
A Privacy Preserving Solution for Webmail Systems with Searchable Encryption

Karthick Ramachandran, Hanan Lutfiyya and Mark Perry

Department of Computer Science
University of Western Ontario

London, Ontario, Canada
Email: {kramach, hanan, markp}@csd.uwo.ca

Abstract—In this work, we give an introduction to privacy
issues in Cloud Computing and discuss the state of art in the
privacy enhancing technologies that can be used for Cloud
Computing. We focus on a Software as a Cloud scenario
(webmail services) and propose a privacy preserving archi-
tecture in which users can retain their mail in the servers
of their service providers in a cloud without compromising
functionality (searchability of mails) or privacy. We benchmark
our system and detail the results showing that it is feasible to
architect a privacy preserving solution for webmail systems.

Keywords- privacy-preserving, webmail, encrypted search.

I. INTRODUCTION

Cloud Computing is a model of computing in which
the users can rent infrastructure, platform or software ser-
vices from other vendors without requiring the physical
access to the rented service [1]. There are three main types
of cloud offerings (Figure 1): Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). IaaS offers virtualized instances of bare
machines leaving the installation and customization of soft-
wares including the Operating System to cloud computing
customers (eg.: Amazon, Rackspace, Slicehost). In PaaS,
an application framework is provided to the customers
for developers to develop their software with (eg.: Google
App Engine, Microsoft Azure). A SaaS provider offers a
particular application as a web service, which customers can
customize to their needs (eg.: Google Docs, Salesforce etc).
The Cloud Service Provider (CSP) focuses on infrastructure
and software expertise and aims to optimize their utility by
providing centralized services for one or many clients. The
benefit to the cloud service client (CSC) is that the cost
associated with the underlying infrastructure and software
services needed to support the CSC’s application is reduced.
There are two reasons for the cost reduction. One reason
is that the underlying infrastructure and software services
are shared among CSCs. The second reason is that since a
CSP manages data, it can use creative business models like
Contextual Advertising Model [2] for generating revenue
by delivering advertisements to users based on the data.
For example, webmail services such as Google can provide
Gmail for free. As a result, Cloud Computing has been
widely adopted. MarketsandMarkets [3] estimates that the

cloud computing global market will increase from $12.1
billion (US) to $37.8 billion (US) in 2015 at a compound
annual growth rate of 26.2 percent.

Platform as a Service

Infrastructure as a
Service

Software as a
Service

Google App
Engine

Microsoft
Azure

Amazon Web
Services

Rackspace
Cloud

Amazon

Elastic Hosts Google Apps Salesforce.com

Microsoft Online
Services

Figure 1. Cloud Architectures

In spite of this widespread adoption, organizations are still
wary of storing their sensitive data with a CSP. Privacy risk
remains a major concern in the cloud computing environ-
ment [4].

The definition of privacy that we use was defined by
Warren et al. [5] in 1890. Warren et al. described privacy as
the “right to be let alone” with the focus on protecting indi-
viduals. The Universal Declaration of Human Rights states
that “No one shall be subjected to arbitrary interference with
his privacy, family, home or correspondence, nor to attacks
upon his honor and reputation. Everyone has the right to the
protection of the law against such interference or attacks.”
[6]. Modern legislation encompasses these ideas – privacy
is the need to protect and control information about the
individual by that individual.

There are a variety of ways that the privacy of data can
be compromised in a cloud service environment [7]. This
includes the following:

1) Sharing of data with an unauthorized party: The
Cloud provider could compromise the confidentiality of the
data by sharing the data that it stores with unauthorized
parties. This can go against the terms and conditions of the

36

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service and will qualify as a breach of security and contract.
The end user may never be aware of such a breach.

2) Corruption of data stored: The Cloud Computing
provider’s root access to physical machines allows the Cloud
Provider to have access that allows the Cloud Provider to
modify/delete data. The Cloud Provider could tamper with
the data making the data non-usable or modify the data in a
way that system cannot detect the modification. This poses
a serious threat to the integrity of the application.

3) Malicious Internal Users: The employee of a Cloud
Computing Provider who has root access to these physical
machines, could access the data and use it for their own
advantage.

4) Data Loss or Leakage: When a virtual machine is used
in an infrastructure, it poses a variety of security issues [8],
which could lead to a compromise of the data. Moreover,
when the facility that hosts the user’s data is subjected to a
natural calamity, it could risk the loss of the user’s data.

5) Account or Service Hijacking: Another risk for the
Cloud Computing provider is, if the service is hijacked, or
the computer is hacked into by an intruder, the hacker will
have access to data.

Storing the data in the cloud, can increase the privacy
risks for the following stake holders:

1) Cloud Computing User
2) Organization using the Cloud Service
3) Implementors of Cloud Platforms
4) Providers of application on top of cloud platforms
5) For the data subject

This work focuses on the following threats: (a) Sharing
with an unauthorized party, (b) Malicious internal users,
and (c) Account or service hijacking. Our work applies
to the class of cloud services that stores data and provide
searching as its primary functionality. This includes services
such as webmail, collaborative document authoring (Google
documents) and private blogs. The example used throughout
this paper is webmail.

We proposed Chaavi [9], a webmail infrastructure that
builds on the public/private key model to encrypt email with
a custom implementation of encrypted indices for keyword
searches using the server’s infrastructure. Chaavi is the first
system that addresses the above threats in a real working
environment.

The rest of paper is organized as following. A motivating
example of webmail services is described in Section II.
Section III presents some of state of the art in preserving
privacy for cloud computing services. Section IV reviews
background and related work for searching on encrypted
data. Section V presents the architecture of Chaavi system.
The implementation details are discussed in Section VI.
Section VII presents the experiments conducted to study
the system and we conclude by stating our contribution and
future work in Section VIII.

II. MOTIVATING EXAMPLE: WEBMAIL SERVICES

Webmail services offer user convenience. A username,
password, and Internet access users, are not tied to any
particular equipment or location. Webmail services primarily
offer the following functionality:

1) Mail Storage
2) Organization of mail
3) Keyword Searching
For (1) and (2), the service provider need not know the

exact content of the mail. However, for performing a plain-
text keyword search on email the user needs the service
provider to know the content of the mail, so that the cloud
provider’s infrastructure can be used to index the mail
content, which can in turn be used for the search process.

The usage of webmail services, has the following short-
comings:

1) The need to trust the service provider (e.g., Google,
Yahoo, or Microsoft) as the mail is stored as plain-text
in the service providers’ servers (or using single key
encryption). The mail is then prone to insider attacks
(anyone with the access control will be able to read
the mails).

2) There is an assumption that the provider is honest, and
the security level is sufficient.

3) When the mail is transferred from one domain to
another, it is transmitted through SMTP [10]. SMTP as
a protocol does not support encryption. Technologies
like Transport Layer Security [11] are used to transfer
mail to other domains. However, the data is still
protected only up to the layer at which it reaches
the target mail server. Once it reaches the target mail
server, the mail is again prone to insider attacks in the
new domain.

To address such problems, various client encryption sys-
tems, such as Pretty Good Privacy (PGP) [12], have been
developed. However, encryption using PGP make the mail
non-searchable in the web server.

III. RELATED WORK

Privacy Enhancing Technologies (PET) can be used by
the developers of the application to enhance the individuals
privacy in an application development environment. In this
section, we survey state of the art in PET.

PET technologies include:
1) Privacy management tools that enable inspection of

server-side policies that specify the permissible ac-
cesses to data

2) Secure online access mechanisms to enable individuals
to check and update the accuracy of their personal data

3) Anonymizer tools, which will help users from reveal-
ing their true identity by not revealing the PII (Pri-
vately Identifiable Information) to the cloud service
provider.

37

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Homomorphic Functions: Homomorphic encryption
schemes refer to asymmetric encryption techniques, where
algebraic operations on plain text can be performed directly
on a respective cipher text. This was first introduced by
Goldwasser et al. [13], where the authors performed modular
addition of two bits using multiplication of ciphertexts. The
two kinds of homomorphic functions are the following:

1) Partially homomorphic functions and
2) Fully homomorphic functions
Partial homomorphic functions enable either addition or

multiplication on plaintexts. However, in a fully homomor-
phic scheme, both operations are supported. Fully homomor-
phic functions, allow executions of programs in untrusted
party without revealing the input to the party. The untrusted
party can been seen as a cloud provider.

Craig Gentry [14] described the first fully homomor-
phic encryption scheme based on lattice-based cryptography.
However performing google search on encrypted keywords
using homomorphic encryption based on Gentry’s scheme
will increase the computing time by trillion.

Homomorphic encryption remains in the theoretical realm
as more advanced abstractions need to be created for using
homomorphic functions in practical applications.

Privacy By Secure Computation: The objective of
secure computation is to evaluate a function f that takes
inputs from two parties A and B without revealing the exact
inputs to each other. The Yaos protocol [15] provides some
of the basic techniques to perform a computation in a secure
way without revealing the inputs. The Yaos protocol forces
the expression of a computation problem in terms of logical
circuit using gates. The input of each gate is randomly
encrypted and then the final resulting output is decrypted
to get the exact answer of the computation. The encryption
and the decryption is done at the client’s end. The expression
of a simple problem using the Yaos protocol is found to be
complex. Applications that typically reside in the cloud (e.g.,
mail) are too complex for this.

Privacy By Using Secure CoProcessors: Secure co-
processors are currently the only realistic way to perform
general-computing even when an adversary has direct phys-
ical access to the server. In our case the adversary could be
the cloud service provider itself. It is a very limited computer
with ROM, RAM and battery backup for persistent storage
and an ethernet card. When installed in a computer, co-
processors can be seen as a secure area inside a computer,
which even the main processor cannot access. Privacy as a
Service [16] recognizes these factors and proposes a system
architecture in which a coprocessor is installed in every
Cloud Computing system. The data loaded into the cloud is
classified based on its significance and security by the cloud
user (No Privacy, Privacy with Trusted Provider, Privacy
with Non-Trusted Provider). The data tagged with Privacy
with Non-Trusted Provider level is processed by the secure
co processor.

Figure 2. System Model for Privacy by Secure CoProcessors [16]

Figure 2 [16] is an example of a system built using
secure coprocessors. Cloud customers, Trusted Third Party
and the Cloud Provider are the three main stakeholders of
this system. The coprocessor is signed by secret keys by the
trusted third party and then is supplied to cloud provider.
When a new customer registers with the cloud provider, they
share the secret keys with the trusted third party. The co-
processors can directly contact the trusted third party for the
keys to encrypt the secret data within the coprocessor. The
data channel between the co-processor and the trusted third
party is secured using a mutually agreed upon public/private
key pair during the initial time of supply of co-processors
to CSP by trusted third party. Secure co-processors needs a
separate hardware installation in server. Also co-processors
are expensive and are not yet economical to be used in a
cloud computing environment.

Trusted Program Module (TPM) is a secure cryptoproces-
sor specification introduced by Trusted Computing Group
to standardize the usage of crypto coprocessors [17]. TPM
chips can be used to attest platform integrity, to enable
disk encryption and for secure storage of selective sensitive
entities such as the username and password. It provides
basic function of RSA 2048 bit public key cryptography
protected by hardware. According to Wave Systems Corp.
[18], more than 350 million PC’s are shipped with TPM
as of 2010. TPMs introduce high overhead in the execution
of an application [19]. However Jonathan et.al [19] argue
that, as the usage of TPMs get popular, the future hardware
performance will improve.

Privacy By Encryption: Privacy can be enforced by
encrypting all the data that is stored in the cloud. The main
issue is that the cloud can be only used for storage of the
data. As the data will be unrecognizable to the cloud service
provider, it will not be possible for the cloud service provider
to process the data nor to perform some number crunching
tasks. Searchable encryption uses an algorithm, which allows
users to encrypt the data and then provides the server with
trapdoor information [20], so that the server can search for
a given string through the searchable encryption algorithm.
This part is discussed in detail in Section IV-C.

Privacy-Preserving Multi-keyword Ranked Search over
Encrypted Cloud Data [21] proposes a new encryption
scheme for keyword search over encrypted data in cloud

38

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computing environment with privacy and performance re-
quirements.

In our work we achieve privacy by encryption by using
searchable encryption scheme for a webmail software. Our
focus is to study how the encryption schemes can be engi-
neered in a real working environment. This is an extension
of our previous work [9] with more details on related work,
implementation and conclusion.

IV. BACKGROUND

In this section, we review the basic elements common to
webmail infrastructures. We also present an introduction to
PGP and searchable encryption.

A. Mail Architecture

The webmail infrastructure is responsible for end to end
delivery of email. Figure 3 presents architectural components
and protocols typically used to support webmail applica-
tions.

bob@a.com
Mail User

Agent

alice@a.com
Mail User Agent

Mail
Transfer

Agent

Mail
Transfer

Agentalice@a.com
Mail User

Agent

Internet

bob@b.com
Mail User

Agent

alice@a.com
Mail User Agent

alice@b.com
Mail User

Agent

SMTP POP
/IMAP

Figure 3. Email Architecture

1) Components: This subsection describes the architec-
tural components.

Mail User Agent: The Mail User Agent (MUA) is
used to manage a user’s email. It acts on behalf of the
user to send and receive mail from the Mail Transfer Agent
(MTA). Popular MUAs include Microsoft Outlook, Mozilla
Thunderbird, Apple Mail. In a webmail system, the MUA
runs in the server and the pages are rendered as HTML pages
for the browser.

Mail Transfer Agent: The Mail Transfer Agent (MTA)
transfers messages from one server to another. It receives
email either from another MTA or MUA. The transmission
of email follows standardized protocols for message trans-
fers.

2) Protocols: This subsection describes commonly used
protocols.

Simple Mail Transfer Protocol (SMTP): SMTP refers
to the standard for the transfer of messages from one server
to another. It is used by MUA to relay mail through MTA
and it is also used by MTA to send and receive mail between
other MTAs. SMTP as a standard does not encrypt messages
(unless Transport Layer Security encryption is used).

Post Office Protocol (POP) / Internet Mail Access
Protocol (IMAP): POP/IMAP are email retrieval protocols
that specify standards for downloading messages from the
MTA for MUA. Examples of use is found with support for
POP version 3 and IMAP as provided by Gmail.

3) Privacy Threats: In webmail systems, there is a server
for webmail introduced into the standard mail system (Fig-
ure 3). It acts as the Mail User Agent for a number of users
and manages email for all the users. The MUA, unlike the
standard model (Figure 3), is centralized at the server. The
webmail server uses POP/IMAP to download messages from
MTA.

There are several privacy concerns with respect to email
systems. If the connection to the webmail server is not
secured using Hypertext Transfer Protocol Secure (HTTPS)
all the data between a user’s browser and the server will
be in plain text. SMTP, unless used with Transport Layer
Security (TLS) layer, is insecure. Even if the TLS layer is
used, the mail will still be accessible by the owner of the
MTA, through which the mail is routed. This is because
TLS is designed to protect data in an insecure network (like
Internet) and not from the communicating parties. Some of
the security threats involved in email systems are identified
by Kangas et al. [22], and Kaufman et al. [23]. These are
detailed below.

Eavesdropping: When email is unencrypted, potential
hackers who have access to network packets flowing through
the network will be able to read the email sent. This can
be achieved by enabling the promiscuous mode on ethernet
cards.

Identity Theft: If the user’s username and password
is obtained, then hackers have full access to all the email
content. Such password information can be obtained by
eavesdropping on the network.

Invasion of Privacy: The recipient of the mail is able to
get more information from the email header information than
what the sender intends to reveal. For example, the header
will reveal the sender’s SMTP IP address and subject of the
email sent.

Message Modification: Anyone who has administrator
access to the webmail server can modify the messages stored
in the server. It is not always possible for a recipient to
determine that email has been tampered with.

False Messages: It is relatively easy to create false
messages and send it as if it is from any person (as evidenced
by spam).

Message Replay: Akin to message modification, the
message created by user can be saved and sent again and
again.

Unprotected Backups: Messages are stored in plain-text
on SMTP servers, and backups will also contain complete
copies of the messages. Even when the user deletes a
message from the server, the backup will still hold the
content.

39

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Repudiation: As email messages can be forged (for
example see your spam box), there is no way of validating
that the email has been in-fact sent by a particular person.
This has serious implications in business communications,
electronic commerce.

B. Pretty Good Privacy

PGP was created by Zimmermann et al. [12], in 1991
to address the security issues with email. PGP encryption
uses a serial combination of hashing, data compression,
symmetric-key cryptography, and public-key cryptography.
Each public-key is bound to an email address. It serves as
the verification mechanism for the origin of the email. As
the email is encrypted using the private key of the user and
the encrypted version is sent into the network, it addresses
many security issues of the email infrastructure. For webmail
systems, software such FireGPG [24] provide a browser
extension that implements PGP. As PGP support enhances
the security of the email system by encrypting the mails, the
mail becomes unreadable by server. Hence the server cannot
perform keyword searches on the mail.

C. Searchable Encrypted Data

Public Key Encryption with Keyword Search (PEKS) [20]
is one of the seminal works in the area of making encrypted
data searchable. The authors of PEKS propose to encrypt the
message using the Public-Private key infrastructure. Along
with this cipher text a Public-Key Encryption with Keyword
Search (PEKS) of each keyword (the words that make up
the message) is appended to the final message. To send a
message M with keywords W1, W2, ... Wm the following
information is transmitted to the server:

EApub
(M) GPEKS(Apub,W1) G... GPEKS(Apub,Wm)

where Apub is the public key of the user, EApub
(M) is the

encrypted message, PEKS is the function that encrypts the
keywords using Apub. To test whether a word W is a part of
the message, a user supplies PEKS(Apub,W) along with
a trapdoor function Tw to the server, that can test whether
W = W ′ (W ′ being the keywords that are stored in the
encrypted form in the server). If W 6= W ′ the server learns
nothing more about W ′.

Public Key Encryption with Keyword Search Revisited
[25] identifies some of the issues with the original PEKS
and proposed a provably secure algorithm. The authors argue
that if in PEKS the server starts learning the trapdoor then
there can be a categorization of mail formed just based on
the learned trapdoor information. The trapdoor information
is the extra information sent to the server along with the
encrypted keyword for the server to test for the existence of
a keyword.

The authors also identify that in PEKS there is an assump-
tion that the communication channel between the sender
and the server is secure. To enable secure communication

through insecure channels the authors propose a Secure
Channel Free Public Key Encryption with Keyword Search
(SCF-PEKS), that uses a server’s public-private key pair for
communication.

V. ARCHITECTURE

This section describes the various components of Chaavi.
Figure 4 gives the overall architecture of the system.

Browser

Browser
Extension

(Encryption
Engine)

Web
Applicat

ion

Web Server

Database

Mail
Server

Encrypted
Mail and

Keywords

Encrypted
Mail

Keywords

Figure 4. Chaavi - Architecture

A. Browser

The browser is responsible for rendering the pages created
by the web application. Its default behavior can be modified
or enhanced by using extensions or plugins in the browsers.
Modern browsers such as Mozilla Firefox, Google Chrome
provide functionality to write extensions/plugins and install
the extensions locally.

B. Browser Extension

A browser extension is used in Chaavi to encrypt the
secure message sent to the server. It is also used to decrypt
the messages that are sent from the server. Additionally it
has key generation and key management functionality. The
extension is composed of the following modules.

Public-Private Key Generation: As stated earlier,
Chaavi uses a public/private key model for securely commu-
nicating messages. In a public/private key model, a public-
private key pair is generated when the system is initiated for
the first time, for a particular user. The messages encrypted
by the public key can be decrypted only by use of the private
key. The public key as the name implies is shared in a public
forum.

Keyword Encryption Key Generation: Public-Private
key pair is used for secure message communication. A
symmetric key is also generated to encrypt the individual
keywords present in the mail. A symmetric algorithm (unlike
the Public-Private key) is used here as the keywords need
not be decrypted by anyone else other than the sender of the
message.

Key Management: Key management is performed using
a graphical user interface (GUI). The GUI enables the user
to add or delete the public keys of the recipients with whom
the user wants to communicate through mails.

40

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Encryption: The functionality of the encryption module
is to encrypt the messages that are sent to the server from
the browser. It also extracts and encrypts the individual key-
words in the message. The encryption module is triggered
from the web application when the user submits a mail to
send it to the web server. This module encrypts the message
using the recipients’s public key and the keywords with the
keyword encryption key.

Decryption: When an encrypted message is sent from
the server to the browser, the decryption module decrypts the
messages using the private key of the user that is generated
during system initialization.

C. Web Application

The webmail application provides graphical user inter-
faces for the users to read, send and search messages.
It comprises of both server-side and client-side (browser)
functionality.

When a user sends a message from the web application
(Figure 5), the Encryption module encrypts the message and
extracts and encrypts the keywords. The web application
sends the encrypted message and keywords to the web
server. On receiving the encrypted message and the key-
words, at the server-side the application saves the encrypted
message alongside the encrypted keywords in a database for
future retrieval. The application then transfers the mail to the
Mail Server (SMTP server) for the mail to be be delivered
to recipient.

Browser Browser
Extension

Webserver +
Database

Mail
Server

Plaintext
Message

Encrypted
Message +
Encrypted
Keywords

Encrypted
Message

Sending
Message

Search
Message

Plaintext
Keyword Encrypted

Keyword

Corresponding
Encrypted
MessagePlaintext

Message

Figure 5. Sending and Searching for a Message

When the user wants to search for a particular keyword
in their inbox, the encrypted keyword is sent to the server-
side. The web application then searches for the mails cor-
responding to that particular encrypted word and then sends
the encrypted mails back to the user.

D. Database

The mail storage and organizational functionality is al-
ready handled by the web application provided by Squirrel-
mail. One custom table, search is added to the database,
which stores the < message id, encrypted keyword >
pair. This database is looked up when the user performs
a keyword search.

E. Mail Server

The mail server sends and receives email communicated
to it through the Internet. The mail server functionality is not
modified by our system. The web application communicates
with the mail server to send and receive messages.

VI. IMPLEMENTATION

The following software is used to implement the different
components in the system:
• Browser - Google Chrome
• Browser Extension - Google Chrome using Javascript
• RSA encryption/decryption library from hanewin.net

[26]
• AES encryption library [27]
• Web Application - Squirrelmail over PHP and MySQL
• Mail Server - Using the POP3 interface of the

csd.uwo.ca mail server
The implementation details of individual modules of the

system are detailed below.

A. Browser Extension
Public-Private Key Generation: The RSA algorithm

[28] is used for the creation of keys. The key requires two
large prime numbers as the input along with a random seed.
All of these inputs are created by the extension randomly
and provided as input for key generation. The keys are
then stored locally along with the user name, for future
retrieval in the local browser database. The key generation
is implemented using the RSA libraries available from
hanewin.net [26].

AES Key Generation: The symmetric AES key algo-
rithm is used to encrypt the individual keywords present in
the mail. The AES key generation algorithm takes as input
a random seed, which is provided by requesting the user to
move the mouse over the browser window. That generates
some random co-ordinates, which is then used to generate
the key.

AES is a natural choice for the symmetric key algorithm
as it has been analyzed extensively and used worldwide [29].
However, unlike PEKS [25], AES algorithm does not support
trapdoor and hence it is susceptible to chosen plaintext
attacks (The attacker has the capability to choose arbitrary
plaintext and the corresponding cipher texts). Moreover
the encryption of the keywords under AES negates the
possibility of performing range searches (e.g., 10 < b <
20) or similarity searches (name staring with ‘ka’).

41

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Key Management: The GUI for key management (Fig-
ure 6) is developed using the options functionality provided
by the Chrome extension framework. It is used to insert the
public keys of the recipients with whom the user wants to
communicate. The private key of the user cannot be managed
using this interface (the system automatically generates it
when the user logs in for the first time). The keys are
stored in the local storage database provided by HTML5.
The local storage enables key-value storage locally managed
by browser.

Figure 6. Key Management

Encryption: The user is provided with a HTML form
from the web application, which contains input fields to
enter the recipient email address, subject and the contents
of the mail. The form submission event (onsubmit event)
is associated with a custom submit event handler, which is
hooked to the encryption module. The encryption module
encrypts the contents of the mail using the user’s public key
and replaces the value in the field (contents of the mail) with
the encrypted message. Along with this, the keywords in the
message are extracted by the keyword extraction function
and each keyword is encrypted using the AES key and stored
in an object. The keyword extraction This object is serialized
in JSON (Javascript Object Notation) and sent to the server
along with the encrypted message.

Decryption: When an encrypted message is sent from
the server to the browser the server adds the attribute value
post−deencrypt to attribute class. The extension identifies
these messages and decrypts the messages using the private
key of the user. This decrypted message replaces the original
encrypted message in the html page so that the user can see
the message in the encrypted mail.

B. Web Application

An open source web application (Squirrelmail) is iden-
tified and it is modified for our application. Squirrelmail
is responsible for storage and organization of the mails.
Our custom module is developed in PHP and added to
Squirrelmail to save the encrypted messages alongside the
encrypted keywords and for the retrieval of the messages
based on the given encrypted keyword.

VII. EXPERIMENTS

The performance of algorithms used in Chaavi (Privacy
Preserving Web Mail with Keyword Searches) is studied in
terms of space and time consumed by the algorithm in the
local client system. Even though the performance of the
encryption algorithms has been studied before, we focus
on the performance of our system. The results presented
in this section are intended to provide some insight on the
overhead provided by the algorithms in a browser based
extension environment. Since encryption and decryption is
performed in the client browser system, the encryption and
decryption is independent of the number of users currently
using the system. Hence, we focus on the performance of
the encryption algorithms for a browser-based extension
environment.

All the experiments are executed in a Pentium IV Core 2
Duo processor using Google Chrome 5.0.375.99 beta.

A. Time Complexity
The following algorithms are studied with respect to the

execution time.
• Key Generation
• Encryption and Decryption (RSA Algorithm)
• Keyword Encryption (AES Algorithm)
1) Key Generation: Key generation is expensive since

it involves finding two large random prime numbers and
finding a product of the prime numbers based on the given
random seed. The length of keys (as measured by bits)
can be of sizes: 128, 256, 512, 1024. The higher the
number of bits used, the more difficult it is to break the
key (According to Schneier et al. [30], for breaking AES
with key size greater than or equal to 256-bit through brute
force will require fundamental breakthroughs in physics and
understanding of universe). However, generating larger keys
is time consuming. We present the average time taken for
key generation for different bit sizes in Figure 7.

As can be seen the keyword bit size increases the creation
time exponentially. The 1024 bit key generation takes around
41 seconds. However, as this is a one time activity (when
the user sets up the system) the usability and inconvenience
is minimal.

2) Encryption and Decryption: When the user wants to
send an email the encryption module is executed each time,
and the decryption module is activated when the user wants
to read an email. This is a frequent activity and therefore
more computation time spent on these modules will impact
usability. The encryption and decryption algorithm is run
over random data (which represents an email message)
set using the Javascript library in Chrome browser. The
performance of RSA algorithm is studied here in a browser
environment. The following are the results using a 512 bit
key (Figure 8).

It can be seen that at a relatively larger message size,
around 212 KB, the time taken for encryption and decryption

42

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Key Generation

Figure 8. Encryption and Decryption

is less than 2 seconds. However as the message size increases
in the order of megabytes, the time is around 16 seconds. A
67 MB message takes around 16 seconds to encrypt and 9
seconds to decrypt, which is still acceptable for sending such
a large message. Moreover, most webmail systems have a
limit of 10 MB on message sizes.

3) Keyword Encryption: In this phase the performance of
AES algorithm is studied (Figure 9). Each word from the
message is extracted and is encrypted using the AES algo-
rithm. There is no decryption phase here, as the encrypted
words are checked against each other.

It can been seen that there is a linear relationship between
the message size and time taken for encrypting keywords. It
has to be also noted that when there are duplicate words the
encryption is not done twice. However, in these experiments
each word was generated at random with a random size (with
maximum as 25 bytes). The probability of the same word

Figure 9. Keyword Encryption Time

repeating is very low for this case.

B. Space Complexity

In our study of the space complexity, we were interested
in the following:

1) Increase in size of the keyword index
2) Increase in the size of the final mail
1) Impact of increase in size on the keyword index: The

AES algorithm is executed over the generated keywords
and the impact of the size of the encrypted keywords on
execution time is examined (Figure 10). There is close to
a 10 times increase in the generated encrypted keywords
compared to the keyword’s actual size. This can pose a
design challenge at the database level on how to store these
keywords for efficient lookups at the server level.

Figure 10. Keyword Encryption Size

43

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Impact of increase on Final Message size: Here we
study the total increase in the email size. The email that is
sent to the server of the recipient will be in this format and
the any increase in size, will increase the overall network
traffic.

Figure 11. Message Size

It can be seen from the graph (Figure 11) that initially,
when the message is transferred, there is not much of an
increase in the encrypted message size (8 bytes to 186
bytes, 18 bytes to 199 bytes, 404 bytes to 722 bytes).
However as the size increases beyond 4MB there is a steep
increase in the difference between the message size and
encrypted message (4MB to 5MB, 8MB to 11MB, 66MB to
90MB). On average, there is a 3 times increase in size when
encrypted using RSA. This is another major factor that has
to be taken into consideration while using this system.

VIII. CONCLUSION

We proposed a privacy preserving architecture for our
webmail system, that enables secure communication of
messages using a public/private key model and privacy
preserving keyword search functionality using AES key
encryption algorithm.

Our approach requires every client to install an exten-
sion to their browser and the cloud computing provider
to modify their webmail application to support encrypted
keyword search. Even though technically this is a possible
solution, economically a cloud provider might not prefer this
approach. Most of the business models in web application
are built around the contextual advertising model, where
the cloud provider relies on the user’s data to deliver the
relevant advertisements to the user. In our case as the
data is encrypted in the server, the cloud provider will not
have access to the user’s data. Works such as Toubiana
et al. [31], try to address this problem by offloading the
keyword extraction in contextual advertising to the client

browser. Approaches like [31] needs to be modified for our
architecture so that our system remains economically viable.

Unlike in PEKS [25], our system does not use a trapdoor
function. This makes our system more susceptible to chosen
plaintext attacks. If a recipient of a mail is also a potential
attacker, the recipient can eavesdrop the encrypted keyword
information sent from the sender to the server, and make a
guess on what keyword represents the encrypted cipher by
analyzing a number of mails sent to the recipient (attacker)
from the same sender. However, our contribution is the
proposal of the framework. The encryption algorithms used
can be modified to utilize more secure alternatives in our
architecture.

Our system makes an assumption that the browser and the
browser extension framework is trustworthy. We believe it
is a fair assumption, as the user can control and monitor the
browser activity and any aberration of browser functionality
can be detected by the user (at-least theoretically).

In our performance study, we see a considerable increase
in the size of the message and the keywords after encryption.
This will have a direct effect in the database storage and the
keyword look up time.

We have also not implemented the functionality to add the
incoming messages to the encrypted search database. Future
work should address this. Future work also involves detailed
study on the strength of the encryption, support to range
and similarity searches, improvements to the algorithms used
whilst maintaining performance.

ACKNOWLEDGEMENTS

The authors would like to thank the IBM Center of
Advanced Studies and NSERC for their funding.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” National Institute of Standards and Technology,
Information Technology Laboratory, vol. Version 15, 10-7-09,
p. 2, 2009.

[2] D. Kenny and J. Marshall, “Contextual marketing–the real
business of the Internet.,” Harvard Business Review, vol. 78,
no. 6, p. 119, 2000.

[3] “MarketsAndMarkets.com Cloud computing market - global
forecast (2010 -2015).”

[4] R. Gellman, “Privacy in the clouds: Risks to privacy and
confidentiality from cloud computing,” in World Privacy
Forum, pp. 1–26, 2009.

[5] S. Warren and L. Brandeis, “The right to privacy,” Harvard
Law Review, pp. 193–220, 1890.

[6] “The United Nations Declaration of Human Rights,” The
American Journal of International Law, vol. 43, no. 2,
pp. 316–323, 1949.

[7] “Top Threats to Cloud Computing V1.0,” tech. rep.

44

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] T. Garfinkel and M. Rosenblum, “When virtual is harder than
real: Security challenges in virtual machine based computing
environments,” in Proceedings of the 10th conference on
Hot Topics in Operating Systems-Volume 10, p. 20, USENIX
Association, 2005.

[9] K. Ramachandran, H. Lutfiyya, and M. Perry, “Chaavi:
A Privacy Preserving architecture for Webmail Systems,”
in CLOUD COMPUTING 2011, The Second International
Conference on Cloud Computing, GRIDs, and Virtualization,
pp. 133–140, 2011.

[10] J. Postel, “RFC821: Simple mail transfer protocol,” tech. rep.,
1982.

[11] T. Dierks, “The transport layer security (TLS) protocol ver-
sion 1.2,” 2008.

[12] P. Zimmermann, The official PGP user’s guide. MIT Press,
May 1995.

[13] S. Goldwasser and S. Micali, “Probabilistic encryption {&
how to play mental poker keeping secret all partial in-
formation,” in Proceedings of the fourteenth annual ACM
symposium on Theory of computing, (New York, NY, USA),
pp. 365–377, ACM, 1982.

[14] C. Gentry, A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[15] A. Yao, “Protocols for secure computations,” in Proceedings
of the 23rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 160–164, Citeseer, 1982.

[16] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a Ser-
vice: Privacy-Aware Data Storage and Processing in Cloud
Computing Architectures,” in 2009 Eighth IEEE International
Conference on Dependable, Autonomic and Secure Comput-
ing, pp. 711–716, IEEE, 2009.

[17] TCG, “Trusted Computing Group (TCG) and the TPM 1.2
Specification,” in Trusted Computing Group, 2005.

[18] “Trusted Computing: An Already Deployed, Cost-Effective,
ISO Standard, Highly Secure Solution for Improving Cyber-
security,” tech. rep.

[19] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
H. Isozaki, J. M. McCune, B. J. Parno, A. Perrig, M. K.
Reiter, and H. Isozaki, Flicker: an execution infrastructure
for tcb minimization, vol. 42 of an execution infrastructure
for tcb minimization. New York, New York, USA: ACM, Apr.
2008.

[20] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Advances in
Cryptology-Eurocrypt 2004, pp. 506–522, Springer, 2004.

[21] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
Preserving Multi-keyword Ranked Search over Encrypted
Cloud Data,” in IEEE INFOCOM, 2011.

[22] E. Kangas and L. President, “The Case for Email Secu-
rity,” Published as a Lux Scientiae Article, available at
http://luxsci. com/extranet/articles/email-security. html (ac-
cessed 1 May 2007), 2004.

[23] L. Kaufman, “Data Security in the World of Cloud Comput-
ing,” Ieee Security And Privacy, vol. 7, no. 4, pp. 61–64,
2009.

[24] “http://getfiregpg.org/s/home (Last accessed on June 23rd
2012).”

[25] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryp-
tion with keyword search revisited,” Computational Science
and Its Applications–ICCSA 2008, pp. 1249–1259, 2008.

[26] “http://www.hanewin.net/encrypt/rsa/rsa.htm (Last accessed
on June 23rd 2012).”

[27] “http://www.hanewin.net/encrypt/aes/aes.htm (Last accessed
on June 23rd 2012).”

[28] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[29] H. B. Westlund, “NIST reports measurable success of Ad-
vanced Encryption Standard - News Briefs - National Institute
of Standards and Technology - Brief Article,” Journal of Re-
search of the National Institute of Standards and Technology,
2002.

[30] B. Schneier, “Snake Oil. Crypto-Gram Newsletter
(http://www.schneier.com/crypto-gram-9902.html#snakeoil)
[Online on 05th September 2011],” 1999.

[31] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas, “Adnostic: Privacy preserving targeted advertis-
ing,” in 17th Annual Network {& Distributed System Security
Symposium, San Diego, CA, USA, Citeseer, 2010.

45

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

