
208

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Advancement Towards Secure Authentication
in the Session Initiation Protocol

Lars Strand

Norwegian Computing Center / University of Oslo
Oslo, Norway

Email: lars.strand@nr.no

Wolfgang Leister

Norwegian Computing Center
Oslo, Norway

Email: wolfgang.leister@nr.no

Abstract—The Digest Access Authentication method used in
the voice over IP signaling protocol, SIP, is weak. This authen-
tication method is the only method with mandatory support
and widespread adoption in the industry. At the same time,
this authentication method is vulnerable to a serious real-world
attack. This poses a threat to VoIP industry installations and
solutions. In this paper, we propose a solution that counters
attacks on this wide-spread authentication method. We also
propose a two-step migration towards a stronger authentication
in SIP. We add support for a Password Authenticated Key
Exchange algorithm that can function as a drop-in replacement
for the widely adopted Digest Access Authentication mechanism.
This new authentication mechanism adds support for mutual
authentication, is considered stronger and can rely on the same
shared password used by the digest authentication. A long-term
solution is to replace the authentication scheme in SIP with a
security abstraction layer. Two such security frameworks are in-
troduced, discussed and evaluated: the Generic Security Services
Application Program Interface and the Simple Authentication
and Security Layer, which both enable SIP to transparently
support and use more secure authentication methods in a unified
and generic way.

Index Terms—SIP, authentication, Digest Access Authentica-
tion, PAKE, SASL.

I. INTRODUCTION

Considering the growing market share for Voice over IP
(VoIP) technologies, VoIP services need to be stable and
secure for the benefit of both users and service providers.
Authentication methods are an important part of this and need
to be thoroughly examined. We base our current work on a
conference article [1], where we analyzed and implemented an
attack on the Digest Access Authentication used in the Session
Initiation Protocol (SIP) and proposed a correction to mitigate
this attack. Since there is a need for better authentication
methods in SIP, we add support for a security abstraction layer
in SIP [2] and propose a migration strategy towards a secure
authentication in SIP [3].

The importance of analyzing and improving the SIP au-
thentication methods comes from the fact that there has been
a steady increase in the number of VoIP users since 2002, as
well as a decrease in the number of PSTN installations [4].
With two billion users worldwide having access to the Internet
by the end of 2010 [5], the VoIP growth potential is huge. For
example, at the end of 2009, 29.1 % of the private land-line
phone market in Norway used VoIP.

VoIP is the emerging technology that will eventually take
over from the traditional Public Switched Telephone Network
(PSTN) [6] due to VoIP’s improved flexibility and function-
ality, such as improved sound quality (“HD sound”) using
wideband codecs like G.722 [7], instant messaging (IM),
presence, mobility support, and secure calls. VoIP also reduces
maintenance and administration costs since it brings conver-
gence to voice, video and data traffic over the IP infrastructure.

Although there exist several competing network protocols
that are capable of delivering VoIP, the Session Initiation
Protocol (SIP) [8] and the Real-time Transport Protocol (RTP)
[9] developed by the IETF have become the de facto industry
standard. These two protocols fulfill two different functions
– SIP is used for signaling, e.g., responsible for setting up,
modifying and tearing down multimedia sessions, while RTP
transports the actual media stream (voice). Although the SIP
protocol is flexible and rich in functionality [10], several
vulnerabilities and security attacks have been found [11]–[13].

Securing a SIP-based VoIP system has proven challenging
and the reasons are multi-faceted:

• The scale and complexity of the SIP protocol specifica-
tion, with primary focus on functionality rather than a
sound security design [14].

• SIP usage of intermediaries, expected communication
between nodes with no trust at all, and its user-to-user
operation make security far from trivial [8, page 232].

• A large number of threats against VoIP systems have been
identified [15]. Several security mechanisms for coun-
termeasures have been proposed, but no single security
mechanism is suited to address all these security threats
concerning VoIP and SIP [16], [17].

• Since the SIP and RTP protocols share the same infras-
tructure as traditional data networks, they also inherit the
security problems of data communication.

• VoIP services have strict requirements to the network
performance with respect to Quality of Service since it is
a duplex communication with low tolerance for latency,
packet loss and saturation. Introducing strong security
mechanisms might affect network performance [18].

PSTN is a mature and stable technology providing 99.999%
uptime [19], and users will expect VoIP to perform at similar



209

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service level. But with an increasing number of VoIP users,
VoIP will become a target for attackers looking for financial
gain or mischief. A clear threat taxonomy is given by the
“VoIP Security Alliance” [15] and is discussed by Keromytis
[20].

In VoIP, authentication tries to validate the identity of the
communication peers and to bind that identity to a subject
(peer). It must be stressed that the user’s phone is authenticated
rather than the user herself. In VoIP terminology, a subject
could be a User Agent (UA), such as a phone, identified
by a phone-number/username and IP-address/hostname pair,
denoted as an Address-of-Record (AoR). The authentication
in VoIP is therefore the assurance that a communicating entity,
the UA, is the one that it claims to be [21]. Equally important
for the UA is to establish the identity of the communicating
peer, i.e., the SIP server. If the client does not authenticate the
SIP server, it might risk to communicate and send content to
a hostile SIP server.

SIP supports several security services, and the RFC speci-
fication documents recommends their use. These security ser-
vices can provide protection for authentication, confidentiality,
and more. Yet, only one such security service is mandatory:
the SIP Digest Access Authentication (DAA) method [8, page
193]. In the EUX2010sec research project [22], we revealed,
in close collaboration with our project partners, that most VoIP
installations only use the mandatory, Digest Access Authen-
tication (DAA) method [23]. DAA is primarily based on the
HTTP Digest Access Authentication [24], and is considered
to be weak and vulnerable to serious real-world attacks [25].

One contribution of this paper is to present and analyze
the seriousness of a vulnerability we presented in our earlier
work – the registration attack [25]. We implement a real-world
attack, and propose a solution to the DAA that will counter this
vulnerability. Further, we introduce an authentication method
based on the Password Authenticated Key Exchange (PAKE)
[26], which provides mutual authentication based on a shared
secret, and can function as a drop-in replacement of the digest
authentication currently used. However, a more flexible au-
thentication method is desired. Different security requirements
may require different authentication mechanisms. Instead of
adding support for many different authentication mechanisms
in SIP, we introduce support for a security abstraction layer.
Two such security frameworks are introduced, discussed and
evaluated. The Generic Security Services Application Pro-
gram Interface (GSS-API) [27] and Simple Authentication
and Security Layer (SASL) [28], which both enables SIP
to transparently support and use more secure authentication
methods in a unified and generic way.

The rest of the paper is organized as follows: Related work
and the current state of authentication in SIP is given in
Section II, and show our method in Section III. We explain
and implement the registration attack, and propose a solution
on how to counter the attack in Section IV. In Section V
we show how a modified PAKE can be used to add mutual
authentication in SIP. Support for the security abstraction
layers GSS-API and SASL is added, discussed and evaluated

in Section VI. We present the conclusion and future work in
Section VIII.

II. STATE OF KNOWLEDGE

The DAA is currently the most common authentication
mechanism for SIP. DAA is simple, but rather insecure. It
is the only authentication mechanism which support in SIP is
mandatory [8, Section 22]. DAA uses the MD5 hash function
and a challenge-response pattern, and relies on a shared secret
between client and server within a SIP domain [24]. DAA
is performed during the SIP REGISTER handshake between
the UA and the SIP server, as depicted in messages 1-3 and
6 in Fig. 10. The UA receives a nonce value from the SIP
server, computes a digest hash value over the nonce, the shared
secret and some other SIP header values, and send it to the
SIP server. The SIP server computes the same digest hash.
If both digests are identical, the UA is authenticated. The
DAA is weak and vulnerable to a serious real-world attack, as
described in Section IV-A.

Based on the DAA, Undery [29] proposed a more flexible
use of variables protected by the digest. His paper addresses
the shortcomings of DAA and suggests to allow the server to
decide which headers it requires to be included and protected
by the digest computation. Unfortunately, his approach does
not require specific headers fields to be included. His approach
is therefore vulnerable to the same vulnerability presented and
implemented in this paper.

Yang et al. [30] also conclude that DAA is weak. They
argue that, since DAA is vulnerable to an off-line password
guessing attacks, a more secure authentication method is
required. They propose an authentication method based on
Diffie-Hellman. Unfortunate, they do not discuss nor add any
additional SIP headers in their new authentication scheme.
Therefore, their solution is also vulnerable to the registration
attack implemented in this paper.

Secure MIME (S/MIME) [31] is an authentication mech-
anism presented in the SIP core specification document
RFC3261 [8]. S/MIME intends to achieve end-to-end authen-
tication between UAs. The entire SIP message is encapsulated
in a specific SIP message using MIME, which is signed and
optionally encrypted. The receiving UA checks whether the
sending UA’s certificate is signed by a trusted authority. Since
S/MIME depend on end-user certificates, the UAs must sup-
port multiple root certificates since no consolidated certificate
authority exists. Additionally, certificate handling issues, such
as revocation and renewal, complicate the use of certificates.
There has been rather limited industry support for S/MIME.

Transport Layer Security (TLS) [32] support for SIP, called
“Secure SIP” and denoted “SIPS”, has gained some industry
momentum. TLS is designed to make use of TCP to provide a
protected end-to-end communication between two endpoints.
The application data, here SIP, are encrypted and integrity-
protected. The communicating endpoints authenticate using
digital certificate, usually X.509 certificates, and thus require
a public key infrastructure (PKI). TLS does not offer end-to-
end confidentiality and integrity protection of SIP messages,



210

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

since the TLS connection must be terminated and initiated for
each hop between intermediate SIP servers. The use of TLS
also restricts SIP to use TCP as transport protocol. By using
TLS, SIP relies on a lower communication layer protocol to
enforce security mechanisms.

Two other authentication methods have emerged within the
Internet Engineering Task Force (IETF):

1) The P-Asserted Identity [33] is intended to work within
a trusted environment. An unprotected SIP header is ap-
pended by the UAs SIP server that informs the receiving
SIP server that the identity of the UA has been checked
and thus can be trusted. However, since the SIP header
is sent in clear rather than protected by cryptography
methods, it can easily be removed by an attacker without
any of the communicating peers noticing this.

2) The SIP Strong Identity [34] introduces a new SIP ser-
vice, the “authentication service”, which signs a hash over
selected SIP header values, and includes the signature
as a SIP header along with a URI that points to the
sender’s certificate. The receiver computes the same hash
and compares the results. However, using this method,
only the client is authenticated and an attacker can remove
these headers without implications.

Note that both “P-Asserted Identity” and “SIP Strong Iden-
tity” rely on a successful DAA authentication to be applicable.
These are also applied by the SIP servers rather than the clients
themselves, and are thus only providing indirect authentication
of the client since the server is authenticating on behalf of the
client. None of these authentication methods have seen any
widespread deployment yet [14].

Palmieri et al. [35], [36], dismiss DAA as a usable authenti-
cation method, and instead craft a new authentication schema
with digital signatures based on public-key encryption. But
since they rely on certificates, their solution suffers under
similar certification handling issues as S/MIME and TLS.
They also admit that relying on PKI is both difficult and
costly to implement. Liao et at. [37], propose an improved
authentication in SIP with self-signed public keys on elliptic
curves. However, Liao’s proposal uses smart-cards to store
authentication data and rely on a trusted third party [38].

The H.323 recommendation for the VoIP protocol from the
International Telecommunication Union (ITU) has failed to
see widespread adoption by industry players, and is consid-
ered abandoned in favor of SIP/RTP [10]. The authentication
methods in H.323, specified in H.235 [39], [40] uses well
established security mechanism, like certificates, and Diffie-
Hellman key exchange, to enforce authentication. Further
analysis is needed to see whether the H.235 standard protects
the signaling better than SIP.

The Inter-Asterisk eXchange (IAX) [41], also published by
the IETF, establishes a competing protocol to SIP/RTP. IAX
has several security properties that are better than SIP. By
multiplexing channels over the same link and transporting both
signaling and media over the same port, enforcing security
mechanisms is easier. IAX supports two authentication meth-
ods: 1) MD5 Message Digest authentication [42] computed

Fig. 1: Three different usage scenarios where authentication
in SIP is desired.

over a pre-shared secret and a challenge (nonce), or 2) using
RSA public-key encryption on the challenge. In both methods,
the nonce value is the only protocol parameter that is integrity
protected by the authentication. Future work needs to inves-
tigate whether the IAX authentication method is adequately
secure.

The SIP protocol needs an authentication mechanism that
avoids the security vulnerabilities the currently used DAA has.
A replacement authentication mechanism should preferably
not rely on PKI, have support for strong mutual authentica-
tion, and support all three scenarios listed in the upcoming
Section III.

III. METHOD AND CASE STUDY

In Norway, both private companies and public authorities
are migrating from PSTN to VoIP [23]. To create suitable
scenarios we study the VoIP installation of three companies
in Norway; one medium sized company with 150 employees,
and two larger companies with 3000 and 4700 employees.
We have gathered several of these VoIP configurations and
setups, and replicated the installations in our test lab [43].
In these companies, most of the employees have their own
VoIP phone, called a User Agent (UA). All VoIP servers run
the Linux operating system with the open source telephony
platform Asterisk [44]. We found in these configurations that
the digest authentication is the only authentication method for
the UAs.

In the following paragraphs, the numbers in parentheses
refer to the numbers in Fig. 2, where the workflow in our
method is shown.

In order to gain knowledge of the SIP protocol we use the
specification documents (1), here the SIP standard. Then, we
analyze VoIP network traffic going through the test lab (5). We
have implemented two VoIP setups based on configurations
from our industry partners ((2) and (3)). The network traffic
is intercepted and saved to file using the network tool tcp-
dump (4). The network traffic is then analyzed off-line using
the packet analyzer, Wireshark (5). An example of such an
analysis is shown in Fig. 3.

As an additional input we consider threats given by [15] and
given in earlier work, such as a SIP attack analyzed by Ha-
galisletto and Strand [25], using the protocol analyzer PROSA
(6). We explain this attack in more detail in Section IV-A,
and implement and execute the attack using the network
tool NetSED (7) as shown in Fig. 7. Based on the security
requirements (9) obtained from the SIP specification, we then
checked if the authentication method (10) was compromised



211

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2: Workflow for analysis of the SIP authentication method.

Fig. 3: Network analysis using the network tool Wireshark.

by the real-world attack. After careful analysis of the SIP
headers we found that the SIP registration attack could be
countered by a modification of the SIP authentication method
(8).

We identify three scenarios where identity in SIP needs to
be handled, as depicted in Fig. 1: Scenario I between the UA
and the local SIP server; Scenario II between SIP servers; and
Scenario III end-to-end.

Scenario I between the UA and the local SIP server is
relevant when the UA comes online and before any outgoing
calls can be placed. Then, the UA must register itself to a local
SIP server. During the SIP register handshake, the server usu-
ally challenges the UA to authenticate. Before placing a call
(sending a SIP INVITE), the UA might be challenged again
by the server to authenticate. The most common authentication
method used between UA and server today is the DAA.

Scenario II handles the authentication between SIP servers
to achieve trust between SIP servers. It is not desirable to have

SIP traffic handled by an unknown or untrusted SIP server that
might have malicious intent. However, since most SIP servers
today use some kind of SIP peering [6], the relationships
between servers are often static and pre-defined. Therefore
the identities between SIP servers are often predetermined by
other security mechanisms than what are offered by SIP (like
IPSec, TLS etc.).

Scenario III is about end-to-end authentication, which de-
termines the identity of both the caller and the callee across
different SIP domains. This is of particular importance and
not easily attained in SIP. There is an increased threat and fear
for both VoIP phishing and SPIT (Spam over Internet Tele-
phony), that might seriously affect SIP-based VoIP services.
By enforcing end-to-end authentication in SIP, these threats
might be mitigated or prevented.

We list authentication mechanisms in SIP and their support
in these three SIP scenarios in Table I on the facing page.

IV. DIGEST ACCESS AUTHENTICATION

The SIP Digest Access Authentication (DAA) [24] is cur-
rently the most common authentication scheme for SIP. Other
authentication schemes have emerged, but DAA is the only
mandatory authentication scheme [8, Section 22]. DAA uses
a challenge-response pattern, and relies on a shared secret
between client and server. Since the DAA relies on a shared
secret and is only meaningful for a specific realm, its usage
is limited to Scenario I.

SIP is heavily influenced by the HTTP request-response
model, where each transaction consists of a request that
requires a particular response. The SIP messages are also
similar in syntax and semantics to both HTTP and SMTP
[10]. A SIP message consists of several headers and a body.
The SIP header fields are textual, always in the format
<header_name>: <header_value>. The header value
can contain one or more parameters. We show an example SIP
header message in Fig. 5.

Any SIP request can be challenged for authentication. We
show an example SIP DAA handshake in Fig. 4, and refer to
the protocol clauses with a number in parentheses. The initial
SIP REGISTER message (1) from Alice is not authorized
and must be authenticated. The SIP server responds with a



212

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: List of SIP authentication mechanisms and their support.

Supported authentication scenarios Supported SIP methods
Authentication mechanisms scenario I scenario II scenario III REGISTER INVITE
Digest Access Authentication (DAA) yes no no yes yes
Secure MIME (S/MIME) no no yes yesa yes
Secure SIP (SIPS) using TLS yes yes nob yes yes
P-Asserted Identity no yes no no yesc

SIP Strong Identity no yes no no yesd

Password Authenticated Key Exchange (PAKE) yes no no yes yes
Generic Security Service API (GSS-API) yes yes yes yes yes
Simple Authentication and Security Layer (SASL) yes yes yes yes yes
a Not intended to be used with SIP REGISTER, however there are no constrains in the SIP specification for using S/MIME in

addition to DAA.
b SIPS only offers hop-by-hop confidentiality and authentication protection and thus no end-to-end protection.
c Does not provide an authentication method per se, but provide identity authentication in a trusted environment.
d The authentication service is handled by intermediate SIP servers to verify UAs across SIP domains.

Fig. 4: The SIP Digest Access Authentication method during a SIP REGISTER transaction.

401 Unauthorized status message (3) which contains a
WWW-Authenticate header with details of the challenge,
including a nonce value. The client computes the required
SIP digest that is embedded in (4) as an Authorization
header. The SIP server, upon receiving the Authorization
header, must perform the same digest operation, and compare
the result. If the results are identical, the client is authenticated,
and a 200 OK message (6) is sent.

The SIP DAA is almost identical to the HTTP digest access
authentication [24]. As we will show later, too few attributes
(SIP header values) are included in the digest computation,
thus leaving some values unprotected. Formally, the DAA is
expressed as follows:

HA1 = MD5(A1)

= MD5(username : realm : password)

HA2 = MD5(A2) = MD5(method : digestURI)

response = MD5(HA1 : nonce : HA2 )

In this context, A1 is the concatenated string of Alice’s
username , the realm (usually a hostname or domain name)
and the shared secret password between Alice and the server.
For A2, the method is the SIP method used in the current
transaction, in the above example that would be REGISTER.
In a REGISTER transaction the digestURI is set to the URI

Fig. 5: The only attributes included in the digest response
(blue) are depicted in green.

in the To:-field. The digest authentication response is the
hash of the concatenated values of HA1 , the nonce received
from the server, and HA2 . A SIP REGISTER message with a
computed digest embedded in the Authorization header
is shown in Fig. 5. DAA provides only reply protection due to
the nonce value and one-way message authentication. There
is no encryption of the content, nor confidentiality support,
except the shared secret password between client and server.
All messages are sent in clear. DAA only works within a local
domain so cross-domain authentication is not supported, which



213

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6: The attacker Charlie can modify the Contact header
value, and thereby have all Alice’s calls redirected to him.

implies that end-to-end authentication is not supported. There
is no provision in the DAA for the initial secure arrangement
between a client and server to establish the shared secret.
However, DAA has low computation overhead compared to
other methods [18].

A. Attack on Digest Access Authentication

When a UA comes online it registers its contact point(s) to
a location service. Contact points are the preferred methods
a user can be contacted by, for example using SIP, mail,
or IM. Usually, only a SIP URI contact method is present.
The location service is responsible to redirect SIP requests
(for VoIP calls) to the correct SIP end-point. For example, an
incoming SIP call destined to alice@CompanyA.org does
not contain information about which hostname or IP-address
Alice’s phone can be reached. Therefore, a SIP proxy will
query the location service to receive Alice’s phone’s hostname
or IP-address, and then forward the call to this address.

The binding of Alice’s phone to a hostname or IP-address
is done during the REGISTER transaction, as depicted in
Fig. 4. Before the binding, or registration, the SIP server
should ask the client to authenticate itself, as explained in the
previous section. After a successful authentication, the client’s
hostname or IP-address is registered. A re-registration is
normally done at regular intervals. This registration is repeated
usually every 3-15 minutes, depending on the configuration.
The client’s preferred contact methods, including hostname or
IP-address, is carried in the SIP header Contact, as depicted
in Line 5 in Fig. 5. However, this SIP header value is sent in
clear, and is not protected by DAA. Thus, the registration is
vulnerable to a man-in-the-middle attack [25].

If an attacker modifies the hostname or IP-address in the
contactURI header value during a REGISTER phrase, as
depicted in Fig. 6, all requests, and hence calls, to the client
will be diverted to a hostname or IP-address controlled by an
attacker. Here, Alice cannot perceive that she is unreachable.
An attacker can modify Alice’s REGISTER session in real-
time using NetSED [45] as depicted in Fig. 7. The SIP

Fig. 7: The network packet stream editor NetSED modifies
network packets in real time based on a regular expression (in
red).

Fig. 8: Host name before (green) and after a successful attack
(red), which makes Asterisk believe that Alice’s phone (with
number 1001) is reachable at an IP-address of the attacker’s
choice.

server (Asterisk), will not detect nor suspect that anything is
wrong, and register Alice’s phone number with the attackers
IP address, as seen on Asterisk’s terminal in Fig. 8. When
Asterisk receives a call to Alice, the call will be forwarded to
the attackers registered IP address. If this vulnerability is left
incorrect, it constitutes a fatal flaw.

B. Improving the Digest Access Authentication

The SIP digest authentication is weak, which is stated in
both the SIP specification [8], and the digest specification [24].
Specifically, DAA only offers protection of the value in the
To header called the Request-URI and the method , but no
other SIP header values are protected.

A minor modification of DAA can counter the registration
hijack attack [25], which is caused by having too few SIP
header parameters protected by the digest. Since an attacker
can modify and redirect all requests, we protect the header
by including the Contact header value in the digest. By
including the Contact value, which we name contactURIs
in the digest, we effectively counter the registration hijack
attack.



214

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 9: The computation overhead for 100.000 iterations for
original DAA, our modified DAA, and modified DAA with
PBKDFv2 for both MD5 and SHA1.

We define HA0 with contactURIs . The new digest com-
putation algorithm is as follows:

HA0 = MD5(A0) = MD5(contactURIs)

HA1 = MD5(A1)

= MD5(username : realm : password)

HA2 = MD5(A2) = MD5(method : digestURI )

response = MD5(HA0 : HA1 : nonce : HA2 )

Weaknesses in the MD5 hash have been found. In particular
we mention collision attacks where two different input values
produce the same MD5 hash [46]. This weakness is not known
to be exploitable to reveal a user’s password [47]. Nonetheless,
a stronger hash function, like SHA1 [48], is recommend.

We implemented and tested our modified DAA by using the
Python Twisted [49] networking engine, using both MD5 and
SHA1. According to our test, the computation overhead by
including HA0 with the ContactURIs is minimal, as shown
in Fig. 9. The difference between the original DAA and our
modified DAA with MD5 for 100.000 authentication requests
on a 2.2Ghz Intel CPU, is only 0.55 seconds, a negligible
amount.

A modified DAA means a modification of the SIP standard.
Since the SIP standard has seen widespread industry adoption,
it can be difficult to re-deploy a non-standardized SIP DAA.
To prevent a modification of the SIP standard, we can use the
DAA parameter auth-param to store our modified digest
response. The parameter auth-param is reserved “for future
use” [24, page 12], and can be a part of the Authorization
header.

SIP devices that do not support the updated and more secure
digest, can and will ignore this value, and use the original
DAA for authentication. However, we cannot recommend this
approach, since an attacker could remove this value and force
the usage of the original standardized DAA. We would prefer

to modify the DAA digest computation to force an upgrade to
the new improved DAA method, instead of compromising on
security.

C. Using a Password-Based Key Derivation Function

The improved DAA, described above, is still vulnerable
to dictionary-based off-line (brute-force) attacks. The attacker
can intercept the message exchange, and do an exhaustive
(brute-force) search for the password. To increase the cost
of such search, we add support for a key derivation technique
with the purpose of increasing the cost of producing the digest
from the shared secret, thereby also increasing the difficulty
of the brute-force attack.

We introduce support for “Password Based Key Derivation
Function version 2” (PBKDFv2) as specified by Kaliski [50]
from RSA Laboratories. PBKDFv2 works by using a key
derivation function (KDF ) on the password (P ) and salt (S )
to derive the key (DK ) as:

DK = KDF(P ,S )

When applied to the DAA, P is the shared secret and S is
the nonce issued from the SIP server. The DK is derived by
these required steps:

1) The maximum length dkLen of the derived key DK is
given as:

dkLen > (232 − 1) ∗ hLen

where hLen denotes the length in octets of the pseudo-
random function output, which is 16 for MD5 and 20 for
SHA-1. We implement and benchmark both MD5 and
SHA-1. However, the use of MD5 is not recommended
due to weaknesses and attacks found [51].

2) We let l be the number of hLen-octet blocks in the
derived key, rounding up, and r the number of octets
in the last block:

l =

⌈
dklen

hLen

⌉
r = dkLen− (l − 1) ∗ hLen

3) For each block of the derived key, the function F is
applied. The function F take password P , salt S , the
iteration count c and the block index to compute the
block:

T1 = F (P, S, c, 1)

T2 = F (P, S, c, 2)

...

Tl = F (P, S, c, l)

Here, function F is defined as the exclusive-or sum of the
first c iterates of the underlying pseudo-random function
PRF (using HMAC-SHA1 [52]) applied to the password
P and the concatenation of the salt S and the block index
i :

F (P, S, c, i) = U1 ⊕ U2 ⊕ ...⊕ Uc



215

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where:

U1 = PRF (P, S ‖ INT (i))
U2 = PRF (P,U1)

...

Uc = PRF (P,Uc−1)

Here, INT (i) is a four-octet encoding of the integer i ,
most significant octet first.

4) Then the blocks are concatenated and the first dkLen
octets is extracted to produce a derived key DK :

DK = T1 ‖ T2 ‖ ... ‖ Tl < 0..r − 1 >

5) The derived key DK is returned base64-encoded [53].
We implemented and tested DAA with PBKDFv2 with c

iterations set to the recommended value of 1000. Input to the
PBKDFv2 is the password (shared secret) and the nonce from
the SIP server. The new modified DAA replaces the password
with the derived key DK from PBKDFv2, thus a modified
DAA algorithm is as follows:

HA0 = MD5(A0) = MD5(contactURIs)

HA1 = MD5(A1)

= MD5(username : realm : DK )

HA2 = MD5(A2) = MD5(method : digestURI )

response = MD5(HA0 : HA1 : nonce : HA2 )

As shown in Fig. 9, the computation overhead using
PBKDFv2 is significant compared to the original DAA. The
result is as expected, since each DAA computation using
PBKDFv2 calls a HMAC function 1000 times. This increase
the cost of an exhaustive brute-force search for the shared
secret used by DAA, without a significant impact of deriving
individual DK used by a UA to authenticate with DAA.

While DAA with PBKDFv2 reduces much of the risk of
a brute-force dictionary attack, it does not provide us with
means to authenticate the SIP server.

V. PASSWORD AUTHENTICATED KEY EXCHANGE

In the following, we discuss how to add support for a variant
of PAKE denoted as “Key Agreement Method 3” (KAM3) as a
cryptographic protocol [26, page 17]. PAKE has the following
attractive features: 1) PAKE provides mutual authentication
between UA and the SIP server, and thus a rogue SIP server
can not claim that the authentication succeed without knowing
the shared password. PAKE assures the UA that the SIP server
knows the UA’s encrypted password. 2) Reuse of the shared
password used by DAA as the UA’s credential, which enables
our approach to easily replace DAA used within a local SIP
domain (scenario I). 3) PAKE offers strong protection of
the shared secret if the communication is eavesdropped, that
prevents brute-force attacks, including dictionary-based off-
line attacks, to which the DAA is vulnerable to.

Our approach follows the work of Oiwa et al. [54]. They
use KAM3 to introduce a stronger authentication in HTTP and
their initial design and specification is submitted to the IETF as

an Internet Draft [55]. We have adapted their approach to SIP,
since SIP closely resembles HTTP in both message structure
and flow, and we need to prevent the REGISTER hijack attack
presented earlier [1].

In KAM3, the UA and the SIP server compute cryptographic
keys based on the shared password. These keys are exchanged,
and a shared session secret is computed based on these keys.
Each peer sends then a hash value computed of the session
secret and some other values, to the requesting peer. The
receiving peer computes the same hash value, and compares it
with the received hash value. If these are identical, the sending
peer is authenticated.

PAKE supports several authentication algorithms, which
differ in their underlying mathematical groups and security
parameters [55]. The only mandatory supported authentication
algorithm, the iso-kam3-dl-2048-sha256, uses the 2048-bit
discrete-logarithm defined in RFC3526 [56] and the SHA-256
hash function.

A. Initial requirements

In the following section, we let q an odd prime integer defin-
ing the number of elements in F (q) which is a representation
of a finite group. We let g the generator of a subgroup of r
elements in F (q). The one-way hash function is denoted as
H .

Before the authentication starts, username and password
must be set and configured. We compute a weak secret π
used by the client as a one-way hash of the values realm ,
username and password :

π = H(realm, username, password)

Here, realm is the protection domain where SIP authentication
is meaningful for a set of username and password . The server
does not need to store the shared password directly, only a
specially encrypted version J(π), where J is the password
verification element derivation function defined as:

J(π) = gπ mod q

B. PAKE message exchange

We need to extend the current SIP REGISTER handshake
by one extra round-trip of SIP messages between the UA
and the SIP server. These two extra messages are depicted
in blue and numbered (4) and (5) in Fig. 10. A more detailed
specification is given in the following paragraphs, where the
numbers refer to the protocol clauses depicted in Fig. 10.

The UA registers to a SIP location service (SIP server).
The initial SIP REGISTER message (1) from the UA is
not authorized, and must be authenticated. The SIP server
responds with a 401 Unauthorized status message (2),
which contains a WWW-Authenticate header with details
of the challenge, including realm and algorithm. The UA
constructs a cryptographic value wa generated from a random
integer sa:

wa = gsa mod q



216

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 10: SIP REGISTER message flow with mutual authenti-
cation security using PAKE.

This value is sent in a new SIP REGISTER message (3) to
the SIP server. The SIP server proceeds to generate and send
another cryptographic value wb, which is generated from J(π),
the received value wa and a random integer sb:

wb = (J(π)× wH(1,wa)
a )sb mod q

At the next step, each peer computes a session secret z. The
UA derives z based on π, sa, wa and wb:

z = w
(sa+H(2,wa,wb))/(sa∗H(1,wa)+π) mod r
b mod q

Likewise, the SIP server derives z based on sb, wa and wb
using the following function:

z = (wa × gH(2,wa,wb))sb mod q

The session secret z matches only if both peers have used the
secret credentials generated from the same shared secret. The
above equations are directly derived from the PAKE HTTP
authentication specifications [55]. The next step is to validate
the value of z at the communicating peer.

The UA sends a third SIP REGISTER message (5) and
includes the value oa which is a hash value computed as:

oa = H(4, wa, wb, z, contactURIs)

Here, contactURIs is the value of the UA’s Contact SIP
header value. This value is integrity-protected to prevent
register hijacking attacks as presented in [1]. The SIP server,
upon receipt of oa, performs the same hash operation, and
compares the results. If these results are identical, the UA is
authenticated. The SIP server then sends a final message (6),
with the value ob computed as:

ob = H(3, wa, wb, z, contactURIs)

When the UA receives ob, it verifies this value by computing
its hash value. If the results are identical, the SIP server is
authenticated to the UA. After a complete message exchange,
the UA is authenticated to the SIP server, and the SIP server
has been authenticated to the UA.

C. SIP message support for PAKE

We embed the cryptographic values derived in the previous
section as base64-encoded [53] SIP header values. We re-use
the SIP DAA headers to carry PAKE authentication data, so
that PAKE can be used as a drop-in replacement for DAA.
A SIP REGISTER message with a DAA Authorization
header is depicted in Fig. 15. Again, we refer to the protocol
clauses with a number in parentheses as depicted in Fig. 10.

The UA first sends a SIP REGISTER without any au-
thentication credentials (1). The SIP server responds with a
401 Unauthorized status message (2), which contains a
WWW-Authenticate header with header values realm and
algorithm:

SIP/2.0 401 Unauthorized
WWW-Authenticate: Mutual realm="asterisk",
algorithm="iso-kam3-dl-2048-sha256"

The UA then computes wa and sends it to the SIP server
using a new SIP REGISTER message (3), with the required
values embedded in the Authorization header:

SIP/2.0 REGISTER
Authorization: Mutual user="alice",
algorithm="iso-kam3-dl-2048-sha256",
wa="Q29tcHV0ZWQgd2E...ljaCBcyBsb25nCg=="

The next required values in the authentication mechanism
wb, oa and ob are embedded and sent using these two SIP
headers.

VI. SECURITY PROGRAMMING INTERFACES

A modified PAKE authentication can more easily replace
the current digest (DAA) authentication used in SIP, since
they both rely on a shared secret and use the same SIP
headers. PAKE also introduces a stronger authentication than
DAA. However, a more flexible authentication mechanism is
desired. Different VoIP scenarios require different security
requirements, and the communicating peers should be able
to negotiate the best possible authentication mechanism sup-
ported.

Instead of adding numerous different authentication mech-
anisms to SIP based on different security requirements, it
is desirable to keep the changes to the SIP standard to a
minimum. The industry might also be reluctant to adopt
immature and non-standardized security services, like different
(new) authentication mechanisms. Adding support to a security
programming interface will require only small changes to the
SIP standard.

A security programming interface provides a generic inter-
face for application layer protocols like SIP, with a layer of
abstraction for different security services like authentication,
integrity or confidentiality. Using a security programming
interface, an application does not need to support or implement
every authentication method, but use the provided security
API [57]. Support for two security programming interfaces,
the “Generic Security Services API” (GSS-API) and “Simple
Authentication and Security Layer” (SASL), are added to SIP.



217

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11: The GSS-API interface in SIP.

Both are developed by the IETF, have been extensively tested,
and are now classified as mature standards by the IETF.

A. Generic Security Services API

The GSS-API is not a communication protocol in itself, but
relies on the application to encapsulate, send, and extract data
messages called “tokens” between the client and server. The
tokens’ content are opaque from the viewpoint of the calling
application, and contain authentication data, or, once the
authentication is complete, portion of data that the client and
server want to sign or encrypt. The tokens are passed through
the GSS-API to a range of underlying security mechanisms,
ranging from secret-key cryptography, like Kerberos [58], to
public-key cryptography, like the Simple Public-Key GSS-API
Mechanism (SPKM) [59]. The GSS-API interface to SIP is
depicted in Fig. 11. For an application, the use of the GSS-
API becomes a standard interface to request authentication,
integrity, and confidentiality services in a uniform way. How-
ever, GSS-API does not provide credentials needed by the
underlying security mechanisms. Both server and client must
acquire their respective credentials before GSS-API functions
are called.

To establish peer entity authentication, a security con-
text is initialized and established. After the security con-
text has been established, additional messages can be ex-
changed, that are integrity and, optionally, confidentially
protected. To initiate and manage a security context, the
peers use the context-level GSS-API calls. The client
calls GSS_Init_sec_context() that produces a “out-
put token” that is passed to the server. The server then calls
GSS_Accept_sec_context() with the received token
as input. Depending on the underlying security mechanism,
additional token exchanges may be required in the course
of context establishment. If so, GSS_S_CONTINUE_NEEDED
status is set and additional tokens are passed between the client
and server until a security context is established, as depicted
in Fig. 14.

After a security context has been established, per-message
GSS-API calls can be used to protect a message by adding
a Message Integrity Code (MIC) with GSS_GetMIC() and

verifying the message with GSS_VerifyMIC(). To encrypt
and decrypt messages, the peers can use GSS_Wrap() and
GSS_Unwrap(). Thus, two different token types exist:

1) Context-level tokens are used when a context is estab-
lished.

2) Per-message tokens are used after a context has been
established, and are used to integrity or confidentiality
protect data.

In addition to send and receive tokens, the application is
responsible to distinguish between token types. This is neces-
sary because different tokens types are sent by the application
to different GSS-API functions. But since the tokens are
opaque to the application, the application must use a method
to distinguish between the token types. In our solution, we use
explicit tagging of the token type that accompanies the token
message.

1) SIP message support for GSS-API: When a SIP client
is authenticated to a server using DAA, the authentication
handshake data is encapsulated in the WWW-Authenticate
header from server to client, and the Authorization
header from client to server. We reuse these headers for
GSS-API support, and instead of encapsulate DAA data,
we send the GSS-API tokens. An example of both DAA
Authorization header and the new Authorization
header with GSS-API data is depicted in Fig. 12.

During the initialization of a security context it is nec-
essary to identify the underlying security mechanism to be
used. The caller initiating the context indicates at the start
of the token the security (authentication) mechanism to be
used. The security mechanism is denoted by a unique Object
Identifier (OID). For example, the OID for the Kerberos
V5 mechanism is 1.2.840.113554.1.2.2. However, the
initiating peer cannot know which security mechanism the
receiving peer supports. If an unsupported “mech type” is
requested, the authentication fails. The GSS-API standard
resolves this by recommending to manually standardizing on
a fixed “mech type” within a domain. Since SIP addresses are
designed to be global [6], and not confined to a local domain,
a GSS-API negotiation mechanism is required. The SPNEGO
is such a GSS-API negotiation mechanism.

The “Simple and Protected GSSAPI Negotiation Mecha-
nism” (SPNEGO [60] is a pseudo security mechanism that
enables peers to negotiate a common set of one or more
GSS-API security mechanisms. The GSS-API stack with SP-
NEGO is shown in Fig. 13. The client sends a prioritized
list of supported authentication mechanisms to the server.
The server then chooses the preferred authentication method
based on the received list from the client. The client initiates
GSS_Init_sec_context() as with an ordinary GSS-API
security mechanism, but requests that SPNEGO is used as
the underlying GSS-API mechanism (“mech type”). The SP-
NEGO handshake between client and server is communicated
by sending and receiving tokens. After the handshake, the
client and server initiate and set up a security context (au-
thentication) using the agreed GSS-API security mechanism.



218

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 12: A SIP REGISTER message with the original DAA Authorization header to the left, and the same header carrying
GSS-API data to the right.

Fig. 13: The GSS-API protocol stack with the SPNEGO
negotiation mechanism and underlying security mechanisms.

2) SIP authentication using GSS-API and SPNEGO: When
discussing PAKE authentication earlier, we added one round-
trip of SIP messages between the UA and the SIP server.
When using GSS-API with the SPNEGO, the number of
SIP messages going back and forth depends on the under-
lying authentication mechanism. We therefore extend the SIP
REGISTER handshake with an arbitrary number of round-
trips, until the underlying authentication mechanism has com-
pleted communication.

In the following paragraphs, the numbers in parentheses
refer to the numbers in Fig. 14. When a client comes online
and registers itself to a “location service” (SIP server), it does
so by sending a SIP REGISTER message (1). We define the
token type in the variable ttype. In the following messages,
the ttype is set to “context” indicating that these tokens are
context-level tokens. The first message (1) does not contain
any Authorization header. The server responds with an
empty WWW-Authenticate header (3):

REGISTER SIP/2.0
WWW-Authenticate: GSSAPI ttype="context"

token=""

The client then calls GSS_Init_sec_context() with
SPNEGO as underlying GSS-API mechanism to negotiate
a common authentication mechanism (4). The GSS-API
“mech type” is set to SPNEGOs OID 1.3.6.1.5.5.2.
The token data might be in binary format, depending on the
security mechanism used. Since the SIP headers are in ASCII
string format, the token data is base64 encoded:

SIP/2.0 401 Unauthorized

Authorization: GSSAPI ttype="context"
token="0401000B06092A864886F7120..."

The server retrieves the GSS-API data, the token, and
passes this to the SPNEGO GSS-API mechanism. In this
first initial token, the client embeds authentication data for
its first preferred authentication mechanism. This way, should
the server accept the clients preferred mechanism, we avoid an
extra SIP message round trip. If the client’s preferred method
was accepted by the server, the server passes the relevant
authentication data to the selected authentication mechanism
in a 401 SIP message (5). The selected authentication method
continues to pass tokens between client and server as many
times as necessary to complete the authentication (6-7-N)
and establish a security context. Once the security context is
established, it sends a 200 OK SIP message (N+2). Should
the server have some last GSS-API data to be communicated
to the client to complete the security context, it can be carried
in a WWW-Authenticate header embedded in the 200 OK
message:

SIP/2.0 200 OK
WWW-Authenticate: GSSAPI ttype="context"

token="dd02c7c2232759874e1c20558701..."

If the client’s preferred mechanism is not the server’s most
preferred mechanism, the server outputs a negotiation token
and sends it to the client embedded in a new 401 SIP
message (5). The client processes the received SIP message
and passes the authentication data to the correct authentication
mechanism. The GSS-API then continues as described in the
previous paragraph.

B. Simple Authentication and Security Layer

The Simple Authentication and Security Layer (SASL), de-
fined in RFC4422 [28], provides an interface for authentication
and an authentication negotiation mechanism. It provide the
same security services as GSS-API and is implemented and
used in several popular communications protocols applications
like IMAP, SMTP and LDAP1.

As with GSS-API, the SASL framework does not provide
authentication mechanisms in itself, but supports different
underlying authentication mechanisms through a standardized

1The Carnegie Mellon University’s implementation: http://asg.web.cmu.
edu/sasl/ and the GNU SASL library: http://www.gnu.org/software/gsasl/ are
two popular and freely available SASL libraries.



219

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 14: SIP REGISTER message flow with GSS-API security context establishment (authentication).

interface2. SASL does not provide a transport layer and thus
relies on the application, to encapsulate, send and extract
SASL messages between client and server, which in our
case is the SIP protocol. The SASL messages sent between
client and server contain authentication data, and are opaque
from the viewpoint of the calling application (SIP). The
application only needs to add support to a SASL software
library implementation, and thus have support to a range of
underlying authentication mechanisms the library supports.

While the GSS-API is primarily intended for use with
applications, SASL is used in, and intended for, commu-
nication protocols. The functionalities offered by the GSS-
API and SASL are alike, but the SASL specification is more
high-level, and allows more freedom in implementing the
SASL requirements. SASL also supports more underlying
security mechanisms than the GSS-API. By using the “GS2”
mechanism family, the GSS-API can be used as an underlying
security mechanism in SASL. However, the GSS-API nego-
tiation mechanism SPNEGO cannot be used due to security
concerns [61, Section 14].

1) SIP message support for SASL: In SASL terminology,
the description on how to encapsulate SASL negotiation and
SASL messages for a given protocol, is called a “SASL
profile”. The SIP protocol stack with SASL is shown in
Fig. 16. We create a SASL profile for SIP by reusing the
WWW-Authenticate and Authorization SIP headers
used by the digest authentication, shown earlier. Instead of
encapsulating DAA data, we embed SASL messages, as de-
picted in Fig. 15.

As with the GSS-API, we need to increase the number of

2A list of registered SASL mechanisms is maintained by IANA: http://
www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xml

messages going back and forth between the SIP client and
server. The number of messages depends on the required mes-
sage exchange needed by the used underlying authentication
mechanism.

In the following paragraphs, the numbers in parentheses
refer to the SIP message numbers in Fig. 14. The SASL
specification only outlines a very high-level method of how
the server should advertise its supported mechanisms to the
client. We implement the mechanism negotiation in the first
three messages in the SIP REGISTER handshake (1-4). The
UA starts by requesting authentication from the SIP server,
with no Authorization header (1). The SIP server re-
sponds with a 401 Unauthorized SIP message (3), with
the supported and available mechanisms embedded in the
WWW-Authenticate header:

SIP/2.0 401 Unauthorized
WWW-Authenticate: SASL
negotiate="DIGEST-MD5 NTLM GS2-KRB5"

The client selects the best mechanism from the received
list that it supports and sends a new SIP REGISTER mes-
sage (4). This message includes an Authorization header
requesting authentication with “GS2-KRB5” as the preferred
mechanism. The initial authentication data is embedded base64
encoded to the data parameter:

SIP/2.0 REGISTER
Authorization: SASL mechanism="GS2-KRB5",
data="SUZZT1VDQU5SR...JUPVVQU5FUkQK="

The server retrieves the SASL data, and passes the message
to the SASL library which handles the authentication. The
selected authentication method continues to pass SASL mes-
sages between client and server as many times as necessary to



220

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 15: A SIP REGISTER message with the original DAA Authorization header to the left, and the same header carrying
SASL data to the right.

Fig. 16: The SIP SASL stack is similar to the SIP GSS-API
stack with underlying security mechanisms.

complete the authentication (messages 5-6 are repeated). Once
the authentication is complete, the SIP server sends a 200 OK
SIP message. Should the server have some last SASL data to
be communicated to the client to complete the authentication,
it can be carried in a WWW-Authenticate header embedded
in the 200 OK message (N+2):

SIP/2.0 200 OK
WWW-Authenticate: SASL mechanism="GS2-KRB5",

data="TFoG9rP56zrVH...YaAOndwPew6NdxKr"

As soon as the 200 OK message is received and pro-
cessed, the client is authenticated to the SIP server. Since the
mechanism negotiation is not integrity-protected, the UA is
vulnerable to a “down-grade” attack. An attacker can intercept
and modify the negotiation messages so that the least favorable
authentication method is used.

VII. MIGRATION TOWARDS A SECURE AUTHENTICATION

We propose a two step migration towards a secure au-
thentication in SIP. While our attack on the DAA could be
countered by including the SIP header value ContactURI
in the digest, it did not provide any protection against off-
line dictionary attacks. We implemented and showed that the
use of “Password-Based Key Derivation Function version 2”
(PBKDFv2) on the shared secret to make dictionary- and
brute-force attacks significant harder to execute on the DAA.
However, this method does not authenticate the SIP server,
only the client.

Our first migration step suggests to replace the DAA with
a modified “Password Authenticated Key Exchange” (PAKE)

that is more secure than the DAA, introduce mutual authenti-
cation and re-use the shared secret used by the DAA. These
properties make PAKE a preferred mechanism over the DAA
with PBKDFv2. However, using PAKE does not leave any
room for future extensions nor modification of authentication
in SIP once implemented.

The second migration step takes the limitations of the
previous mechanisms into consideration, and is seen as the
most viable way of solution. The last authentication method
introduces support for a GSS-API/SASL security layer which
enables SIP to transparently support and use more secure
authentication methods in a unified and generic way without
the need for later changes to the SIP protocol specification.

Support for the GSS-API/SASL security layer in SIP, have
the following attractive properties that address real-world
security concerns:

1) Mature, stable and industry adopted standards: The in-
dustry might be reluctant to adopt immature and non-
standardized security services, like different (new) au-
thentication mechanisms. Both the GSS-API and SASL
are stable, mature standards that have been adopted by the
industry. Thus, implementing GSS-API or SASL should
not be considered a drastic nor radical change by the
relevant standardizing bodies (the IETF) nor the VoIP
industry.

2) Minimal changes to the SIP standard required: The au-
thentication data re-use the existing SIP DAA headers,
so minimal changes to the SIP message contents are
required. Also, minimal changes are required to the SIP
message flow, since the authentication handshake is just
extended with a number of required SIP message round-
trips to complete the new authentication exchange.

3) Flexible and adaptive to new requirements and future
changes: Instead of adding numerous different authen-
tication mechanisms to SIP based on different security
requirements, it is desirable to keep the changes to the SIP
standard to a minimum. By adding support to a security
layer in SIP, adding new or modifying existing underlying
authentication mechanisms does not need any redesign
of the SIP specification standard. In this case, only the
GSS-API/SASL software library needs to be updated.



221

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Thus, authentication in SIP becomes adaptive to future
extensions.

VIII. CONCLUSION AND FUTURE WORK

We have seen that the widely deployed authentication
method DAA in SIP is weak and vulnerable to attacks.
Moreover, we have confirmed and verified that the attack
analyzed earlier [25] can be performed on the SIP protocol in
real-time. We have examined this authentication method, and
proposed a solution to counter the serious registration attack.
By including more SIP header parameters in the authentication
digest this attack can be countered.

The original SIP designers focused on functionality and
compliance at the cost of security. A more thorough investiga-
tion of the SIP DAA in the design phase would have revealed
the vulnerability presented here, and the vulnerability could
have been prevented early on. Our remedy presented here
solves a serious problem with the DAA.

Therefore, we wanted to replace DAA with support for an
better, more robust authentication scheme. We have added
support for a improved authentication mechanism that can
easily replace DAA based on a modified PAKE algorithm.
This new authentication mechanism adds support for mutual
authentication and is more secure than DAA. We have also
shown that the modified PAKE authentication can easily
function as a drop-in replacement for DAA. However, a more
flexible authentication mechanism is desired in the long-term.
Different VoIP installations have different security require-
ments that may require different security services.

We introduced a security programming interface, which pro-
vides a security abstraction layer. This abstraction layer adds
support to a range of underlying authentication mechanism
in a unified way. As long as SIP supports the security layer,
new authentication mechanisms can be added later, without
requiring any change to the SIP protocol. Support for two
security layers were added, the GSS-API and SASL. We
recommend the use of SASL, as SASL has more industry
deployment, has support for more underlying authentication
mechanisms, and is specifically designed for communications
protocols.

We envisage a two-step migration towards a stronger au-
thentication scheme in SIP. First, the modified PAKE au-
thentication is implemented and deployed. Second, the long-
term solution is to deploy SASL with support for a range of
underlying authentication mechanisms.

Future work will look into implementing a proof of concept
for PAKE-enabled UA and SIP server, including overhead
evaluation benchmarks for the new authentication algorithm.
We also plan to evaluate different SASL security mechanisms
and their implications for SIP, and decide which authentication
mechanisms should be mandatorily supported through SASL.

We plan to co-operate with the IETF and the “kitten”
WG to further elaborate GSS-API and SASL support for
SIP. We hope our work will gain acceptance and industrial
deployment, so that the previously mentioned security attacks
can be countered.

ACKNOWLEDGMENT

This research is funded by the EUX2010SEC project in
the VERDIKT framework of the Norwegian Research Council
(Norges Forskningsråd, project 180054).

REFERENCES

[1] L. Strand and W. Leister, “Improving SIP authentication,” in Proceedings
of the Tenth International Conference on Networking (ICN2011). Xpert
Publishing Services, Jan 2011, pp. 164 – 169.

[2] L. Strand, J. Noll, and W. Leister, “Generic security services API au-
thentication support for the session initiation protocol,” in Proceedings of
The Seventh Advanced International Conference on Telecommunications
(AICT2011). Xpert Publishing Services, Mar 2011, pp. 117 – 122.

[3] L. Strand, W. Leister, and A. Duric, “Migration towards a more
secure authentication in the session initiation protocol,” in The Fifth
International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE2011). Xpert Publishing Services, Aug
2011.

[4] “Det norske markedet for elektroniske kommunikasjonstjenester 2009
(The Norwegian market for electronic communication services 2009),”
Post- og teletilsynet (The Norwegian Post and Telecommunications
Authority), 2010. [Online]. Available: http://www.npt.no/ikbViewer/
Content/119027/Ekomrapport 2009 .pdf [Accessed: 1. Jul 2011]

[5] Telecommunication Development Sector (ITU-D), “The world in 2010,”
ITU-T ICT facts and figures, 2010.

[6] L. Strand and W. Leister, “A Survey of SIP Peering,” in NATO ASI -
Architects of secure Networks (ASIGE10), May 2010.

[7] International Telecommunication Union, “7 kHz Audio-Coding within
64 kbits/s,” ITU-T Recommendation G.722, 1993.

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261 (Proposed Standard), Internet Engineering Task
Force, Jun. 2002, updated by RFCs 3265, 3853, 4320, 4916, 5393,
5621, 5626, 5630, 5922, 5954, 6026, 6141. [Online]. Available:
http://www.ietf.org/rfc/rfc3261.txt [Accessed: 1. Jul 2011]

[9] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications,” RFC 3550
(Standard), Internet Engineering Task Force, Jul. 2003, updated
by RFCs 5506, 5761, 6051, 6222. [Online]. Available: http:
//www.ietf.org/rfc/rfc3550.txt [Accessed: 1. Jul 2011]

[10] H. Sinnreich and A. B. Johnston, Internet communications using SIP:
Delivering VoIP and multimedia services with Session Initiation Proto-
col, 2nd ed. New York, NY, USA: John Wiley & Sons, Inc., August
2006.

[11] H. Dwivedi, Hacking VoIP: Protocols, Attacks, and Countermeasures,
1st ed. No Starch Press, Mar. 2009.

[12] D. Endler and M. Collier, Hacking Exposed VoIP: Voice over IP Security
Secrets and Solutions. McGraw-Hill Osborne Media, November 2006.

[13] A. M. Hagalisletto and L. Strand, “Designing attacks on SIP call set-
up,” International Journal of Applied Cryptography, vol. 2, no. 1, pp.
13–22(10), July 2010.

[14] D. Sisalem, J. Floroiu, J. Kuthan, U. Abend, and H. Schulzrinne, SIP
Security. WileyBlackwell, Mar. 2009.

[15] VoIPSA, “VoIP security and privacy threat taxonomy,” Public
Realease 1.0, Oct. 2005. [Online]. Available: http://voipsa.org/Activities/
VOIPSA Threat Taxonomy 0.1.pdf [Accessed: 1. Nov 2011]

[16] D. York, Seven Deadliest Unified Communications Attacks. Syngress,
Apr. 2010.

[17] P. Park, Voice over IP Security. Cisco Press, Sep. 2008.
[18] S. Salsano, L. Veltri, and D. Papalilo, “SIP security issues: The SIP

authentication procedure and its processing load,” Network, IEEE,
vol. 16, pp. 38–44, 2002.

[19] D. Kuhn, “Sources of failure in the public switched telephone network,”
Computer, vol. 30, pp. 31–36, 1997.

[20] A. D. Keromytis, Voice over IP Security - A Comprehensive Survey
of Vulnerabilities and Academic Research, 1st ed. New York, NY:
Springer New York, 2011, vol. 1.

[21] International Telecommunication Union (ITU), “Security Architecture
For Open Systems Interconnection (OSI),” The International Telegraph
and Telephone Consultative Comittee (CCITT), X.800 Standard X.800,
1991.



222

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] “Research project: EUX2010SEC – Enterprise Unified Exchange
Security”.” [Online]. Available: http://www.nr.no/pages/dart/project
flyer eux2010sec [Accessed: 1. Nov 2011]

[23] L. Fritsch, A.-K. Groven, L. Strand, W. Leister, and A. M. Hagalisletto,
“A Holistic Approach to Open Source VoIP Security: Results from the
EUX2010SEC Project,” International Journal on Advances in Security,
no. 2&3, pp. 129–141, 2009.

[24] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart, “HTTP Authentication: Basic and
Digest Access Authentication,” RFC 2617 (Draft Standard), Internet
Engineering Task Force, Jun. 1999. [Online]. Available: http:
//www.ietf.org/rfc/rfc2617.txt [Accessed: 1. Jul 2011]

[25] A. M. Hagalisletto and L. Strand, “Formal modeling of authentication
in SIP registration,” in Second International Conference on Emerging
Security Information, Systems and Technologies SECURWARE ’08.
IEEE Computer Society, August 2008, pp. 16–21.

[26] International Organization for Standardization and ISO, “ISO/IEC
11770-4:2006: Information technology – Security techniques – Key
management – Part 4: Mechanisms based on weak secrets,” 2006.

[27] J. Linn, “Generic Security Service Application Program Interface
Version 2, Update 1,” RFC 2743 (Proposed Standard), Internet
Engineering Task Force, Jan. 2000, updated by RFC 5554. [Online].
Available: http://www.ietf.org/rfc/rfc2743.txt [Accessed: 1. Jul 2011]

[28] A. Melnikov and K. Zeilenga, “Simple Authentication and Security
Layer (SASL),” RFC 4422 (Proposed Standard), Internet Engineering
Task Force, Jun. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4422.txt [Accessed: 1. Jul 2011]

[29] J. Undery, “Ieft draft: SIP authentication: SIP digest access authentica-
tion,” IETF, Tech. Rep., Jul. 2001.

[30] C. Yang, R. Wang, and W. Liu, “Secure authentication scheme for
session initiation protocol,” Computers & Security, vol. 24, no. 5, pp.
381–386, Aug. 2005.

[31] J. Peterson, “S/MIME Advanced Encryption Standard (AES)
Requirement for the Session Initiation Protocol (SIP),” RFC 3853
(Proposed Standard), Internet Engineering Task Force, Jul. 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3853.txt [Accessed: 1. Jul
2011]

[32] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008, updated by RFCs 5746, 5878,
6176. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt [Accessed:
1. Jul 2011]

[33] C. Jennings, J. Peterson, and M. Watson, “Private Extensions to
the Session Initiation Protocol (SIP) for Asserted Identity within
Trusted Networks,” RFC 3325 (Informational), Internet Engineering
Task Force, Nov. 2002, updated by RFC 5876. [Online]. Available:
http://www.ietf.org/rfc/rfc3325.txt [Accessed: 1. Jul 2011]

[34] J. Peterson and C. Jennings, “Enhancements for Authenticated Identity
Management in the Session Initiation Protocol (SIP),” RFC 4474
(Proposed Standard), Internet Engineering Task Force, Aug. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4474.txt [Accessed: 1. Jul
2011]

[35] F. Palmieri, “Improving authentication in voice over IP infrastructures,”
in Advances in Computer, Information, and Systems Sciences, and
Engineering, K. Elleithy, T. Sobh, A. Mahmood, M. Iskander, and
M. Karim, Eds. Springer Netherlands, 2006, pp. 289 – 296.

[36] F. Palmieri and U. Fiore, “Providing true end-to-end security in con-
verged voice over IP infrastructures,” Computers & Security, vol. 28,
no. 6, pp. 433–449, Sep. 2009.

[37] Y. Liao and S. Wang, “A new secure password authenticated key
agreement scheme for SIP using self-certified public keys on elliptic
curves,” Computer Communications, vol. 33, no. 3, pp. 372–380, Feb.
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0140366409002631 [Accessed: 1. Jul 2011]

[38] Y. Liao, “Secure password authenticated key exchange protocols for
various enviroments,” Ph.D. dissertation, Tatung University, Dec. 2009.

[39] International Telecommunication Union, “H.323 security: Framework
for security in H-series (H.323 and other H.245-based) multimedia
systems,” ITU-T Recommendation H.235.0, 2005.

[40] ——, “H.323 security: Framework for secure authentication in RAS
using weak shared secrets,” ITU-T Recommendation H.235.5, 2005.

[41] M. Spencer, B. Capouch, E. Guy, F. Miller, and K. Shumard,
“IAX: Inter-Asterisk eXchange Version 2,” RFC 5456 (Informational),
Internet Engineering Task Force, Feb. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5456.txt [Accessed: 1. Jul 2011]

[42] R. Rivest, “The MD5 Message-Digest Algorithm,” RFC 1321
(Informational), Internet Engineering Task Force, Apr. 1992, updated
by RFC 6151. [Online]. Available: http://www.ietf.org/rfc/rfc1321.txt
[Accessed: 1. Jul 2011]

[43] L. Strand, “VoIP lab as a research tool in the EUX2010SEC project,”
Norwegian Computing Center, Department of Applied Research in
Information Technology, Tech. Rep. DART/08/10, April 2010.

[44] “Asterisk: The Open Source PBX & Telephony Platform.” [Online].
Available: http://www.asterisk.org/ [Accessed: 1. Nov 2011]

[45] “NetSED: The network packet stream editor.” [Online]. Available:
http://silicone.homelinux.org/projects/netsed/ [Accessed: 1. Nov 2011]

[46] X. Wang and H. Yu, “How to break MD5 and other hash functions,” IN
EUROCRYPT, vol. 3494, 2005.

[47] P. Hawkes, M. Paddon, and G. G. Rose, “Musings on the wang et al.
md5 collision,” Cryptology ePrint Archive, Report 2004/64, 2004.

[48] D. Eastlake 3rd and P. Jones, “US Secure Hash Algorithm 1
(SHA1),” RFC 3174 (Informational), Internet Engineering Task Force,
Sep. 2001, updated by RFCs 4634, 6234. [Online]. Available:
http://www.ietf.org/rfc/rfc3174.txt [Accessed: 1. Jul 2011]

[49] “Twisted Matrix Labs.” [Online]. Available: http://twistedmatrix.com
[Accessed: 1. Nov 2011]

[50] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0,” RFC 2898 (Informational), Internet Engineering Task
Force, Sep. 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2898.txt
[Accessed: 1. Jul 2011]

[51] S. Turner and L. Chen, “Updated Security Considerations for the
MD5 Message-Digest and the HMAC-MD5 Algorithms,” RFC 6151
(Informational), Internet Engineering Task Force, Mar. 2011. [Online].
Available: http://www.ietf.org/rfc/rfc6151.txt [Accessed: 1. Jul 2011]

[52] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104 (Informational), Internet
Engineering Task Force, Feb. 1997, updated by RFC 6151. [Online].
Available: http://www.ietf.org/rfc/rfc2104.txt [Accessed: 1. Jul 2011]

[53] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” RFC
4648 (Proposed Standard), Internet Engineering Task Force, Oct. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4648.txt [Accessed: 1. Jul
2011]

[54] Y. Oiwa, H. Watanabe, and H. Takagi, “Pake-based mutual
http authentication for preventing phishing attacks,” CoRR, vol.
abs/0911.5230, 2009. [Online]. Available: http://arxiv.org/abs/0911.5230
[Accessed: 1. Jul 2011]

[55] Y. Oiwa, H. Watanabe, H. Takagi, Y. Ioku, and T. Hayashi,
“Mutual Authentication Protocol for HTTP,” Internet Engineering
Task Force, Oct. 2010. [Online]. Available: http://tools.ietf.org/html/
draft-oiwa-http-mutualauth-08 [Accessed: 1. Jul 2011]

[56] T. Kivinen and M. Kojo, “More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE),” RFC 3526
(Proposed Standard), Internet Engineering Task Force, May 2003.
[Online]. Available: http://www.ietf.org/rfc/rfc3526.txt [Accessed: 1. Jul
2011]

[57] D. Todorov, Mechanics of User Identification and Authentication: Fun-
damentals of Identity Management, 1st ed. Auerbach Publication, Jun.
2007.

[58] L. Zhu, K. Jaganathan, and S. Hartman, “The Kerberos Version 5
Generic Security Service Application Program Interface (GSS-API)
Mechanism: Version 2,” RFC 4121 (Proposed Standard), Internet
Engineering Task Force, Jul. 2005, updated by RFC 6112. [Online].
Available: http://www.ietf.org/rfc/rfc4121.txt [Accessed: 1. Jul 2011]

[59] C. Adams, “The Simple Public-Key GSS-API Mechanism (SPKM),”
RFC 2025 (Proposed Standard), Internet Engineering Task Force, Oct.
1996. [Online]. Available: http://www.ietf.org/rfc/rfc2025.txt [Accessed:
1. Jul 2011]

[60] L. Zhu, P. Leach, K. Jaganathan, and W. Ingersoll, “The Simple
and Protected Generic Security Service Application Program Interface
(GSS-API) Negotiation Mechanism,” RFC 4178 (Proposed Standard),
Internet Engineering Task Force, Oct. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4178.txt [Accessed: 1. Jul 2011]

[61] S. Josefsson and N. Williams, “Using Generic Security Service
Application Program Interface (GSS-API) Mechanisms in Simple
Authentication and Security Layer (SASL): The GS2 Mechanism
Family,” RFC 5801 (Proposed Standard), Internet Engineering Task
Force, Jul. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5801.txt
[Accessed: 1. Jul 2011]


