International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

185

iIPrivacy: A Distributed Approach to Privacy on the Cloud

Ernesto Damiani, Francesco Pagano

Department of Information Technology
Universita degli Studi di Milano
Milano, Italy
{ernesto.damiani, francesco.pagano}@unimi.it

Abstract—The increasing adoption of Cloud storage poses a
number of privacy issues. Users wish to preserve [fucontrol
over their sensitive data and cannot accept that is accessible
by the remote storage provider. Previous research & made
on techniques to protect data stored on untrusted esvers;
however we argue that the cloud architecture preses a
number of open issues. To handle them, we presematn
approach where confidential data is stored in a higly
distributed database, partly located on the cloud iad partly on
the clients. Data is shared in a secure manner ugira simple
grant-and-revoke permission of shared data and we dve
developed a system test implementation, using an-memory
Relational Data Base Management System with row-leV data
encryption for fine-grained data access control.

Keywords-cloud; database; encryption;
privacy; distributed data.

data sharing;

l. INTRODUCTION

Cloud computing is the commercial evolution of grid
computing [23]; it provides users with readily dable, pay-
as-you-go computing and storage power, allowingnthe
dynamically adapt their IT (Information Technologg)sts
to their needs. In this fashion, users need neitustly
competence in IT system management nor huge ineastm
in the start-up phase in preparation for futureagio

While the cloud computing concept is drawing much
interest, several obstacles remain to its widespag@ption,
including:

Current limits of ICT infrastructure: availability,
reliability and quality of service;
Different paradigm of development of cloud

Davide Pagano
School of Engineering
Politecnico di Milano

Milano, Italy
davidel.pagano@mail.polimi.it

l. THE PROBLEM OF PRIVACY

The cloud infrastructure can be accessible to pulders
(Public Cloud) or only to those operating within an
organization (Private Cloud) [3]. Generally speakin
external access to shared data held by the cloesl thoough

the usual authentication, authorization, and comaoation

phases. The access control problem is well ackrumele in

the database literature and available solutionsagtee a

high degree of assurance.

However, the requirement that the maintainer of the
datastore cannot access or alter outsourced dats &asily
met, especially on public clouds like Google Appiae for
Business, Microsoft Azure Platform or Amazon EC2
platform.

Indeed, existing techniques for managing the outsog
of data on untrusted database servers [13] [14hatahe
straightforwardly applied to public clouds, due deveral
reasons:

The physical structure of the cloud is, by deforiti
undetectable from the outside; who is really hajdin
the data stored on the cloud?

The user often has no control over data replication
i.e., how many copies exist (including backups) and
how are they managed?

The lack of information on the geographical locatio
of data (or its variation over time) may lead to
jurisdiction conflicts when different national laws
apply.

In the next section, we will briefly summarize dable
techniques for data protection on untrusted sereed show
how their relation to the problems outlined above.

applications with respect to those used for desktop, pata Protection

applications;
Privacy risks for confidential information residing
the cloud.

Hopefully, the first obstacle will diminish overnig,
thanks to increasing network availability; the setowill
progressively disappear by training new developgaesthird
issue however, is still far from being solved anaynmpair
very seriously the real prospects of cloud computin

In this paper, we illustrate some techniques foviating
data protection and confidentiality in outsourcedathases
(Section II), analyze some possible pitfalls of sthe
techniques in Cloud Computing (Section lll), andgwse a
new solution based on distributed systems (Secfifn
experimentally implemented and benchmarked (Sest)on

2011, © Copyright by authors, Published und

To ensure data protection in outsourcing, theditee
reports three major techniques [6]:
Data encryption [15];
Data fragmentation and encryption [16], which in
turn can be classified into two major techniques:
0 non-communicating servers [17][18];
o unlinkable fragments [19];
Data fragmentation with owner involvement [20].
1) Dataencryption
To prevent unauthorized access by the Datastore
Manager (DM) of the outsourced Relational Data Base
Management Systems (RDBMS), data is stored in ptexy
form. Obviously, the DM does not know the encryptio
keys, which are stored apart from the data. The RBB

er agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

186

receives an encrypted database and works on éérstrthat  position information of each field in the origimalation can
only the clients, who hold the decryption keys, a#erpret be added to the encrypted data [33].

correctly. Let us, now, consider data protection strategisedan
Figure 1 shows the transformation of a plain textle  partitioning.
into an encrypted one. 1) Data fragmentation

Normally, of all the outsourced data, only someuouis
and/or some relations are confidential, so it issiide to

Patients

SEN_ |Neme| DoB [ Zip [Ireatmeni| Iness split the outsourced information in two parts, ofo
PZ;;L"?;‘:F :3:»9212% 3335 :;::ﬁiieeu Esm I confidential a}nd one for public data. Its aim isninimize
P ) (S L AR LSRRI e T e S the computational load of encryption/decryption.
843-42-8251|Dave 1950,/11,/22[90005falendronatefosteaporosis a) Non_commnicaﬁng servers

In this technique, tweplit databases are stored, each in a
J\R different untrusted server (called, say, &d $). The two
atients® untrusted servers need to be independent and non-
ID) Etuple\[Is|In|In[lz[Ic |l communicating to prevent their alliance and reaqoiesibn
id]fbsh Twmdnlp I« To PP I~ 7 of the complete information. In this situation, théermation
ﬁ%i;ﬁ:ﬁﬁ:fm }i mEm e B may be stored as plaintext at each server.
B8 EEEEY, ol T El N R Each Client query is decomposed in two subquedies:

E - for S; and one for § The result sets have to be related and
filtered, by the Client.

Figure 1. Data encryption, source: [6 : . .
9 » 1l Figure 2 schematizes the resulting structure.

Decryption keys are generated and distributed usted
clients by the data owner or by a trusted delegate.

Encryption can be performed at different levels of
granularity: field, record, table, db [28]. Usuallhe level
adopted is the record (i.e., a tuple in relatiatzbbases). — ;

It is important to remark that since data is en@gpthe %m?
DBMS cannot index it based on plaintext and thesefib e
cannot resolve all queries. Available proposals/esahis =
problem by providing, for each encrypted field t@ b — —
indexed, an additional indexable field, obtainedapplying
a non-injective transformatiohto plaintext values (e.g., a
hash of the field's content). Using this methodyatdity
queries can be performed easily, although with exipion =
index < 1 (to prevent statistical data mining). Tthested s
client, after receiving the encrypted result setthe query,
will decrypt it and exclude spurious tuples. Howexenge
queries are difficult to compute, since the transfationf in
general will not (and should not) preserve the ordkations .
of the original plaintext data. Specifically, itillwbe b) Un'llnk'ak.)lefragments )
impossible for the outsourced RDBMS to answer range N reality, itis not easy to ensure that splitvees do not
queries that cannot be reduced to multiple equalitfpOmmunicate; therefore the previous technique may b
conditions (e.g.1<=x<=3 can be translated int&1 or x=2 Inapplicable. A possible remedy is to divide _mfnattm_n in
or x=3) unless specific techniques are applied. In liteea two or more frggments.. Each fragment cc')ntammallftellds
there are several proposals foincluding: of the original information, but some are in cléaim while

1. Domain partitioning [24]: the domain is partitioned the others are encrypted. To protect encryptedesaftom
into equivalence classes, each corresponding tingles frequency attacks, a suitablealt is applied to each
value in the codomain df encryption. Fragments are guaranteed to be unliek@ke.,

2. Secure hashing [13]: secure one-way hash function it is impossible to reconstruct the original redatiand to
which takes as input the clear values of an ateitand " determine the sensitive values and associatiortsoutitthe

retuns the corresponding index valuek. must be decrypting key). These fragments may be storednia ar

o
o
L b,
o oo
o oo

Figure 2. Non-communicating servers

deterministic and non-injective. more servers. ) -

To handle range queries, a solution, among otfiets, Each query is then decomposed in two subqueries:
use an encrypted version of a B + tree to storéntgbet e The first, executed on the Server, chooses a fragme
values, and maintain the values order. Becausevahees (all fragments contain the entire information) and
have to be encrypted, the tree is managed at tieatGlide selects tuples from it according to clear text galu

and it is read-only in the Server side. Alterndtiyehe

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

187

It returns a result set where some fields are « No more than one key is released to each user;
encrypted; » Each resource is encrypted not more than once.

« The second, executed on the Client (only if To achieve these objectives, a hierarchical orgeioia
encrypted fields are involved in the query), detsyp of keys can be envisioned. Basically, users with thme
the information and removes the spurious tuples.  access privileges are grouped and each resouereigpted

Figure 3 schematizes h resulting structure. with a key corresponding to the set of users that access

more than one resource.
1) Dynamic rights management
Should the user’s rights change over time (e.g.,uker
@M? a group/role as follows:
il « Encrypt data by a new key;
8 * Remove the original encrypted data;
Note that these operations must be performed by dat

owner because the untrusted DBMS has no accedseto t

keys. This active role of the data owner goes sdmatw

,,,,,,

it. This way, a single key can be possibly usectrorypt
changes department) it is necessary to removeuieatfrom
= « Send the new key to the rest of the group.

= against the reasons for choosing to outsourceidakee first
[ |
place.
Figure 3. Unlinkable fragments a) Temporal key management

An important issue, common to many access control
_ _ ) policies, concerns time-dependent constraints ofess
2) Data fragmentation with owner involvement permissions. In many real situations, it is likéhat a user
Another adaptation of theon-communicating servers  may be assigned a certain role or class for onlynied
technique consists of storing locally the sensitlega and time. In such case, users need a different keyéoh time
relations, while outsourcing storage of the gendeta. So, period. A time-bound hierarchical key assignmeheste is
each tuple is split in a server part and in a |peat, with the 3 method to assign time-dependent encryption keys a
primary key in common. The query is then resolved aprivate information to each class in the hierarahgpuch a

shown above. _ _ way that key derivation depends also on temporal
Figure 4 schematizes the resulting structure. constraints. Once a time period expires, userdian tlass
should not be able to access any subsequent kdgssun
further authorized to do so [9].
b) Database replica
In [7], the authors, exploiting the never endirentt to a
;[ﬂg lower price-per-byte in storage, propose to repicatimes
the source database, wheres the number of different roles

L1

oo
o
o!
oo
oo
oo

having access to the database. Each databasearéple
£ view, entirely encrypted using the key created tbe
Sefer corresponding role. Each time a role is createct th
corresponding view is generated and encrypted witlew
key expressly generated for the newly created kdders do
not own the real keys, but receive a token thatallthem to
address a request-to-cipher to a set KS of keyesein the
eskop cloud.
Figure 4. Data fragmentation with owner involvement

C. Adocument base sample: Crypstore

Crypstore is a non-transactional architecture foe t

B. Solective access di_stribution of confidential data, whose structiﬂes_hown in
: Figure 5. Crypstore’s Storage Server contains data

In many scenarios, access to data is selectiveh witencrypted form, so it cannot read them. User whotsvéo
different users enjoying different views over ttagad Access access data is authenticated at the Key Servers thv
control can discriminate between read and writeraipmns  certificate issued by the Data Administrator anguiees the
on an entire record or only on a part of it. decryption key. The Key Servers aeand, to ensure that

An intuitive way to handle this issue is to encryptnone of them knows the whole decryption key, eddhem
different portions of data with different keys thate then contains only a part of the encryption key. To iebthe
distributed to users according to their accessileges. To  key, only M (<N) parts of key are needed; redundancy
minimize overhead it is required that:

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



provides greater robustness to failures and attdels.,
Denial of Service attacks).

Storage Server Data administrator

TG -

User or user group

Key Servers

Figure 5. Crypstore

Really, Crypstore is an application of the time-tied
"divide and conquer" technique, where data is sepdr
from decryption keys.

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

188

TABLE I. DATASTORE SOLUTIONS USED BY PUBLIC CLOUDS
Environment Datastore
Google Bigtable
Amazon IBM DB2
IBM Informix Dynamic Server
Microsoft SQLServer Standard 2005
MySQL Enterprise
Oracle Database 11g
Others installed by users
Microsoft Microsoft SQL Azure
TABLE II. EXECUTION ENVIRONMENTS USED BY PUBLIC CLOUDS
Environment Execution environment
Google J2EE (Tomcat + GWT)
Python
Amazon J2EE (IBM WAS, Oracle WebLogicr8er
and others installed by users
Microsoft .Net

In all practical scenarios, public cloud supplibendle
both data and application management.

If the cloud supplier is untrustworthy, it can irtept
communications, modify executable software comptmen
(e.g., using aspect programming), monitor the user

Here privacy is not entirely guaranteed becauseapplication memory, etc.

theoretically at least, the owner of Key Servers dne
Storage Server may collude. The only way to exclinie
(however remote) possibility is to have trusted kssyvers,
but this would be equivalent to store the datactliye as
plaintext, in a trusted storage. In practice, hasveuvhe
probability of collusion decreases with the numtifeplayers
involved and can be safely ignored in many cases.

Il.  PRIVACY WITHIN THE CLOUD

Hence, available techniques for safely outsourdata
to untrusted DBMS no longer guarantee the confiekiyt
of data outsourced to the cloud.

The essential point consists in having the datathed
user interface application loga the same side of the wall
(see Figure 6).

This is a major difference w.r.t. outsourced dasaba
scenarios, where presentation was handled by t¢ratitnts.
In the end, the data must be presented to the insan

All techniques discussed above are based on datatelligible and clear form; that is the moment whe

encryption and/or data fragmentation using fullasapon of
roles and of execution environments between the aisé
the datastore (and possibly the keystore) usedattage the
outsourced data.

malicious agent operating in the cloud has more
opportunities to intercept the data. To prevent amed
access to the data at presentation time, it wouid
appropriate moving the presentation logics off¢loaid to a

b

Let us now compare the assumptions behind suchiusted environment that may be an intranet ahebottom

techniques with two of the basic tenets of curreloud
computing architectures: data and applicationsgbeim the

level, a personal computer.
However, separating data (which would stay in tbed)

“same side of the wall’, and data being managed vidrom the presentation logics may enable the creaifdocal

semantic datastores rather than by a conventioDBINRS.

A. On the same side of the wall

Ubiquitous access is a major feature of cloud computing
architectures. It guarantees that cloud applicatisers will
be unrestrained by their physical location (witheinet
access) and unrestrained by the physical devige uke to
access the cloud.

To satisfy the above requirements (in particulage th
second), we normally use thin clients, which ruoud
applications remotely via a web user interface.

The three main suppliers of Public Cloud Infraginoe
(Google App Engine for Business, Amazon Elastic fota
Cloud and Windows Azure Platform) all include aadétre,
and an environment for remote execution summarired
Tables | and II:

copies of data, and lead to an inefficient coopemdtetween
the two parts.

O
Y
VAN

UNDER USER

UNDER CLOUD CONTROL CONTROL

Figure 6. The wall

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

189

B. Semantic datastore

Cloud computing solutions largely rely on semaftian-
relational) DBMS. These systems do not store datakular
format, but following the natural structure of aotie After
more than twenty years of experimentation (seeinfiance,
[10] for the Galileo system developed at the Ursitgrof
Pisa), today, the lower performance of these systisnmo
longer a problem. In the field of cloud computitiggre is a i
particular attention to Google Bigtable.

"Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large size:
petabytes of data across thousands of commodity servers. In
many ways, Bigtable resembles a database: it shares many
implementation strategies with databases.” [11]

With a semantic datastore like Bigtable, there mae Figure 7. The architecture
strict integration between in-memory data and stalata,;
they are almost indistinguishable from the progranm
viewpoint. There are not distinct phases when tlognam 1) The model
loads data from disk into main memory or, in theagpte Henceforth, we will use the terdossier to indicate a set
direction, when program serialize data on disk. ligagions  of related information. Our data model may be infally
do not even know where the data is stored, assitastered represented by the diagram in Figure 8.
over the cloud.

In such a situation, the data outsourcing techmique
discussed before cannot be applied directly, becalsy <<dossier=> [ ]
were designed for untrusted RDBMS. dt

Ill.  OUR APPROACH <<locabs | .. | <<dossier> []

We are now ready to discuss our new approach to the uTiagent a2
issue of cloud data privacy. We build over the owti sihcro
introduced in [7] of defining a view for every user “sinfpmet> <edossier>> 7]
group/role, but we prevent performance degradatiyn pormerean f SR @t
keeping all data views in the user environment. wagent | S I oagiers [

Specifically, we atomize the application/databasé,
providing a copy per user. Every instance runsllipcand
maintains only authorized data that is replicatetd a
synchronized among all authorized users.

In the following subsections we will analyze oulusion
in detail. In our model, each node represents a local, simgge-
A. Information sharing by distributed system application/database dedicated to an individual (g The
node stores only the dossiers thatowns. Shared dossiers
I X S (in this exampled,;) are replicated on each node. When a
1. Local agents distributed at client side; node modifies a shared dossier, it must synchrori®
2. A central synchronization point. _ using heuristics and learning algorithms, with tbeher
Figure 7 shows the proposed architecture: nodes that hold a copy of it. Below we give a $&YWOT

analysis of this idea.
2) Strength/Opportunities

« Information sharing using untrusted Synchronizer;

¢ Small amount of local data, less attractive for

attackers;

* Only the final user has clear-text information;

* Unrestrained individual nodes, that can also work

offline (with deferred synchronization);

e Simplicity of data management (single user);

e Completeness of local information.

To clarify the last point, suppose that the uggvants to
know the number of the dossier she is treatinga kiassic
intranet solution, where dossiers reside on theness'
servers, in addition to its databasg,should examine the

d3

Figure 8. The model

We will consider a system composed of:

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

190
data stores of all other collaborating users. Withsolution, Our solution consists of two parts: a trusted tliemd a
instead,u, will simply perform a local query because the remote untrusted synchronizer (see Figure 9).
dossiers are replicated at each client. The client maintains local data storage where:
3) Weaknesses/Threats e The dossiers that she owns are (or at least can be)
« Complexity of deferred synchronization schemes stored as plain-text;
[21]; « The others, instead, are encrypted each with a
* Necessity to implement a mechanism for different key.
grant/revoke and access control permissions. The Synchronizer stores the keys to decrypt theesha
This last point is particularly important and itséeves  dossiers owned by the local client and the moditlessiers
further discussion: to synchronize.

» Each user (except the data owner) may have partial When another client needs to decrypt a dossier, she
access to a dossier. Therefore each node contaif§nnects to the Synchronizer and obtains the quoresng
only the allowed portion of the information, decryption key. ) »

«  Authorization, i.e., granting to a useraccess to a The data and the keys are stored in two separétesn
dossierd,, can be achieved by the data owner simplynone of_ which can access information without the
by transmitting to each node only the data it iscollaboration of the other part.
allowed to access; 1) Structure

. The inverse operation can be made in the case of a From the architectural pOint of View, we divide our
(partial or complete) revocation of access rights.  components into two packages, a local (client ggevitich
obvious difficulty lies in ensuring that data beesm contains _the dossier plus additional mformatlc_)rchs_Las
no longer available to the revoked node. This isaccess lists, and a remote (global synchronizehictw
indeed a moot point, as it is impossible — whatevefontains the list o_f dossiers to synchronize, theicryption
the approach - to prevent trusted users from crgati keys and the public keys of clients. o
local copies of data while they are authorized and A UML view of involved classes is shown in Figur@. 1
continue using them after revocation. We are

evaluating the opportunity to use watermarking for
relational databases [26] to provide copyright e
protection and tamper detection. BossiersSiore_| e e
_ om0 e acicill O
B. Proposed solution E— I‘\331‘5;9purgmuswmw ! ! |Gecuments
. . . send()

We are now ready to analyze our solution in defdl. R [ oo
simplify the discussion, we introduce the following ““‘”"‘BVD““‘"W" J
assumptions: S remts 1

¢ Each dossier has only one owner; fonecener

decodingKey

* Only the dossier's owner can change it.

These assumptions permit the use of an elemental
cascade synchronization in which the owner willrsitlihe
changes to the receivers. However, they can breglat the

* | decodingKeyRecords = | pendingDossiers|

PendingDossiersStore

DecodingKeys Store

sendPendingDossiers()
updalePendingDessiers(}

cost of a higher complexity in synchronization [34] -
recsneo
- <<artitact> [ ] 4
I SLELL Figure 10.Class view

<<artitact=> [ ]

encrypted dossiers

2) Grant
An owner willing to grant rights on a dossier migdtow
the sequence shown in Figure 11:

<<artitact=> [ ]

encrypted dossiers

S
==remote==
“Synchronizer

<<artitact> [ ]
=<|gcal== Decripting Keys

-receiver

Figure 9. Deployment diagram of distributed system

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

191
| owned:Dossier | ‘ 'DEmdmgKE}sS{arEI ‘:F‘ublicKEysSmrEI
generate sginmmamwa: | | For each receiver, the owner:
D;—;—_@mg@- ------------ oo 7] e + Generates a "pending dossier" by removing
o information that the receiver should not have agces

a=tPublickey idRessiver)
1
D( pub\rd(sy ﬂ

to;

enenypiByPublickieyidecadingiey, publickeyReesiven 19 e e Encrypts the pen_ding dossier with the previously
-------------------- generated decryption key;,
may deoypt

e Signs with his own private key to certificate its
g‘_‘:ﬁ_’f’i‘?f’f?‘_*_"_"?ﬁ‘f??ﬁ““‘"‘*“"‘* P origin;
signedEn = e« Sends it to the Synchronizer, which verifies the
origin and adds it to the storage of "pending
dossiers”. Again, the dossier is still encryptedhwi
the public key of the receiver, so only the receive
can read it.
4) Receive
Periodically, each client updates un-owned dosdigrs
following the sequence shown in Figure 13:

1_._. ---------------- ‘I""" receiver

stedDecodingKey
P

recelive{idDessier, id

now the deceding key

---.J isin the store and only
the receiver may

| decrypt it

Figure 11.Grant sequence

:PendingDossiersStore

1 sendPendingDossiers(myld)
Namely, for each receiver, the owner: || pendingDossiers, idSession
* Generates the decryption key AddOrUpdatJaendingDossiers}
» Encrypts it with the public key of the receiver to = |
ensure that others cannot read it
¢ Signs it with its private key to ensure its origin a . i .
. . . . updatePendingDossiers(idSession)
¢ Sends it to the Synchronizer, which verifies the
origin and adds it to the storage of the decoding
keys. The key is still encrypted with the publioyke T
of the receiver, so only the receiver can read it. Figure 13.Receive sequence
3) Send
When an owner modifies a dossier, she sends ihdo t
Synchronizer the sequence shown in Figure 12: Each client:
« Requests the "pending dossiers" to the Synchranizer
e Stores the (still encrypted) dossier in the local
[ownea:Dossier] [PendinaDossiersStore| vsStore storage;
generate u%e00055|er4Recewer(ldRecewTer) || the dossierwith aniy . Removes the received dossiers from the
d”@iﬁ"'ﬂ"é """"" . e’;r;;;,];;e;[(q;;e];;;, """"""""""" [ nformations Synchronizer.
Q‘ pum\cK‘y 5) Use .
--------------------------------------------------------- When a client needs to access an unowned (encjypted
SncpIBPubic ji_f.““‘e@a‘a‘Dub”CK“RE“‘J“ ____________ L . dossier, the sequence shown in Figure 14 is used:
eneng s ‘ || may decryn

anﬂyprvateKay(encwptaanssiquata) ‘
—

L .
signedEn .nleﬂ.l']usme[[)a]a..............‘ ______________________________ { 1o ensure :Dossier :DecodingKeysStore
A sender

i

the keyis
Zo-eo- encrypted by
IR Semmemmmene [ public key of

encryptedDecodingKey

receive(idDossier,dRec er‘signedEncwpledDossierData‘idSender) send(myld, idDossier) JJ_‘

——————————————————————— decriptByPrivateKe}(encriptedDecodingKey) allowed receiver
-

— | N QePdIRgREy =7 obtains the plain
encryptedD ﬁjgﬂﬁéfé""""""""""-W G- decoding key
<

smrﬁéﬁéwpteanssierData) ‘ decryptElyDecoqingKey(decodingKey) ‘

‘__I +— now the
B e el IR LR dossieris

readible

. now the dossier is in
"1 the store and only the
I

receiver may decryptit

\
\
| i
| Figure 14.Use sequence

Figure 12.Send sequence

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

192

private key used to decrypt, while the sender

The client: calculates the encryption key.

e Asks the Synchronizer for the decryption key (ibat The complexity of these techniques is a major neaso
encrypted by her public key); why conventional RDBMSs do not use encryption & th

» Decrypts it with her private key; row-level.

+ Decrypts the dossier by the resulting decryption ke 5

. . X In memory databases
If the decryption key does not exist, two optione a . )
available: An in-memory database (IMDB, also known as main

« The record is deleted from the local datastordNeémory database system or MMDB and as real-time
because a revoke happened: database or RTDB) is a database management syltgm t

¢ The record remains cached (encrypted) into thd loc rlmarlly re;hes on main memory for computer dmage
datastore because access rights to it could b 5]. It is important to remark that, yvh|le a cont/lenal_ .
restored atabase system stores data on disk but cacheastoit i

memory for access, in an IMDB the data resides peently

6) Revoke . ; ; ;
To revoke access to a receiver, it is sufficientiébete g}stl??zg]am physical memory and there is a baclagy ©n

the corresponding decryption key from the Synclmeni

The sequence diagram is shown in Figure 15, In-memory databases have recently become an iiftggu

topic for the database industry. With the mainsirea
availability of 64-bit servers with many gigabytafsmemory
a completely RAM based database solution is a tegpt
prospect to a much wider audience [36].
| Gelete(myld, idDossi | IMDBs are intended either for personal use (becthsg
D Md 1aDossten ﬂ are comparatively small w.r.t. traditional datalsdser for
I

performance-critical systems (for their very lowspense
time and very high throughput). They use main mgmor
Figure 15.Revoke sequence structures, so they need no translation from disknémory
form, and no caching and they perform better thaditional
DBMSs with Solid State Disks.
Normally, the use of volatile memory-based IMDBs
IV.  EXPERIMENTATION supports the three ACID properties of atomicityngistency

To experiment with our architecture we implemertteel ~ and isolation, but lacks support for the durabifitpperty.
custom client and Synchronizer. The client needssorow- T0 add this when non-volatile random access memory
level encryption. In a normal RDBMS, however, this(NVRAM) is not available, IMDBs use a combinatiofi o
technique has significant disadvantages in terms dfansaction logging and primary database checktipgirto
performance and functionality: querying would besgible  the system's hard disk: they log changes from catedhi
only through the construction of appropriate indefae each ~ transactions to physical medium and, periodicallydate a
column of the table (with a considerable wasteesburces disk image of the database. Having to write updatesisk,
both in terms of time and space), while the coitsaand ~ the write operations are heavier than read-onlyggirug
foreign keys would be almost unusable. policies vary from product to product: some legwe thoice

Another major issue concerns the management of: key§f when to write the application on file, others &b the
row-level encryption could potentially lead to tiyeneration ~ checkpoints at regular intervals of time or aftecatain
and maintenance (and / or distribution) of a keyefach row ~amount of data entered / edited.
of each table encrypted with this method. To solue In Table Ill, we summarize pros and cons for IMDBs.
reduce) the concern, we use some advanced tecknafue

key management, such as: TABLE lll.  IMDBSPROS ANDCONS
¢ Broadcast (or Group) encryption [32]: rows are Pros Cons
divided into equivalence classes, based on redgien | Fast transactions Complexity of  durability's
Every class is encrypted using an asymmetri¢ No translation implementation
algorithm where the encryption key is made in a way ’\H/l|g|rt1_ VS"ab"'“é . Size limited by main memory
that each recipient can decrypt the informatiomgisi |03k;') ser Concurrency  (fe

only its own private key. Both the public and the

private keys are generated byatr.usFed entity. Obviously, the limitation of this type of databaie

* ldentity Based Encryption [30]: it bounds the rgjateqd to the amount of RAM on computer hosting db.
encryption key to the identity of the recipientcBa gyt given their nature, IMDBs are well suited to be
recipient generates by itself a key pair used tQyistributed and replicated across multiple nodetoease
encrypt/decrypt information. _ capacity and performance.

* Attribute Based Encryption [31]: it bounds the  The proposed solution works around this limitationt

encryption key to an attribute (a group) of reamie hayving a single central database containing thelevtiata,
Each recipient receives from a trusted entity the

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

193
we preferred to give one database for each cligpifcation. » db_test.backup: containing the compressed backup
This database contains only owned data, while eatetata of last “.data” file, that may be not present inmeo
will be added (or removed) via the synchronizesdobaon catalogs;
access permissions. » db_test.lobs: used for storing BLOB or CLOB fields.

To minimize cryptography overhead, we encrypt only  Besides these files, HyperSQL can connect to CBY.fi
rows "received” by other nodes, while rows ownedtliy A client application can connect to HyperSQL server
local node are stored in cleartext form. using the JDBC driver (.Net and ODBC drivers are l4te

Well-known open solutions of IMDB are Apache Derby, stages of development”), specifying the type ofidase to
HyperSQL (HSQLDB) and SQLite. For our implementatio access (file, mem or res).
we chose to use HyperSQL rel. 2.0. HyperSQL implements the SQL standard either for

1) Hyperl temporary tables either for persistent ones. Teargdables

HyperSQL [37] is a pure Java RDBMS. lIts strength is (TEMP) are not stored on the file system and thieircycle
besides the lightness (about 1.3Mb for version,2tB® is limited to the duration of the connection (i.ef, the
capability to run either as a Server instance eitie a Connection object). The visibility of data in a TEMable is
module internal to an application (in-process). limited to the context of connection used to potaula With

A database started "in-process” has the advanthge regard to the persistent tables, instead, Hyperf@lides
speed, but it is dedicated only to the containipglieation  three different types of tables, according to thethad used
(no other application can query the database). dar to store the data:

purposes, we chose server mode. In this way, ttebase «  MEMORY: it is the default option when a table is
engine runs inside a JVM and will start one or more created without specifying the typ®lemory table
"in-process” databases, listening requests froncgages in data is kept entirely in memory, while any charme t
the local machine or remote computers. its structure or contents is recorded in .log acdpt
For interactions between clients and database rseree files. These two files are read at the opening of
can use three different protocols: database to load data into memory. All changes are
¢ HSQL Server. the fastest and most used. It saved when closing the database. These processes
implements a proprietary communication protocol; can take a long time in the case of tables lafygn t
* HTTP Server: it is used when access to the sesver i 10 MB.
limited only to HTTP. It consists of a web serveatt e« CACHED: when this type of table is chosen, only
allows JDBC clients to connect over http; part of the data (and related indexes) is stored in
» HTTP Servlet: as the Http Server, but it is use@nvh memory, thus allowing the use of large tables at th
accessing the database is managed by a servlet expense of performance.
container or by an application servlet (e.g., Tamnca e TEXT: the data is stored in formatted files such as
It is limited to using a single database. .CSV.
Several different types of databases (called cggloan In our implementation, we use MEMORY tables.
be created with HyperSQL. The difference betwe@&mtlis The Loader and the Serializer are the main parts of
the methodology adopted for data storage: HyperSQL that we analyzed and modified. They am th
e Res: this type of catalog provides for the storafje mechanisms that load the data from text files atdpening
data into small JAR or ZIP files; and save them to the database at closing.

¢ Mem: data is stored completely in the machine’s .
RAM, so there is no persistence of informationB' mpl ted solution

outside of the application life cycle in the JVM; 1) Clientside .

« File: data is stored in files residing into theefii ~ On the client side, using IMDBs, we have only two
system of the machine. interactions between each local agent and the Sgnizer,

In our work, we used the latter type of databases. as shown in Figure 16.

A catalog file can use up to six files on the §ilestem for
its operations. The name of these files consisth@fhame
of the database plus a dot suffix.

Assuming we have a database called "db_test", iilds %@W""’"‘ S "“H““”"“‘m]

Communication with the Synchrunizerlj

start local agent

be, Communication with the Synchronizer for local/remote changes ﬁ online

» db_test.properties containing the basic settingbef — .
DB_’ p p g g m[write db to diskHend appllcatmn} | < > I eand data in memory:l

» db_test.log: used to periodically save data from th | Work offine usina focal database '] [_omne ]
database, to prevent data loss in case of a crash; . _ _

« db_test.script: containing the table definitionsd an Figure 16.State diagram of client
other components of the DB, plus data of not-cached
tables;

¢ db_test.data: containing the actual data of cacheg)
tables. It can be not present in some catalogs;

We have modified the classes included in file hsggd
handle encryption. The basic idea was to manage
encryption in the .log and .script text files. Tiosvs that are

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



owned by the local client are stored in clear-textjle the
shared rows “granted” by other owners are storedyeted.

The values contained in tables are stored in fdr®Q@L
insert:

INSERT INTO table_name(field_1, field_2, ..., field_n
VALUES(value_1, value_2, ..., value_n)

Earlier, to obtain control access granularity & field
level, we encrypted field by field. This way, thext
contained in the database file is in the form of:

INSERT INTO table_name(field_1, field_2, ..., field_n
VALUES(pk, encrypted_value_2, ..., encrypted_value__

)

The primary keypk needs to be in clear-text, since it is
used to retrieve the decrypting keys from the eéntr
Synchronizer. We dropped this idea because it regui
changing the I/O code for each possible databgmeapd an
attacker may obtain some information such as taiimary
key and number of rows.

Our current solution is to encrypt the whole rowA&S
symmetric algorithm. The encryption overhead isdothan
the previous solution and all information is hiddercurious
eyes. To relate the encrypted row (stored locatlty)the
decrypting key (stored in the remote Synchroniaee),use a
new key {d_pending_row). The encrypted row is prefixed
by a cleartext header containing the id_pending_ro
delimited by “$” and “@". The encrypted value iseth
stored in a hexadecimal representation, so a gereaiis of
the form:

| $27@5DAAAED5DAO6AB014BFF305A93C957D |

a) Loadtime

At load time, the .script file will contain cleag}t and
encrypted rows, e.g.:

INSERT INTO students(id,name) VALUES(12,'Alice");
INSERT INTO students(id,name) VALUES(31,'Bob");
$27@5F3C25EE5738DAAAEDSDAOG6AB0F305A93C95
$45@5DA67ADA06AAEDS80FA914BF3C953057D387
INSERT INTO students(id,name) VALUES(23,'Carol");

A

T

The class whose task is reading the file and |gathe
appropriate data in memory3$sriptReader Text.

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

194

ScriptReaderText
ScriptReaderBase

+ BufferedReader dataStreamin

+ RowlnputTextLog rowln

+ boolean islnsert

+ void <init=(Database)

+ void <init>(Database, String)

# void readDDL{Session)

# void readExistingDatalSession)

+ boolean readlLoggedStatement(Session)
+ void processStatement(Session)

+ void close()

Figure 17.UML of ScriptReaderText class

The readLoggedStatement method parses each line of
text in the .log or .script files and forwards tlesult to the
processSatement method, which loads data into memory.

We changed theeadLoggedSatement method to make a
preprocessing: if it finds a record header (enddsstween $
and @) in the text |Iline, it extracts the
id_pending_row_received. Using this id, the client requests
to the central Synchronizer the related decodinyg &ich it
uses to decrypt the entire text line and to procedt
normal HyperSQL management. If the decoding key is
unavailable, the text line is temporarily discard#ds not
deleted if it was not received for communicatiomipem
with the Synchronizer).

b) Savetime

The class ScriptWriterText manages the write opmrat
in .log and .script files.

The  affected
writeRowOutToFile.

The former deals with building the string that whié
written into the text file (INSERT INTO ....) wich
corresponds to the in memory data. Table instance
contains the information about the table struct(teble
name, field names, types of data, constraints).elhe
values of fields are in an array Object. The SQLinsert is
written in a text buffer that is stored in the igtfile by the
method writeRowOutToFile. Because each table has an
id_pending_row_received column, we modified the
writeRow method to check if the row is owned or shared by
another user. In the latter case pending_row_received not
null), the custonwriteRowOutToFileCrypto method is used
instead of the  writeRowOutToFile method.
WriteRowOutToFileCrypto uses the parameter
id_pending_row received to query the related symmetric
encryption key from the Synchronizer, needed toydhe
whole buffer. The result is a hexadecimal sequenb&h is
prefixed by the below header  with the
id_pending_row_received.

methods are writeRow  and

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

195

« Send the encrypted row and the decoding keys to
receiver.
Because we store the serialized row, we havemiotoy

sScriptulriterl ext
ScriptWriterBase

+ RowQutpuTextlog rowQut

+ bye BYTES_LINE_SEP(]

+ bye BYTES_COMMIT ]

+ byte HY IES_INSEHIT_INI1O[]

I byre BYTES_VALUEE[]

+ byie BYTES_TERM[]

+ bye BYTES_DELETE_FROM(]
+ bye BYTES_WHERE])

+ byre DYTCS _SCQUCHCL(]

about columns data types.
The Synchronizer uses RMI to expose its services to
clients. The services are grouped in three intedfac
« Keylinterface with methods related to encryption
keys: depositKey, deleteDecriptingKey,
getDecriptingKeyByldPendingRow,
getPublicKeyByUser;
e Syninterface with methods for sharing the rows:

+ hyre RYTFS_SFQ.IFNGE_MIN[] sendRow, getPendingRowForUser, getAllUsers,
+ byze BYTES_C_ID_INIT[] resendRow; _

+ bye BYTES_C_ID_TESM]| * Registrationinterface to register and manage users:
+ by.e BYTES SCHEMA[] registerUser, SelectUserByld,

+ wioid ~=clinit={}

+ wnid <init=Natahase String honlean honlean honlean)
# void initBuffers()

# void wnteDataTerm()

# vuid wiileSessionldAndSchemz(Sessio)

selectUserByldAndPassword.

C. Performances

1) Read operations
The system uses decryption ordy start time, when

- void writeSchemaStatement(HsglMNameManageriHsglMame)
+ void writeLagSiatemen:(Session, String)
# void wnteRow(Session, Table, Objec:[])

records are loaded from the disk into the main nrgnteach
row is decrypted none (if it is owned by local npde just
once (if it is owned by a remote node), so thisgémal for

# void writeTablelnit(Takle)

+ void witelrsertStatement(Session. Tabla, Objact[])

+ woid writeDeleteStatement(Session, Table, Chject[])

+ void writeSequenceStatement(Session NumberSequence)
+ void witeCommitS:atemen:(Session)

# void finalize()

+ wioid wiiteRowCutToFile()

read operations. Each decryption implies an actedbe
remote Synchronizer to download the related derrgtey
and, eventually, the modified row.

2) Write operations

Write operations occur when a record is inserted /
updated into the db. There is no overload ungl thent,

2) Server side *
When a data owner adds or updates a row in thé loca
database, it needs to distribute this change tthalrelated
users. To do this, we put the cloud a central Sywgher
server that acts as a mailbox.
It uses a simple database with the following tables

At modification time, the owner (client side) has t

when online, explicitly synchronizes data with tbentral
server. At this moment, for each modified recola tlient
need to:
e Generate a new (symmetric) key

Encrypt the record

« Dispatch the encrypted data and the decrypting key

to the remote synchronizer

3) Benchmark

We wrote a test application that uses our modified
HyperSQL driver and interacts with the other clgethirough
Users: containing, among others, the id and publi®ur Synchronizer. It has these distinct activities:

key of each user; « Creation of database and sample tables

Pending Rows: it contains the rows that are < Population of tables with sample values
added/modified in the local database of the owner, * Sharing of a portion of data with another user
until they are delivered to destination. A unique ¢ Receipt of shared dossiers from other users

row_id is automatically assigned to each pending ¢ Opening of the newly created (and populated)
row. Other information is submission date, sender database

and receiver. The changed row is stored in The application receives three parameters:

encrypted form in field encrypted_row; e Number of dossiers

Decrypting keys: contains the keys that are used to « Number of clients involved in sharing

decrypt the pending rows. Other information is: « Percentage of shared dossiers
sender, receiver, expiry date, id_row. To minimize communication delay, the central
Synchronizer and the clients ran on the same campkior
testing purpose, it was sufficient to use only wlients (to
enable data sharing). The tests used a number ssial®
varying from 1,000 to 500,000. We tested the systéth
20% and 40% of shared dossiers.

The application was compared with an equivalent one

with the following differences:

Figure 18.UML of ScriptWriterText class

Serialize the row;

Generate a symmetric key to encrypt it;
Encrypt the row;

Encrypt the key by the public keys of receivers;

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

» It used the unmodified HyperSQL driver
¢ It did not share data with other clients

* When populating the database, it created the sarr
number of dossiers than the previous application
but, after benchmarking, it added the number of
shared dossiers to have the same final nhumber ¢

196

Benchmark (40% shared)

120,00%
100,00% f

[
80,00%

diff create + receive (perc)

.
£0.00% ~ difload

Owerhead

dossiers.

40,00%

20,00%

We benchmarked the system using single-table dsssie
of about 200 bytes, in two batteries of tests; ftrs with
20%, and the second with 40% of shared dossierghwh
numbered from 1,000 to 500,000. The results anesepted
by the graphs in Figures 19-21. It is worth notthgt the
overhead percentage of the modified solution rgpidl
decreases (with 100,000 dossiers it is around 18&bkr in
the first battery of tests (Figure 19), and eitimethe second
(Figure 20). In the tests, the total delay (loactreate +
populate + receive) stay linear in the number afsiirs and

0,00%

_—

0 100,000 200,000 300,000 400,000 500,000

Num. Dossiers

Figure 20.0Overhead when 40% of dossiers are shared

Total delay (load+create+populate+receive)

250
is limited, even with a huge number of dossierg\ffe 21).
Local results can be slightly altered by externsnts not 200
preventable (e.g., garbage collector).
» 150
D. Results z
The delay of the system is tighty bound to & 100
communications effort with the central Synchronizer
. . L . . 50
Computing overhead is limited to just one encryptjger
record at write time and no more than one decrgpper 0
record at read time. Since | use symmetric enagptihese 0 100,000 200,000 300,000 400,000 500,000

operations are very fast. The benchmark demonstihts
the delay is substantially concentrated in datalogeming,
while the subsequent use does not involve additidelays,
compared to the unmodified version.

Num Dossiers

Figure 21.Total delay

V. CONCLUSIONS ANDOUTLOOK

In this paper, we discussed the applicability of
outsourced DBMS solutions to the cloud and provitresl
outline of a simple yet complete solution for mangg
confidential data in public clouds.

We are fully aware that a number of problems rentain
be solved. A major weakness of any data outsourcing
scheme is the creation of local copies of data éfteas been
decrypted. If a malicious client decrypts data &imeln it
‘ stores the resulting plain-text data in a privateation, the
500,000 protection is broken, as the client will be avdiatn access
its local copy after being revoked. In [22], obfated web
presentation logic is introduced to prevent cligrdam
harvesting data. This technique, however, expotestext
data to cloud provider. The plain-text data manaige
always the weak link in the chain and any solutioost
choose whether to trust the client-side or the eseside. A
better solution [26] is to watermark the local daise to
provide tamper detection.

Another issue concerns the degree of trustwortkitnés
the participants. Indeed, untrusted Synchronizeeniolds
plain-text data; therefore it does not introduceadditional
Trusted Third Party (TTP) with respect to the dSohs
described at the beginning of the paper. Howevemeed to
trust the Synchronizer to execute correctly thetquals
explained in this paper. This is a determiningdathat our

Benchmark (20% shared)

120,00%
100,00% |'

80,00%

diff create + receive (perc)

60,00% < diffload

Overhead

40,00%

20,00%

0,00% Dl
0 100,000 200,000 300,000 400,000

Num. Dossiers

Figure 19.0verhead when 20% of dossiers are shared

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

technique shares with competing solutions andpatih an
interesting topic, it lies beyond the scope of fiaper.

In experiment phase, we introduced a simple saiutiio
row-level encryption of databases using IMDBs. dh de
used in the cloud to manage very granular accghssrin a
highly distributed database. This allows for streng
confidence in the privacy of shared sensitive data.

An interesting field of application is the use buginess)
cooperative environments, e.g., professional nedsvoin
these environments, privacy is a priority, but loemputing

(16]

17

—

(18]

resources don't allow the use of slow and complex

algorithms. IMDBs and our smart encryption, instead
achieve the goal in a more effective way.

REFERENCES

[1] E. Damiani and F. Pagano, “Handling confidentiatadan the
untrusted cloud: an agent-based approach,” Cloudpdting 2010,
pp. 61-67. Lisbon, 2009. IARIA.

[2] D. Pagano and F. Pagano, “Using in-memory encrygétdbases on
the cloud,” in press

[3] M. Armbrust, A. Fox, R. Griffith, Anthony D. JosepiRandy H.
Katz, Andy Konwinski, Gunho Lee, David A. Pattersofiriel
Rabkin, lon Stoica, and Matei Zaharia: “A view ¢dwd computing”,
Commun. ACM 53(4), pp. 50-58 (2010)

[4] C. Jackson, D. Boneh, and J.C. Mitchell: “ProtegtBrowser State
from Web Privacy Attacks”, 15th International WbWide Web
Conference (WWW 2006), Edinburgh, May, 2006.

[5] Philip A. Bernstein, Fausto Giunchiglia, Anastasikementsietsidis,
John Mylopoulos, Luciano Serafini, and llya Zaiteay “Data
Management for Peer-to-Peer Computing : A VisiofebDB 2002,
pp. 89-94

[6] Pierangela Samarati and Sabrina De Capitani di kdate “Data
protection in outsourcing scenarios: issues arettions”, ASIACCS
2010, pp. 1-14

[7]1 Nadia Bennani, Ernesto Damiani, and Stelvio Cimdafboward
cloud-based key management for outsourced datdbaSE&$SE
2010, draft

[8] Mikhail J. Atallah, Marina Blanton, and Keith B. iKken:
“Incorporating Temporal Capabilities in Existing K&anagement
Schemes”, ESORICS 2007, pp. 515-530

[9] Alfredo De Santis, Anna Lisa Ferrara, and Barba@shtci: “New
constructions for provably-secure time-bound higraal key
assignment schemes”, Theor. Comput. Sci. 407, Bg23D (2008)

[10] Antonio Albano, Giorgio Ghelli, M. Eugenia Occhiutand Renzo
Orsini: “Object-Oriented Galileo”, On Object-Oriext Database
System 1991, pp. 87-104

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, WilsonH§leh,
Deborah A. Wallach, Michael Burrows, Tushar Chandkadrew
Fikes, and Robert Gruber: “Bigtable: A Distribut8tbrage System
for Structured Data”, OSDI 2006, pp. 205-218

[12] Victor R. Lesser: “Encyclopedia of Computer Sci€nekh edition.
John Wiley and Sons Ltd. 2003, pp.1194-1196

[13] Ernesto Damiani, Sabrina De Capitani di Vimerc&tishil Jajodia,
Stefano  Paraboschi, and Pierangela  Samarati:;‘Balanc
confidentiality and efficiency in untrusted relatad DBMSs”,ACM
Conference on Computer and Comm. Security 20033{1.02

[14] Ernesto Damiani, Sabrina De Capitani di Vimercitario Finetti,
Stefano Paraboschi, Pierangela Samarati, and Sukljddia:
“Implementation of a Storage Mechanism for Untrds®2BMSs”,
IEEE Security in Storage Workshop 2003, pp. 38-46

[15] Sabrina De Capitani di Vimercati, Sara Forestifé3te Paraboschi,
and Pierangela Samarati: “Privacy of outsourced’dét Alessandro

(19]

[20]

[21]
(22]

(23]

[24]

(25]

(26]

[27]

(28]

[29]

(30]
(31]
(32]

(33]

(34]
(35]
(36]

[37]

Acquisti, Stefanos Gritzalis, Costos Lambrinouda&isd Sabrina De
Capitani di Vimercati: Digital Privacy: Theory, Tmwologies and
Practices. Auerbach Publications (Taylor and Fsa@ebup) 2007

Valentina Ciriani, Sabrina De Capitani di Vimercafiara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangsdanarati:
“Fragmentation and Encryption to Enforce PrivacyDiata Storage”,
ESORICS 2007, pp. 171-186

Richard Brinkman, Jeroen Doumen, and Willem JonKélsing
Secret Sharing for Searching”, in Encrypted Datacuse Data
Management 2004, pp. 18-27

Ping Lin and K. Selguk Candan: “Secure and PrivRegserving
Qutsourcing of Tree Structured Data”, Secure Datandement
2004, pp. 1-17

Valentina Ciriani, Sabrina De Capitani di Vimercafiara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierangsdanarati:
“Combining fragmentation and encryption to protpat/acy in data
storage”, ACM Trans. Inf. Syst. Secur. 13(3): (2010

Valentina Ciriani, Sabrina De Capitani di Vimerceafiara Foresti,
Sushil Jajodia, Stefano Paraboschi, and Pierai®geizarati: “Keep a
Few: Outsourcing Data While Maintaining Confidelityé,
ESORICS 2009, pp. 440-455

Miseon Choi, Wonik Park, and Young-Kuk Kim: “A spli
synchronizing mobile transaction model”, ICUIMC 3)@p.196-201

Henk C. A. van Tilborg: “Encyclopedia of Cryptoghap and
Security”, Springer 2005

lan T. Foster, Yong Zhao, loan Raicu, and Shiyong 1Cloud
Computing and Grid Computing 360-Degree ComparedRRCo
abs/0901.0131: (2009)

Hakan Hacigimus, Balakrishna R. lyer, Chen Li, aBdarad
Mehrotra: “Executing SQL over encrypted data in thetabase-
service-provider model”, SIGMOD Conference 2002,246-227

Dirk Dullmann, Wolfgang Hoschek, Francisco Javieér:-Martinez,
Ben Segal, Heinz Stockinger, Kurt Stockinger, anshd\ Samar:
“Models for Replica Synchronisation and Consisteritya Data
Grid”, HPDC 2001, pp. 67-75

Raju Halder, Shantanu Pal, and Agostino Cortesiat&kimarking
Techniques for Relational Databases: Survey, Gleagon and
Comparison”, in Journal of Universal Computer Sceernvol. 16 (21),
pp. 3164-3190

H. Garcia-Molina and K. Salem, “Main Memory Datab&&ystems:
An Overview,” |EEE Trans. Knowl. Data Eng. 4(6Q9P, pp. 509-
516

L. Bouganim and Y. Guo, “Database encryption,” imcfclopedia of
Cryptography and Security, Springer, 2010, 2ndi&ulit

E. Damiani, S. De Capitani di Vimercati, S. ForeS&ti Jajodia, S.
Paraboschi, and P. Samarati, “Key management folti-oser
encrypted databases,” StorageSS, 2005, pp. 74-83

D. Boneh and M. Hamburg, “Generalized Identity Rhsend
Broadcast Encryption Schemes,” ASIACRYPT, 2008 4%5-470

V. Goyal, A. Jain, O. Pandey, and A. Sahai, “Bouhd@phertext
Policy Attribute Based Encryption,” ICALP, 2008,./§¥9-591

A. Fiat and M. Naor, “Broadcast Encryption,” CRYPT®093, pp.
480-491

E. Damiani, S. De Capitani di Vimercati, S. Parabasand P.
Samarati, “Computing range queries on obfuscated, dédPMU,
2004

C. Pu and A. Leff, “Replica Control in DistributeBlystems: An
Asynchronous Approach,” SIGMOD, 1991, pp. 377-386

http://fen.wikipedia.org/wiki/In-memory_database.
Retrieved 2011-07-22

http://www.remote-dba.net/t_in_memory_cohesion_hgsd.
Retrieved 2011-07-22

www.hsqldb.org. Retrieved 2011-07-22

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

197



