution with the following rule.
1 allow $1_t self:process ~{ setcurrent setexec execmem execstack };

2) sshd_admin: By default, the SSH server is not as-
sociated to a particular context, it is actually executed in the
unconfined_t type. As the SSH service must be accessible
to all the cluster partners from the Internet, it is heavily ex-
posed to attacks. This policy module answers two goals. First,
we want to confine the SSH server so that if an attacker exploits
a vulnerability in it, he will only reach a confined profile.
Secondly, the attainable SELinux roles from the SSH server
should be limited to what is strictly necessary. That is why
we create two different contexts for two SSH servers running

Fig. 3. Two levels of SSH access.

at the same time (on different TCP ports): sshd_public_t
and sshd_admin_t.

The first context is for the public SSH access. We call it
"public” but it may already be filtered at the network level.
This context can only transit to the ccc_guest_t type.
The second context is reserved for administrative access, and
can transit to the unconfined_t type. This is illustrated in
figure 3.

The profile for the admin is close to the ccc_guest pro-
file. It can perform several operations on files and directories.
The policy adds the right for the admin to list and read the
root directory. The admin can also use X11.
1 unprivileged_user(ccc_admin_t, ccc_admin);
2 userdom_restricted_xwindows_user_template(ccc_admin);

The admin is able to transit to the unconfined_t thanks
to this specific rule whereas there is a rule that denies the
transition for the user to transit to the unconfined_t.
1 neverallow sshd_public_t unconfined_t:process { transition };
2 allow sshd_admin_t unconfined_t:process { transition };

The admin has to be able to administrate the ccc_guest.
A special program named xbe is used. The use_xbe tem-
plate provides the set of rules allowing to manage the guest
processes and change the permissions on the guest files.
1 use_xbe(ccc_admin, ccc_guest);

For example, the following rule is included in the use_xbe
template. This rule enables the ccc_admin_t subject to
control the ccc_guest_t process.
1 allow ccc_admin_t ccc_guest_t:process { siginh rlimitinh noatsecure };

C. Discussion of the two SELinux solutions

When a user logs on the cluster, he receives his allowed set
of permissions. He will be able to access only the files that
are allowed to him.

Our intended protection is to provide containers. For the
first solution, containers are associated with the user identities.
Each user can be seen as a container. In the context of a shared
cluster, it is not a scalable approach since the users cannot
easily share data. A complex SELinux policy must be defined
in order to allow the required sharing. However, that approach
enables a complete control of the resources’s accesses. For the
second solution, containers are associated with the server port.
In the sequel, we consider only two SSH server ports. But,
in the context of multiple partners sharing the cluster, each
partner would use a dedicated server. That approach scales

47

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

better since a container is associated to each partner. So, one
does not need to define complex sharing policies.

Our main objective is to prevent against indirect information
flows i.e. covert channels. While offering a very robust protec-
tion in case of an application security vulnerability, SELinux
cannot control those flows. In the following section, we show
how the PIGA security tools are used to assess those indirect
flows. Dedicated security properties are proposed to control
the flows of our second solution.

V. ANALYSIS OF THE CLUSTER PROTECTION

In order to analyze and to reinforce the security provided
by the SELinux policy of our second solution, several security
properties are proposed using the Security Property Language
defined in [3]. The advantages of our SPL are 1) to enumerate
the remaining risks within a given SELinux policy and 2)
to provide a mean to prevent these risks. That section will
describe the first point in order to analyse the remaining risks
in our SELinux policy. The second point will be developed
latter on in the paper when considering the enforcement of the
Security Properties in order to prevent againts these remaining
risks.

A. Security Properties

Using the SPL described in [13], several security properties
templates are proposed. In order to analyse the remaining risks
within our SELinux MAC policy, that section defines dedicated
security templates such as transitionsequence, cantransit, du-
tiesseparationbash and dutiesseparationreadwrite. That sec-
tion shows how the usage of these security templates enables to
analyze the security risks of our second solution. Each security
template can be considered as a generic security objective.
A template enables to define an instance of the considered
security property associated with relevant security contexts.
Each instance of a security property corresponds to a security
objective that the target operating system must satisfies.

1) Templates of Security Properties: The first template of
security property enables to protect against confidentiality
violation between a source security context sc1 and an object
security context sc2. Thus, one can prevent both direct and
indirect information flows from sc2 to sc1.
1 define confidentiality($sc1 IN SCS, $sc2 IN SCO) [
2 ST { $sc2 > $sc1 },
3 { not(exist()) };
4 ST { $sc2 >> $sc1 },
5 { not(exist()) };
6];

The second template of security property enables to protect
against integrity violation from a source security context sc1
against an object security context sc2. Thus, one can prevent
both direct and indirect integrity violations from sc1 against
sc2.
1 define integrity($sc1 IN CSS, $sc2 IN CSO) [
2 Foreach $eo IN is_write_like(IS)
3 ST { $sc1−> { $eo } $sc2 } ,
4 { not(exist()) };
5 Foreach $eo IN is_write_like(IS)
6 ST { $sc1 => { $eo } $sc2 } ,
7 { not(exist()) };
8];

The third template of security property enables to detect all
the transitions to the existing source security contexts. That
template is usually not used to prevent transitions but to detect
the transitions carried out on the target system.
1 define transitionsequence() [
2 Foreach $sc1 IN { system_u:system_r:init_t }, Foreach $sc2

IN CSS
3 ST { $sc1 __> $sc2 },
4 { not(exist()) };
5];

The fourth template of security property enables to pre-
vent transitions from a source security context SCFROM
to another source security context SCTO. Thus, one can
prevent processes to transit into specific contexts to get illegal
privileges.
1 define cantransit($SCFROM IN CS, $SCTO IN CS) [
2 Foreach $sc1 IN $SCFROM, Foreach $sc2 IN $SCTO
3 ST { $sc1 __> $sc2 },
4 { not(exist()) };
5];

The fifth template of security property enables to prevent
indirect activities from violating the existing SELinux direct
policy. Thus, a process cannot get indirect privileges that are
conflicting with the allowed direct SELinux permissions.
1 define consistentaccess($sc1 IN CS, $sc2 IN CS) [
2 ST { $sc1 >>> $sc2 },
3 { exist[$sc2 > $sc1] };
4];

The sixth template of security property enables to prevent
bash activities to write and then read scripts. Thus, one can
prevent attacks consisting in using bash to execute illegal
scripts.
1 define dutiesseparationbash($sc1 IN CS) [
2 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_execute_like(IS), Foreach $eo3 IN is_read_like(IS),
3 Foreach $sc2 IN $CSONE, Foreach $sc3 IN CS,
4 Foreach $a1 IN ACT, Foreach $a2 IN ACT
5 ST { ([$a2 := $sc1 −> { $eo3 } $sc2] o ([$a1 :=

$sc1 −> { $eo2 } $sc3] o $sc1 −> { $eo1 }
$sc2)) } ,

6 { INHERIT($a2 , $a1) };
7];

The seventh template of security property enables to prevent
malicious activities to write and then read files. Thus, one can
prevent attacks consisting in writing data in order to forward
the produced information.
1 define dutiesseparationreadwrite($sc1 IN CS) [
2 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_read_like(IS), Foreach $sc2 IN $CSRW
3 ST { ($sc1 −> { $eo2 } $sc2 o $sc1 −> { $eo1 }

$sc2) } ,
4 { not(exist()) };
5];

2) Analysis of SElinux through instances of the security
properties: The templates defined previously enable to define
several instances of the security properties for protecting the
administrator role, as in the following listing. The first property
prevents the admin role to transit to the guest role. The
second, third and fourth properties force the admin role to
satisfy various separation of duties. For example, the admin
role cannot uses bash to execute illegal scripts. He can only
execute scripts legally installed on the target SELinux. The fifth

48

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and sixth properties prevent against integrity violation carried
out from the admin role. The seventh property prevents the
admin role from indirectly getting permissions that are not
available in the SELinux policy. The eighth property prevents
the admin role to violate the confidentiality of the guest role
either directly or indirectly.

Listing 1. Security properties for admin
1 cantransit($SCFROM:=".∗:ccc_admin_r:.∗", $SCTO:=".∗:ccc_guest_r

:.∗");
2 dutiesseparation($sc1:=".∗:ccc_admin_r:.∗");
3 dutiesseparationbash($sc1:=".∗:ccc_admin_r:.∗");
4 dutiesseparationreadwrite($sc1:=".∗:ccc_admin_r:.∗");
5 integrity($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:.∗:.∗_exec_t");
6 integrity($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:.∗:.∗etc_t");
7 consistentaccess($sc1:=".∗:ccc_admin_r:.∗");
8 confidentiality($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:ccc_guest_r:.∗");

Several similar properties are defined for protecting the
guest role. Those properties enable to prevent the guest role
to violate the confidentiality of the admin role.

Listing 2. Security properties for guest
1 cantransit($SCFROM:=".∗:ccc_guest_r:.∗" , $SCTO:=".∗:ccc_admin_r

:.∗");
2 dutiesseparation($sc1:=".∗:ccc_guest_r:.∗");
3 dutiesseparationbash($sc1:=".∗:ccc_guest_r:.∗");
4 dutiesseparationreadwrite($sc1:=".∗:ccc_guest_r:.∗");
5 integrity($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:.∗:.∗_exec_t");
6 integrity($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:.∗:.∗etc_t");
7 consistentaccess($sc1:=".∗:ccc_guest_r:.∗");
8 confidentiality($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:ccc_admin_r:.∗");

B. SELinux Policy Analysis with PIGA

Fig. 4. Process of analyzing a SELinux policy and generating the patterns
violating the security properties

Fig. 5. Interaction graph

The objectives are first to enumerate the possible risks
included into a given SELinux policy and second to provide

a mean to prevent against these remaining risks. For these
purposes, Figure 4 shows how to analyze a SELinux policy in
order to enumerate the remaining risks. A compiler, PIGA-CC,
a module of PIGA, is used to enumerate from a given MAC
policy (i.e. a SELinux policy) the set of the illegal activities
associated with requested security properties. This section only
addresses the first point i.e. how the remaining risks can be
enumerated. Latter on in the paper, we will address the way the
enumerated remaining risks enable to guarantee the security
properties.

The PIGA-CC module builds a graph that represents the
access control policy (the SELinux policy). For each security
property instanciation, PIGA-CC enumerates paths into this
graph. Each enumeration, a combination of paths, corresponds
to a possible violation of a required security property starting
from the considered SELinux policy. Thus, the compiler enu-
merates all the forbidden activities i.e. all the sequences of
system calls allowing the violation of a considered security
property. The compiler sends those illegal activities to PIGA-
UM in order to prevent the violation of the requested security
properties.

Figure 5 gives an example of the sub-graph computed
by PIGA-CC for the SELinux policy considered in this paper.
In this graph, each edge between two contexts sc1 and sc2
corresponds to a direct interaction sc1 → sc2, and each path
between two contexts sc1 and scn corresponds to an indirect
interaction sc1 ⇒ scn. This graph enables to enumerate all
the terminals of the SPL language.

For example, when PIGA-CC analyses the confidentiality
property:
1 define confidentiality($sc1 IN SCS, $sc2 IN SCO) [
2 ST { $sc2 > $sc1 },
3 { not(exist()) };
4 ST { $sc2 >> $sc1 },
5 { not(exist()) };
6];

It extracts the edge between sc1 and sc2 and then it generates
a violation for each operation between these two contexts
that correspond to a possible information transfer, i.e., a read
operation between sc1 and sc2 or a write operation between
sc2 and sc1. Next, PIGA-CC enumerates the set of paths
between sc1 and sc2 where each edge is an information
transfer correctly oriented.

Let us give an example for the Figure 5 and the following
security property:
1 confidentiality($sc1:=".∗: ccc_guest_r:.∗", $sc2:=".∗:ccc_admin_r:.∗");

As shown in Figure 5, an information transfer is pos-
sible between the context ccc_admin_u : ccc_admin_r :
ccc_admin_t and ccc_guest_u : ccc_guest_r : ccc_guest_t
using the intermediate object system_u : object_r :
lastlog_t. Thus, this policy does not respect this confiden-
tiality property since there is an activity allowing a forbidden
information transfer between ccc_admin_u : ccc_admin_r :
ccc_admin_t and ccc_guest_u : ccc_guest_r : ccc_guest_t.
As presented in the sequel all the forbidden activities can
be used to prevent the considered flows i.e. to guarantee the
requested properties.

49

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Results of the SELinux policy analysis

This section presents the results provided using PIGA-CC.
These results corresponds to the security analysis of the
SELinux policies available for our second solution. These
results are presented in two tables. The table I describes the
analysis for the administrator role and the table II for the guest
role. These tables are divided into two columns.

The first one deals with direct activities.These activities
are blocked by SELinux. The second one deals with indirect
activities. These flows cannot be prevented by SELinux but
they can be blocked byPIGA-SP an extended MAC approach
reusing the enumerated activities. The PIGA-SP MAC approach
will be presented in the sequel.

For example, in the table I, PIGA-CC was able to find 4
direct activities dealing with integrity property and 8 indirect
activities.

Table I shows, for the admin role, all the direct illegal
activities and all the indirect illegal activities. This table is
based on the listing 1. The direct illegal activities can be
prevented simply by a modification of the SELinux policy.
But, PIGA-SP MAC can prevent all those direct and indirect
violations. As shown in table I, the confidentiality property can
prevents against 548.858 potentially illegal activities. Those
illegal activities are vectors that enable intruders to develop
exploits against the SELinux protection by using for example
a combination of buffer overflows and covert channels.

TABLE I
RESULT FOR THE ADMINISTRATOR ROLE

Security property direct activities indirect activities
cantransit 0 0

dutiesseparation 0 469
dutiesseparationbash 0 124288

dutiesseparationreadwrite 0 1191
integrity 0 0
integrity 4 8

consistentaccess 0 1474
confidentiality 98 548858

Table II shows the illegal activities for the guest role.This
table is based on the listing 2. It shows that PIGA-SP
MAC can prevent against about 1 million of illegal activities
that could compromise the SELinux protection. Those results
demonstrate that SELinux is not able to guarantee advanced
security properties such as the ones required for protecting a
shared cluster. In contrast with SELinux, PIGA-SP MAC can
efficiently enforce all the requested properties. The sequel
presents the way PIGA-SP reuses the illegal activities for
preventing the violation of the requested properties. PIGA-SP is
an advanced Host Intrusion Prevention System. But the illegal
activities can be used to provide an Host Intrusion Detection
System. Before explaining the internals of the PIGA-SP MAC
approach, let us first give an example of typical scenarii of
attacks allowed by the SELinux policy.

TABLE II
RESULT FOR THE GUEST ROLE

Security property direct activities indirect activities
cantransit 0 0

dutiesseparation 0 1118
dutiesseparationbash 0 328362

dutiesseparationreadwrite 0 2530
integrity 0 0
integrity 8 16

consistentaccess 0 3026
confidentiality 96 728214

D. Case study of remaining risks within the SELinux policy

Amoung the millions of potentially illegal activities, let us
choose some of them to show the typical scenariis of attacks
that PIGA can prevent.

Regarding the confidentiality of the admin role, the line 2 of
the following listing shows a direct activity where the chfn
application (that changes your finger information) uses a covert
channel, i.e. writing in a fifo file, with the guest role. One can
imagine an exploit against the chfn application using that
direct covert channel to make the admin’s data flow to the
guest role. The line 3 shows an indirect activity, where the
admin role writes a log file that is then read by the guest role.
If such an activity occurs, PIGA-SP guarantees that the reading
of the log file will fail.
1 confidentiality($sc2:=".∗:ccc_admin_r:.∗", $sc1:=".∗:ccc_guest_r:.∗");
2 2$55 : ccc_admin_u:ccc_admin_r:chfn_t −(fifo_file { write })−>

ccc_guest_u:ccc_guest_r:chfn_t
3 3$280219 : ccc_admin_u:ccc_admin_r:ccc_admin_t −(file { append

write })−> system_u:object_r:lastlog_t ; ccc_guest_u:
ccc_guest_r:ccc_guest_t −(file { read })−> system_u:object_r
:lastlog_t

Regarding the confidentiality of the guest role, the line 2 of
the following listing shows a direct activity where the SELinux
policy enables the guest role to use a covert channel, i.e.
writing in a fifo file, with the admin role. The line 3 shows
an indirect activity, where the guest role writes a temporary
file that is then read by the admin role. It is an indirect
covert channel that PIGA can prevent. Thus, the reading of
the temporary file by the admin role will fail.
1 confidentiality($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:ccc_guest_r:.∗");
2 0$90 : ccc_guest_u:ccc_guest_r:ccc_guest_t −(fifo_file { write })−>

ccc_admin_u:ccc_admin_r:ccc_admin_t
3 1$471971 : ccc_guest_u:ccc_guest_r:ccc_guest_t −(file { append

write } sock_file { append write })−> system_u:object_r:tmp_t ;
ccc_admin_u:ccc_guest_r:ccc_guest_t −(file { read } sock_file
{ read })−> system_u:object_r:tmp_t ;

Regarding the integrity of the admin role, the line 2 of
the following listing shows a direct activity where the chfn
application can write the /etc files. One can imagine to use
chfn to get an admin role and thus modifies the configuration
files that are present into the directory /etc.
1 integrity($sc1:=".∗:ccc_guest_r:.∗", $sc2:=".∗:.∗:.∗etc_t");
2 15$3 : ccc_guest_u:ccc_guest_r:chfn_t −(file { write })−> system_u:

object_r:etc_t

The following extract of the SELinux policy shows that the
guest role can execute the chfn application. Moreover, chfn
as the setuid bit set which enables guest to get the admin role

50

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when executing chfn. That example shows that such scenarii
of attacks are very easy to carry out. PIGA can efficiently
protect against them.
1 role ccc_guest_r types chfn_t;
2 allow ccc_guest_t chfn_t:process transition;
3
4 −rws−−x−−x root root /usr/bin/chfn

Regarding the integrity of the guest role, the line 1 of the
following listing shows a first activity that enables the dbus
process to transit to the guest role and then transit to the
password type. Then, the line 2 shows that a process with
the password type can write the /etc files and thus modify
the passwords. PIGA protects against the combination of those
two activities. Thus, if an exploit on dbus enables to transit
to the guest role, the attempt to then write into /etc will fail.
1 16!1$11 : ccc_guest_u:ccc_guest_r:ccc_guest_dbusd_t −(process {

transition })−> ccc_guest_u:ccc_guest_r:ccc_guest_t ;
ccc_guest_u:ccc_guest_r:ccc_guest_t −(process { transition })
−> ccc_guest_u:ccc_guest_r:passwd_t

2 16!0$11 : ccc_guest_u:ccc_guest_r:passwd_t −(file { write })−>
system_u:object_r:etc_t

VI. SECURITY PROPERTIES ENFORCEMENT

That sections adresses the second objective of that paper
i.e. how the enumerated illegal activities can be reused to
guarantee the requested security properties. It describes the
PIGA MAC approach enabling to guarantee all the security
properties expressed using our SPL language.

A. Implementation of the PIGA MAC protection

As described in Figure 4, our MAC protection model
is divided into two stages. First, the security administrator
defines a set of security properties. Generally, the administrator
reuses and configures existing canevas such as the various
properties proposed in this paper. However, he can also use
our SPL language to define dedicated security properties. Then,
he uses the PIGA-CC compiler that compares the requested
security properties against a mandatory policy (SELinux or
grsecurity) in order to compute all the illegal activities existing
in that SELinux policy. The set of forbidden activities is then
compressed and stored in a database of patterns.

Second, the security administrator can use our PIGA-SP
MAC solution in order to ask the enforcement of these security
properties by the operating system. PIGA-SP uses a combi-
nation of a kernel module PIGA-KM and userland application
PIGA-UM. The kernel module hooks the system calls and sends
the corresponding traces to the userland application. Each
system call is thus suspended and the kernel module waits for
an authorization or a deny response. The userland application
computes and verifies that the system call corresponds to an
activity available in the database of patterns. Next, PIGA-
UM allows or denies the considered system call aiming at
preventing the occurrence of the forbidden activities. Thus, the
system call fails if its execution could lead to the violation of
the security properties.

Figure 6 shows the process that allows a target operating
system, in our case Linux, to enforce the security properties.
Extension of the classical protections is proposed. First, the

kernel computes the classical Discretionary Access Control.
Second, LSM (Linux Security Module) hooks are applied.
LSM enables to stack several protection mechanisms such as
SELinux or SMACK. In our approach SELinux is processed
before running PIGA-SP. SELinux uses the mandatory security
policy in order to allow or deny the system call. In our
solution, a system call has to be allowed regarding wth the
DAC policy, the SELinux policy, and also the requested PIGA
Security Properties.

Fig. 6. Process to ensure the security properties at the Operating System
layer

PIGA-KM, the kernel part, analyzes all the relevant infor-
mations for the considered system call (who made it, from
where, what is its type, etc...) in order to generate a trace
(i.e. a string) describing the current system call request.
PIGA-KM sends that trace to a request queue in direction
to the userland application, PIGA-UM. The system call is
pending, while PIGA-KM is waiting for a message from the
response queue. PIGA-UM computes the response and writes
it in the response queue. When PIGA-KM gets the response
from the queue, it sends a decision back to SELinux. The final
decision is a logical AND between the PIGA-SP, SELinux and
DAC decisions. That final decision allows or denies the system
call execution. If allowed, the kernel runs the system call.

The request queue is a sequence file in the proc file system.
In practice, this file allows to pass a request from the kernel
space to the userspace. Once into the userspace, the userland
application PIGA-UM reads the request and reconstructs the
activities associated to that system call. If a reconstructed
activity matches with some available patterns (generated at
the compilation stage), PIGA-UM takes the decision to deny
that system call.

B. Example of Security Property Enforcement

This section describes how PIGA-SP prevents against real
scenarii of attacks. In this example, an administrator uses a
ssh connection with the ccc_admin_r role. In this role, he
can copy a critical file like /etc/shadow into a file in /tmp.
This copy could be intentional or produced by an malware

51

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

downloaded an executed by the administrator. Next, a user
can connect to the system with the ccc_guest_r and read the
file, copied by the administrator, in /tmp.

Theses actions represents a violation of the following
security property that prevents information flows from the
ccc_admin_r to the ccc_guest_r role:
1 confidentiality($sc1:=".∗:ccc_admin_r:.∗", $sc2:=".∗:ccc_guest_r:.∗");

The result of the analysis of the SELinux policy by PIGA-CC
indicates that this violation is possible if we only consider the
SELinux policy. This violation corresponds to the following
activity:
1 3$366122 : ccc_admin_u:ccc_admin_r:ccc_admin_t −(file { write })

−> system_u:object_r:tmp_t ; ccc_guest_u:ccc_guest_r:
ccc_guest_t −(file { read })−> system_u:object_r:tmp_t

The first part of the attack could be simulate by a connexion
with the ccc_admin_r following by the copy of /etc/shadow
into /tmp/test and a modification of the permissions of the
created file:
1 # ssh connexion with ccc_admin_u:ccc_admin_r:ccc_admin_t
2 $cat /etc/shadow >> /tmp/test
3 $chmod 777 /tmp/test

At the kernel level, the copy of the /etc/shadow file
involves a LSM hook specifying that an information has been
written by the administrator into a temporally file:
1 dec 22 11:23:21 pigaos kernel: type=1400 audit(1277198601.563:1560):

avc: granted { write } for pid=2056 comm="cat" ppid=1988 dev=
sda3 ino=534412 scontext= ccc_admin_u:ccc_admin_r:
ccc_admin_t tcontext= system_u:object_r:tmp_t tclass=file

This interaction is allowed by SELinux and also by PIGA-SP
because it does not represent a violation of a security property.

Next, a user connects to the same host with the ccc_guest_r
role. This user tries to read the content of the file created by
the administrator:
1 # ssh connexion with ccc_guest_u:ccc_guest_r:ccc_guest_t
2 $ cat /tmp/test
3 cat: /tmp/test: Permission denied

This interaction generates the following trace at SELinux
Level:
1 dec 22 11:25:45 pigaos kernel: type=1400 audit(1277199254.272:1732):

avc: granted { read } for pid=2080 comm="cat" ppid=1876 dev=
sda3 ino=534412 scontext= ccc_guest_u:ccc_guest_r:
ccc_guest_t tcontext= system_u:object_r:tmp_t tclass=file

The read interaction of a temporally file by a user in the
ccc_guest_r is allowed by SELinux. PIGA-SP prevents this
violation because this interaction corresponds to a security
property violation.

The trace generated by PIGA-SP indicates the number of the
SELinux interaction denied and the corresponding forbidden
activity:
1 dec 22 11:25:45 pigaos kernel: 3$366122 operation 1732 denied:

ccc_admin_u:ccc_admin_r:ccc_admin_t > system_u:object_r:
tmp_t > ccc_guest_u:ccc_guest_r:ccc_guest_t

This example illustrates a simple case of security property
enforcement. Even if individuals interactions are allowed by
SELinux, PIGA-SP is able to control indirect flows or a com-
bination of these indirect flows. Thus, PIGA-SP can guarantee
advanced security properties preventing against sophisticated
scenarii of attacks including 0-Day attacks.

ACKNOWLEDGMENT

We would like to give special thanks to Jonathan Rouzaud-
Cornabas for his participation in the development of PIGA-
KM and Maxime Fonda for the development of the SSH
confinement with chroot and SELinux.

VII. CONCLUSION

This paper presents two solutions based on SELinux to
protect a shared HPC cluster. The first one deals with chroot
to confine the user but the approach prevents the user from
sharing easily data. The second one is based on two SSH server
ports and enables user to share data. This paper focus on the
difficulties to prevent sophisticated attacks, using for example
several indirect flows, that SELinux cannot control.

That paper shows the efficiency of using SELinux plus PIGA
in order to find the illegal activities into the proposed SELinux
policy. The found illegal activities can be used to improve
the SELinux protection with our PIGA MAC approach in order
to better guarantee the confidentiality or the integrity of a
shared cluster. PIGA MAC prevents against all the risks of
the SELinux policy regarding the various security properties
expressed using our Security Property Language. For that pur-
pose, PIGA MAC reuses all the precomputed illegal activities
in order to guarantee the required confidentiality and integrity
properties. In contrast with SELinux, indirect illegal activities
are controlled, permitting thus the prevention of sophisticated
attacks.

PIGA MAC can be seen as an advanced HIPS guaranteeing
that a system call, terminating an indirect illegal activity, will
fail. The PIGA approach can be used also as an HIDS to
detect the violations. It is better to use the HIDS approach
for properties that correspond to auditing facilities. Moreover,
the HIDS approach could be computed on a dedicated cluster.
Thus, the impact on the HPC cluster performances is limited.
However, PIGA provides a very efficient HIPS approach. Clus-
ter experimentations show that SELinux adds 10% of processor
overhead, while PIGA also adds an overhead of 10%. It is
a very low overhead for the considered protection that goes
much further than the related works. That paper details the
implementation of PIGA MAC and gives examples of real
scenarii that are blocked by our HIPS.

Finally, the proposed protection enables the real sharing of
an HPC cluster while guaranteeing confidentiality and integrity
for the partners. Future works deal with the automation of the
definition of efficient security properties for the sharing of
an HPC cluster. The major difficulty is to adjust the security
properties in order to make a good balance between the
protection and the usability of the shared cluster.

REFERENCES

[1] M. Blanc, J. Briffaut, T. Coullet, M. Fonda, and C. Toinard,
“Protection of a shared hpc cluster,” in Proceedings of the 2010
Fourth International Conference on Emerging Security Information,
Systems and Technologies, ser. SECURWARE ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 273–279. [Online]. Available:
http://dx.doi.org/10.1109/SECURWARE.2010.51

[2] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Commun. ACM, vol. 19, no. 8, pp. 461–471, 1976.

52

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] J. Briffaut, J.-F. Lalande, C. Toinard, and M. Blanc, “Enforcement of
security properties for dynamic mac policies (best paper award),” in
Proceedings of the 2009 Third International Conference on Emerging
Security Information, Systems and Technologies, ser. SECURWARE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 114–120.
[Online]. Available: http://dx.doi.org/10.1109/SECURWARE.2009.25

[4] W. Yurcik, G. A. Koenig, X. Meng, and J. Greenseid, “Cluster security
as a unique problem with emergent properties: Issues and techniques,”
5th LCI International Conference on Linux Clusters, May 2004.

[5] P. henning Kamp and R. N. M. Watson, “Jails: Confining the omnipotent
root,” in In Proc. 2nd Intl. SANE Conference, 2000.

[6] F. L. Camargos and B. des Ligneris, “Automated oscar testing with
linux-vservers,” in HPCS ’05: Proceedings of the 19th International
Symposium on High Performance Computing Systems and Applications.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 347–352.

[7] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in OSDI ’06: Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2006, pp. 19–19.

[8] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
vol. 41, no. 6. New York, NY, USA: ACM, 2007, pp. 321–334.

[9] P. Efstathopoulos and E. Kohler, “Manageable fine-grained information
flow,” SIGOPS Oper. Syst. Rev., vol. 42, no. 4, pp. 301–313, 2008.

[10] M. L. Damiani, C. Silvestri, and E. Bertino, “Hierarchical domains
for decentralized administration of spatially-aware rbac systems,” in
ARES ’08: Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 153–160.

[11] L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo,
“Policy administration control and delegation using xacml and delegent,”
in GRID ’05: Proceedings of the 6th IEEE/ACM International Workshop
on Grid Computing. Washington, DC, USA: IEEE Computer Society,
2005, pp. 49–54.

[12] Dan Walsh, “Confining the User with SELinux,”
http://danwalsh.livejournal.com/10461.html, 2007.

[13] J. Briffaut, J.-F. Lalande, and C. Toinard, “Formalization of security
properties: enforcement for mac operating systems and verification of
dynamic mac policies,” International journal on advances in security,
pp. 325–343, 2010.

53

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

