
Organizing Security Patterns Related to Security and Pattern Recognition
Requirements

Michaela Bunke, Rainer Koschke, and Karsten Sohr
Center for Computing Technologies (TZI),

Universität Bremen, Germany
{mbunke|koschke|sohr}@tzi.de

Abstract—Software security is an emerging area in software
development. More and more vulnerabilities are published
and highlight the endangerment of systems. Hence, software
designers and programmers are increasingly faced with the
need to apply security solutions to software systems. Security
patterns are best practices to handle recurring security prob-
lems. The abundance of documented security patterns calls
for meaningful classifications to ease searching and assessing
the right pattern for a security problem at hand. Existing
classifications for security patterns consider only a small
number of patterns and their purpose is often focused on
implementation issues. Therefore, we identify missing aspects in
existing classifications and the similarities between design and
security pattern classifications. Based on that, we introduce two
new classification schemes. The first is based on application
domains formed by a literature survey on security patterns
published in the period of 1997 to mid-2012 to cover the whole
bandwidth of existing security patterns. The second is based
on a subset of the collected patterns that are concerned with
software and combines pattern-recognition needs and security
aspects.

Keywords-Security Patterns, Design Patterns.

I. INTRODUCTION

Existing security pattern classifications are often based
on a few security patterns. Their scope is often limited to
special areas such as implementation patterns. In addition,
the heterogeneity of the published patterns in this context is
very high. In that context, our paper provides a systematic
literature review of published security patterns in the period
of 1997 to mid-2012. We propose two new classification
schemes. The first summarizes all collected security patterns
and organizes them into application domains. The second
shows in detail which security and implementation forces
security patterns with respect to software have. This clas-
sification is an extension of our previous work presented
at the International Conferences on Pervasive Patterns and
Applications (PATTERNS 2011)[1]. We updated our previ-
ous work with new security patterns published till mid 2012,
enhanced it with a comparison of design and security-pattern
classifications and depict challenges in organizing security
patterns.

In the domain of software development, design pat-
terns have been proposed as specific solutions for recurring

problems in software design [2]. These patterns are also
often called software-design patterns. Yoder and Barcalow
summarized some existing patterns targeting security and
introduced the term security pattern [3], only three years
after Gamma et al. [2] proposed their design patterns.
Security patterns are best practices aiming at ensuring
security [4], [5]. Later on we will use the terminology
software-security patterns that describe software-related
security patterns. These patterns describe security aspects
relevant in software design, development, and maintenance.

Existing pattern classifications are mostly based on a
small subset of patterns. Their scope is often limited to
special areas such as implementation patterns. For instance,
Hafiz et al. formed their classification with only 14 security
patterns [6], but there exist many more security patterns.
Another problem, however, is that information-security ex-
perts are rarely development experts [7]. Thus, the usage
of existing security patterns and selecting them by way of a
classification is a difficult task for non-security professionals
who are interested in security aspects.

Therefore, we conducted a systematic literature review
and collected the published security patterns in the period of
1997 to mid-2012. We propose a new classification scheme
that summarizes 415 security patterns, a much longer list
than we found in three surveys [8], [9], [10] and the one
by Yoder and Barcalow [3]. Moreover, we shaped this
classification scheme towards the selection by application
domains, which is relevant for researchers and practitioners
who are interested in security patterns.

Retrofitting security aspects into a software system is
a difficult task [3]. Accordingly, it would be useful to
know which security aspects are already implemented in
a software. For instance, Gamma’s design patterns can be
detected automatically in software systems, but as far as we
know, no such approach exists for security patterns [11].
Design and security patterns seem to be very similar except
for the security factor, but their concrete similarities and
differences are still an open issue in research [11].

Hence, we inspect design and security classifications to
determine their similarities and differences to derive possible
criteria for a classification that reflect pattern recognition
requirements. We use the software-security patterns of our

46

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application-domain classification as a base for this further
distinction. Furthermore, our classification is inspired by
pattern-recognition needs and combined with the security
issues that these patterns solve. For example, this classifica-
tion can be used by software developers to choose patterns
according to particular security requirements. We will use
this as a basis for our further research in security-pattern
recognition and validation.

The remainder of this paper is structured as follows. An
overview of classifications in general is given in Section II.
Existing classification approaches for security patterns will
be described in Section III. In Section IV, we describe
our literature survey and depict challenges in categorizing
security patterns in Section V. Afterwards, we will in-
troduce our application-domain classification and specific
classification for software-security patterns in Section VI
and VII. In Section VIII we will discuss the two presented
classifications. Finally, we will conclude and give an outlook
in Section IX.

II. REQUIREMENTS FOR CLASSIFICATIONS

The increasing number of patterns makes it necessary to
develop classifications. This section describes requirements
for classifications in general and on security patterns in
particular.

A classification should be based on systematic methods
and techniques to organize a mass of patterns. A classifi-
cation organizes patterns into groups of patterns that share
one or many properties such as the application domain or
a particular purpose. The kind of properties that should be
used is not fixed and can be customized according to one’s
needs. A pattern can have more than one specific property.
Therefore, it may be included in more than one classification
category.

According to Buschmann et al., a pattern classification
scheme should meet some basic properties [12]. It must
both be simple and easy to learn. This should be supported
by using only a few classification criteria to reduce the
complexity for users. In addition, a classification should
reflect the main properties of a pattern to classify. Last
but not least, a classification scheme should provide the
possibility to classify new patterns.

Fernandez et al. pointed out that a classification should
make the application of patterns much easier along the
software life-cycle [13]. Because it is impractical to look
at all details of all patterns during pattern selection for the
problem at hand, a classification should help to understand
the essential nature and value of patterns.

A natural way to classify patterns is to categorize them
according to the criteria shown in Figure 1. A simple and
intuitive classification can provide one or more of these
criteria:

• Discipline - categorize patterns according to the disci-
pline when they are applied such as requirements or

Criteria

Purpose

Scope

Granularity

Paradigm

Domain

Discipline

Figure 1. Intuitive classification.

reverse engineering.
• Domain - differentiate patterns by their application

domain such as network, embedded systems, or dis-
tributed systems.

• Granularity - rank patterns depending on the level at
which they address a system, e.g., they may address
software design or coding patterns.

• Paradigm - sort patterns according to paradigms, e.g.,
programming paradigms such as object-oriented or im-
perative programming.

• Purpose - order patterns by the kind of problem a
pattern solves and the point in time it may be applied.

• Scope - organize patterns with regard to the character-
istic of using them, e.g., class or object representation
(see [2]).

III. EXISTING CLASSIFICATIONS

The presented classification criteria in Section II are
simple, but do not always fit for selecting the right pattern
for a special purpose because of their generality. Therefore,
more specific classification schemata based on one or more
criteria have been developed to meet special purposes. Due
to the fact that security patterns are formed according to
the archetype of design patterns, we will start with clas-
sifications for design patterns and continue with existing
security-pattern classifications. We will close this section
by discussing gaps in security-pattern classifications and
whether design-pattern classifications can be used to classify
security patterns.

A. Design-Pattern Classifications

Gamma et al. introduced the first classification of design
patterns (GoF patterns) [2]. GoF (Gang-of-Four) patterns is
an alternative name for the design patterns introduced by
Gamma. They classified their patterns based on two criteria:
scope and purpose.

As depicted in Figure 2, the “scope” dimension is dis-
tinguished by object composition and class inheritance. The
purpose dimension is split into creational, a structural and a
behavioral criteria. A pattern that is related to an object cre-
ation fits into the creational criteria. If a pattern is concerned

47

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Creational BehavioralStructural

Factory

Singleton

Class Related

Object Related

Purpose

(class based)
Adapter

Facade Iterator

Interpreter

Scope

Figure 2. GoF classification with a few examples [2].

with compositions or structures that are created by classes or
objects, it is called structural. The last criterion behavioral
deals with the way communication or responsibilities are
distributed.

Zimmer organized the GoF patterns according to their
relationships [14]. He classified the relationships in pairs
(X,Y) where X and Y are different design patterns. The
relationships are defined as follows:

• X uses Y in its solution,
• X is similar to Y,
• X can be combined with Y,

With these categories, he introduces a new layer structure
for pattern classification. According to Figure 3 relationships
and structure of patterns are distinguished into three layers:

• Basic design patterns and techniques
• Design patterns for typical software problems
• Design patterns specific to an application domain

Basic design patterns and techniques

Patterns specific to an application domain

Patterns for typical software problems

X is similar to YX uses Y in its solution X can be combined with Y

Interpreter

Composite

Visitor

Decorator

Figure 3. Zimmer’s classification with a few examples [14].

Later on, Buschmann et al. presented another organizing
approach [12]. They state that all patterns reside on different
abstraction layers and it would be more useful to organize
them into criteria that express their abstraction level. There-
fore, the authors divide their own patterns into three kinds
of patterns:

• Architectural patterns: specify the fundamental struc-
ture of applications.

• Design patterns: describe often occurring structures
of software-component communication that solve a
recurring design problem for a specific context.

• Idioms: coding patterns, that is, proven conventions and
techniques used during the implementation phase of an

application.
Some patterns depend on the technology or domain

they are used for and implemented in. These are so-called
domain-dependent patterns, e.g., Java Platform, Enterprise
Edition (JEE) design patterns. These patterns can be used
only in the JEE environment. A system of such patterns has
been described by Alur et al. [15]. The authors want to keep
the classification simple for their patterns, so they assume
“each pattern hovers somewhere between a design pattern
and an architectural pattern“. These patterns can be classified
in the following categories according to their logical tiers
(see Figure 4). The presentation tier is responsible for
creating the presentation used by the client to interact with
the user. The business tier is responsible for executing the
business logic of the application and applies the business
logic to the information received from the integration tier.
The integration tier performs the data-access operations for
the application.

Integration

Business

Patterns Tier

PresentationComposite View

Service Locator

Service Activator

Figure 4. JEE pattern classification with a few examples.

The design patterns we are discussing exist since 1994.
Classifying them is not a highly active research topic in
the design-pattern community. An exception is arising new
technologies like JEE which require new classifications or
the re-evaluation of existing ones. The older ones were not
refined further, except for some theoretical abstractions like
the one by Hasso and Carlson [16]. They use a complex
algebraic structure to classify design patterns.

In 2006, Shi and Olsson identified a lack of classifications
for the need of design-pattern recognition [17]. They decided
with the hidden agenda of detecting design patterns a new
classification approach for the 23 GoF patterns. They suggest
a reclassification related to the need of pattern detection by
using five categories language provided, structure driven, be-
havior driven, domain specific and generic concepts. When a
pattern is implemented in some programming language and
can be identified by looking at the inheritance hierarchy or
specific method names, the pattern is part of the language
provided category. Patterns that are deeply shaped by their
structure and can be identified by their inner-class relation-
ships such as the Bridge or Composite pattern are structure
driven patterns. Patterns that have a structure coupled with
a specific behavior fit in the category behavior driven such
as Singleton or State pattern. Patterns such as Interpreter

48

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or Command serve domain-specific needs. Detecting such
patterns requires domain-specific knowledge. They belong to
the domain specific category. Patterns in the category generic
concepts lack a definite structure and behavioral aspects such
as the Memento pattern.

Their classification allows them to exclude the domain-
specific patterns and generic concepts, which cannot be
found with common behavioral and structural pattern de-
tections. Moreover, they excluded the language-provided
patterns from their detection process because of their easy
detection using name matching, too. Patterns that reside in
the categories behavior driven and structure driven were
used for design-pattern detection in their tool PINOT. After
Shi and Olsson’s classification approach, no new design
pattern schemata have been developed to the best of our
knowledge.

B. Security Pattern Classifications

One of the simplest classifications for security patterns
was used by Kienzle et al. [18]. They presented the struc-
tural and procedural criteria for the differentiation of the
patterns described in their final report. If a security pattern
is concerned with compositions or structures that are imple-
mented in a software product, it is structural. If a security
pattern improves the process for developing secure software
with regard to the organization or management, it is called
procedural.

Konrad et al. [19] proposed a classification method for
security patterns by re-using the classification for design
patterns such as creational, structural and behavioral from
Gamma et al. [2]. They enhanced their classification by
adding further categories such as network, host, and appli-
cation (see Figure 5). In their work, they considered only
the security patterns introduced by Yoder and Barcalow [3].

Creational BehavioralStructural

Application

Host

Network

Session

Session

Check Point

Check Point

Authorization

Check Point

Authorization

Authorization

Purpose

Limited View

Full View with

Errors

Session

Abstraction Level

Figure 5. The classification by Konrad et al. with a few examples [19].

Schumacher’s security patterns book offers a new classifi-
cation system [20]. The classification is based on Zachman’s
framework for enterprise architecture [21]. It is presented
along two dimensions. One dimension represents different
views on the interrogatives “what“, ”how”, “where“, ”who”,
“when“, and ”why“. The second dimension shows different
information model views such as business model or tech-
nology model. Schumacher et al. enhanced this framework
by adding the column security to emphasize the security

view and to be able to address all model levels. They
organized only the patterns contained in the book into their
classification.

According to the JEE pattern classification by Alur et al.
(see Section III-A), Steel et al. classify their JEE security
patterns in a similar way [22]. They separate their patterns in
layers that are typical for the development in the JEE domain
such as Web, Business, and Web Service, and added a fourth
tier that represents the special issue of identity management
(see Figure 6). This classification is designed only for the
special purpose of JEE patterns and does not consider other
types of patterns.

Password Synchronizer Identity

Secure Message Router Web Service

Business

Web

Secure Session Object

Authorization Enforcer

Patterns Tier

Figure 6. The classification by Steel et al. with a few examples [22].

Rosado et al. related security requirements to security
patterns and classified security patterns into two categories:
architectural and design patterns [23].

Hafiz et al. note that simple security-classification con-
cepts are not sufficient to create a partition of security pat-
terns [6]. Their focus is to classify security patterns by their
security impact. Their subset of 14 different security patterns
is organized by a classification of application context, a
Microsoft classification scheme, the CIA [24] and STRIDE
model [25]. The acronym STRIDE contains the concepts
Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege. Moreover, they
proposed a classification based on a tree structure combined
with the STRIDE model to join the software and security
view in terms of security patterns [6]. The STRIDE model
is normally used for threat modeling including identification
and prioritization of security vulnerabilities. It is a common
tool for security architects who have to prioritize the miti-
gation effort of security techniques.

VanHilst et al. introduced a multi-dimensional matrix
of concerns to classify security patterns [26]. It addresses
the problem coverage and pattern classification. Their idea
was that each matrix dimension represents a well-defined
list of concerns. To classify security patterns, the primary
dimension contains concerns of life-cycle activities, such as
domain analysis or requirements engineering. The second
dimension differentiates security patterns by their compo-
nent source type such as new code, legacy, or wizard-code.

49

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Other dimensions may hold types of security responses
like prevention or mitigation, but they can also be further
customized to a user’s need. Their classification was tested
by different members of their team, who added six different
security patterns to the classification.

Fernandez et al. state that security patterns are architec-
tural patterns [27]. On that account, their approach deals
with two classifications that differ in different viewpoints of
security patterns. On the one hand, they introduced a classi-
fication by a hierarchy of layers and on the other hand, they
proposed a classification based on the relationships between
patterns by using an automatic relationship extraction and
analysis technique. This classification is abstract and regards
only a small number of security patterns.

Washizaki et al. point out that the previously introduced
classifications have only a few dimensions and do not
embrace the relations between patterns [28]. Hence, they
introduce a meta model to express the patterns’ proper-
ties and relations uniformly. The base is an excerpt of
the multidimensional classification dimensions presented by
VanHilst et al. [26]. They selected the dimensions as fol-
lows: Lifecycle stage, Architectural level, Concern, Domain,
Type of pattern and Constraint. In addition, they used the
three UML standard relationship types association, gener-
alization, and aggregation to model relationships between
security patterns, for example, the Firewall pattern [20] is
the generalization of the Address Filter Firewall [29] and
the Application Firewall [30] pattern.

They also propose two instances for the meta model
that represent two points of view, namely pattern-to-pattern
relations, represented as a pattern graph, and pattern-to-
dimension relations modeled as a dimension graph. They
tested their approach with only eight different security
patterns that are close to implementation patterns.

C. Classification Similarity

There exists an evolution of design and security pattern
classifications with respect to the used classification ideas.
We show the influence among security and design-pattern
classifications in Figure 7. Some ideas like the purpose of the
GoF’s design-pattern classification were reused by Konrad
et al.’s security pattern classification. Moreover, the criterion
structural has been adapted by Kienzle et al., whereas the
criterion procedural and behavioral in the GoF classification
have different meanings. Procedural is used with respect
to process patterns for the management or organization of
software development in contrast to behavioral from the GoF
classification where patterns are only software patterns that
will be implemented in a software system.

The criteria architectural and design were proposed by
Buschmann’s classification scheme et al. [12] and picked
up by Rosado et al. [23] and used in conjunction with
requirements for a new classification schema.

The three-tier JEE classification [15] and the four-tier

Kienzle et al.
(2002)

Steel et al.
(2005)

VanHilst et al.
(2008)

Washizaki et al.
(2009)

Gamma et al.
(1994)

Zimmer
(1995)

Buschmann et al.
 (1996)

Shi and Olsson
(2006)

Alur et al.
(2001)

Hasso and Carlson
(2005)

Classifications

D
e
sig

n
 P

a
tte

rn
s

S
e
cu

ri
ty

 P
a
tt

e
rn

s

Fernandez et al.
(2008)

Hafiz et al.
(2007)

Rosado et al.
(2006)

Schumacher et al.
(2005)

Konrad et al.
(2003)

Figure 7. Design and security pattern classification relations – dashed
lines between publications highlight alike ideas.

classification for security patterns [22] are very similar,
too. They differ only in one additional tier by the secu-
rity patterns, which deals with identity information. The
other three tiers have sometimes different names Presen-
tation/Web, Business/Business and Integration/Web Service,
but describe the same criterion (see Figure 4 and 6).

Organizing patterns according to their relationships was
introduced by Zimmer and reused by Fernandez et al. and
Washizaki et al. , but their relations are different. Zimmer
[14] depict a graph with only three predefined types of
relationships and Washizaki et al. focus on the UML stan-
dard to represent pattern relations like generalization or use
relationships [28]. In contrast to that approach, Fernandez
et al. use automatically extracted relationships based on the
pattern description [27].

D. Classification Distinction

We showed that security-pattern classifications were influ-
enced by design-pattern classifications. All published clas-
sifications have one element in common: they take only
a small number of patterns into account. On the security-
pattern side, the used patterns are often very similar to the
patterns first introduced by Yoder and Barcalow [3] and on
the design-pattern side the approaches often consider the
“core” design patterns described by Gamma et al. [2]. Both
subsets of patterns are patterns that will be implemented in a
software system. This may lead to the impression that only a
handful security and design pattern exist and imply that only
programming issues are covered by these patterns. However,
Henninger et al. [31] showed in 2007 that there exist more
than the few patterns published by Gamma et al. [2] and
Buschmann et al. [12]. This statement can also be extended
to security patterns, which can also describe enterprise or
other security related issues.

Most security pattern classifications are more complex to
cover more properties or split purposes or domains into more

50

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dimensions than design patterns. Because of that, we can
assume that the security pattern community is aware of the
security pattern’s heterogeneity, which reflects the additional
dimensions in the security-pattern classifications. Design-
pattern classifications are often tailored to one group of in-
terest – the software developers. Hence, they are focused on
helping to choose the right pattern in design and developing
to reach a good code quality and system structure. Due to
the fact that the security-pattern audience has more than one
group of interest such as security, software development, or
enterprise-process design, the security-pattern classifications
are built from more heterogeneous criteria than the design-
pattern classifications. Yet, not all interests can be covered
in one classification. Therefore, more security classifications
have been developed till now and developing new ones is
still a current topic in the security-pattern community.

A security view is often added to these classifications
by using common-threat modeling such as CIA [24] or
STRIDE [25]. Adding new views increases the complexity
of a classification. A problem, however, is that information
security experts are rarely development experts [7]. Because
increasing the complexity in security-pattern classifications
can make the usage of a classification more difficult for users
that have no knowledge or experience with security. It may
also lead to difficulties in understanding for other interest
groups within the addressed security-pattern audience.

E. Summary

Security patterns related to software can be categorized
in a way similar to design patterns. Security patterns that
describe other aspects than software-related issues cannot
be distinguished by the criteria the aforementioned design-
pattern classifications offer, such as “tier”, “class related”
or “language provided”. Therefore, we plan to classify the
security patterns in two steps. First, we will look at all
security patterns and organize them according to their appli-
cation domain with respect to their heterogeneity. Secondly,
we will focus on software-related patterns and will develop
a new classification with existing criteria of design-pattern
classifications with respect to software-security patterns.

IV. COLLECTING SECURITY PATTERNS

Existing security classifications are limited by the number
of chosen security patterns. In addition, existing security
pattern surveys are biased by their focus on the same set
of security patterns such as the ones of Yoder and Barcalow
[3]. The SecurityPatterns website, which provides a short
list of security patterns, offers a few more patterns, too,
but mixed with articles that describe the application of
security patterns [32]. This was not an appropriate position
for starting our research activities. Therefore, we decided to
conduct a literature survey to provide a proper background
for our new classification approach, which should cover the
whole range of published security patterns till today. This

Figure 8. Conferences Involved in the Initial Article Selection.

section describes how our literature survey was conducted
systematically following the guidelines by Kitchenham [33],
[34].

A. Article Selection and Discovery Process

We started our literature research with the surveys carried
out by Laverdiere et al. [8], Heyman et al. [9], and Yoshioka
et al. [10]. Their surveys give a good overview of published
patterns, but they refer only to often described security
patterns. Hence, we also considered common pattern-related
conferences (see Table I). and looked for security patterns in
the IEEE Digital Library [35] and the ACM Digital Library
[36] and considered two security patterns books [20], [22].

The discovery process was split into two parts. One part
is the selection of articles published at pattern conferences
and the second part is the search for electronic publications.

1) Searching Through Pattern Conferences: The
aforementioned pattern conferences (see Table I) of the
years 1997 to mid-2012 were skimmed for several keywords,
such as cryptographic, security, software, or secure. At first,
we picked out all publications that contain these keywords.
In this initial selection phase, we found 1268 articles (see
Figure 8). Secondly, we read the abstract if it described the
presentation of a security pattern and made a note of the
authors, publication year, and title. Thereafter, we read the
publications not filtered out previously to verify that they
describe security patterns. In this step, we enhanced our list
with each identified pattern for further readings. Finally, we
scanned the publication references and collected referenced
publications containing the aforementioned keywords. We
stopped the step of cross-reference scanning when we did
not find new publications containing the keywords we
searched for.

2) Searching Through Electronic Publications: On
searching for other electronic publications we used the two

51

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Acronym Description

AsianPLoP Asian Conference on Pattern Languages of Programs
EuroPLoP European Conference on Pattern Languages of Programs
KoalaPLoP Australian Conference on Pattern Languages of Programs
PATTERNS International Conferences on Pervasive Patterns and Applications
PLoP Conference on Pattern Languages of Programs
SugarLoafPLoP American Conference on Pattern Languages of Programming
VikingPlop The Nordic Conference on Pattern Languages of Programs
GRID-STP International Workshop on Security, Trust and Privacy in Grid Systems
ICOMP International Conference on Internet Computing
IFIP WC 11.3 Working Conference on Data and Applications Security
SECURWARE International Conference on Emerging Security Information, Systems and Technologies

Table I
CONFERENCES INVOLVED IN THE INITIAL ARTICLE SELECTION. A GREY BACKGROUND INDICATES THE DISCOVERY BY CROSS-REFERENCES.

digital libraries provided by IEEE and ACM [35], [36]. Both
offer an extensive database search for published publications.
First of all, we used the simple search to find publications
that contain the aforementioned keywords. Due to the fact
that the number of results was very high and too unspecific,
we used the advanced search field provided by the websites
to obtain more localized results. There, we concatenate the
following options with ”and“ and limited them to get better
results:

• The year of publication date has been limited from the
year of the first published security patterns 1997 to mid-
2012.

• The full text must contain the word “pattern”.
• The title must contain one of the aforementioned key-

words.
Unfortunately, these restrictions still provided many un-

wanted results. Therefore, we skimmed the result list from
top to bottom – where the search engines of the digital
libraries provided the ordering based on relevance – and
discontinued if we read more than ten papers that do not
deal with security patterns in their abstract.

Further, we skimmed the collected patterns like the afore-
mentioned conference publications. We verified that they
describe one or more security patterns and then collected
their cross references.

B. Summary

We identified 67 different publications describing security
patterns, including books, journals, proceedings, and tech-
nical reports. Most of them were found by looking at the
Hillside Group [37] pattern conferences such as PLoP and
EuroPLoP (see Figure 9 and Table I) and books. Another
publication type containing many security patterns were
technical reports discovered by cross references. New con-
ferences that have only a few security-pattern publications
are also discovered by cross references (see Table I).

The search at the ACM and IEEE Digital Library pro-
duced many false-positive articles that were at a closer look
no security pattern descriptions, but deal with them in other

Figure 9. Distribution of security patterns across different venues; white
bars denote conferences, the grey bar technical reports, and the black bar
books.

ways like discussing secure software design in practice [38].
Some publications describe more than one pattern. In

total, we got 415 security patterns. This list identified that
some of these patterns have been described more than once.
Hence, we filtered out duplicates and reduced the number
of patterns to 364. These duplicates were identified by the
use of similar names and then comparing their descriptions.
Because of the abundance of patterns, we were not able to
check in depth whether two patterns with different names
relate to the same concept. This was also forced by the
nonuniform descriptions of the patterns, which will be
discussed in the next section.

V. CHALLENGES IN CATEGORIZING SECURITY
PATTERNS

Identifying duplicates is not the only challenge in catego-
rizing security patterns. We agree with Yoshioka et al. [10]
and Heyman et al. [9] that the abstract description of
patterns is another challenge. Because the quality of the
security-patterns descriptions may influence the categorizing
outcome, we spent some time in inspecting the description
forms.

52

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Description Form Inspection

Various descriptive models for security patterns exist
within the security-pattern community [39]. The POSA1

model described by Buschmann et al. is said to be frequently
used to describe the context and usage of security patterns
[12]. Yet, during our literature review we observed that the
patterns are often described in custom styles and do not
follow strictly the POSA model.

Therefore, we gather all used description aspects in the
collected security-pattern publications to review how secu-
rity patterns are described formally. We assume that descrip-
tion aspects that are often used in several pattern descriptions
provide the best clues for selecting and organizing security
patterns.

B. Section Assessment/Examination

There exist 63 different sections or aspects such as Prob-
lem, Intent or Known Use that are used in the 67 collected
security pattern publications. The heterogeneity in naming
the aspects is very high and no mapping between the differ-
ent names exists like the one by Henninger et al. between
the POSA and GoF descriptions [31]. For this reason, we
identified significant sections which can be used to get
a first impression on security patterns and make patterns
comparable (see Table II).

Context is a frequently used description aspect with 49
of 67 hits, but the context description is often very short. In
some publications, it consists only of one or two sentences
(see [40] or [41]). This circumstance makes it hard to
obtain sufficient knowledge or even an idea of what the
pattern is about. Similar findings were made by Laverdiere
et al. for the naming and the section Intent in security-pattern
descriptions [8].

The Problem aspect occurs in about 84 percent of the
publications. In many cases, these problem descriptions are
abstract or describe a simplified problem for the security
pattern (e.g., [40]). Therefore, this description aspect is less
applicable to categorizing security patterns for an applica-
tion domain but suitable to gather the security aspects it
addresses.

The Related Patterns aspect requires a good knowledge
of other security patterns and their application domains to be
used for a distinction. This also applies to the Consequences
aspect where additional knowledge is required to be able
to relate to application consequences in the security area.
Hence, these sections cannot be recommended for novices
in security to accomplish a pattern distinction.

A Known Use aspect depicts where a pattern can be
found in real life. This section often labels software or
software parts like an application login screen, UNIX telnet
or Linux as operating system software. The given keywords

1POSA is the acronym of the design-pattern book series “Pattern-
Oriented Software Architecture” written by Buschmann et al. [12].

Sections Used by # Publications

Solution 58
Problem 56
Related Patterns 50
Consequences 50
Context 49
Known Use 46
Example 33
Forces 27
Example Resolved 25
Structure 25
Implementation 23
Dynamics 21
Intent 22
Also Known As 10
Motivation 10
Participants 8
Applicability 7
Variants 7
See also 7
Collaboration 5
Sample Code 5
Alias 4
Impairments 3
Resulting Context 3
Abstract 3
Benefits 2
Features 2
Properties 2
Preconditions 2
Resultant Context 2
Running Example 2
Alternatives 1
Class-Diagram 1
Classification 1
Conflicts 1
Contradictions 1
Dependencies 1
Design Issues 1
Example Instances 1
Hardware/Software 1
Implementation Factors 1
Implementation Issues 1
Implementation Example 1
Issues 1
Labels 1
Liabilities 1
Non-Security Known-Use 1
Non Software Example 1
Other Example 1
Participants & Responsibilities 1
Rationale 1
Reality Checks 1
Relationships 1
Resolved Example 1
Resulting Context 1
Security Factors and Risks 1
Security Objectives 1
Solution Example 1
Solution Implementation 1
Social Dependencies 1
Specific Context 1
Strategies 1
Trade-Offs 1

Table II
ASPECTS WHICH ARE USED BY SECURITY-PATTERN DESCRIPTION

FORMS. THE OFTEN USED ASPECTS ARE HIGHLIGHTED WITH A GREY
BACKGROUND.

53

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and explanations within this section give a good impression
to which domain this pattern can be applied.

A Solution aspect is used in about 87 percent of the
67 publications. The described solution in the collected
publications is frequently used and provides often a good
depiction of the security pattern and the problem it solves.
Moreover, this section often describes which security aspects
are covered by the pattern and how this could be imple-
mented by software-security patterns. If the description does
not provide a solution aspect, it can hardly be considered a
pattern description. One may argue that the GoF and POSA
description templates neither provide a solution aspect, but
they describe this aspect in a refined manner using the
description aspects Structure, Implementation and Running
Example. This heterogeneity in the form of descriptions is
one aspect that we have to deal with and will be discussed
in the following section.

C. Challenges for our Classification Approach

Besides the high variation in the pattern description
quality, we note that not all often occurring aspects are
equally useful to get a quick access to a pattern’s goal and
application domain.

If one does not have the time to read a whole pattern
description or has a lack of sufficient security knowledge
to understand the described pattern, we propose to look at
first at the Known Use aspect to get an idea of the pattern’s
application domain. On account of the good depiction of the
security pattern and the problem it solves in the Solution
aspect, we can recommend in a second step to look at
this section, if there exists no Known Use section or if
the containing information is not satisfactory. In addition,
the Solution aspect gives hints on how the pattern can be
implemented in software or used for end users or enterprise
processes.

With this strategy, approximately 80 percent of the pat-
terns can be sufficiently understood. The remaining 20
percent can only be organized by reading the full pattern
description because of their insufficient description structure
in comparison to the majority of security publication. So
we decided to read the whole pattern description for each
classification because of the high description heterogeneity
and high varying description quality.

During the pattern description-form examination process
we observed that some description-form aspects are filled in
an insufficient way. An example is the publication by Yskout
et al. where many aspects in the pattern description form
exist, but many of them are filled with one or two words or
with a few sentences [42]. Due to the fact that such an im-
precise description leaves much room for interpretation and
imagination about what the pattern describes, it increases the
difficulty in the distinction process for a new classification.
It may also compromise the correctness of distinction.

Many security-pattern description forms follow in some

aspects the POSA Template, but they are compounded by
different terminology like Problem and Motivation or See
Also and Related Patterns, which describe the same issue in
the publications. A uniform form of description is desirable.
Research should aim at improving the quality of security-
pattern descriptions. Initial work along this line has been
done but only for a small subset of patterns [9], [43].

VI. APPLICATION DOMAIN CLASSIFICATION

The new classification unifies the existing patterns into
a common scheme. In addition, not every task needs infor-
mation about attack surfaces or vulnerability classification
properties like STRIDE or other facets that are introduced
in Section III. On that account, we omit specialized criteria
like STRIDE and focus on universal differences among the
security patterns. With this in mind, we develop a new
classification with a more general perspective based on a
domain criterion (see Section II) and the security patterns
we collected in our systematic literature review (see Section
IV).

A. Organizing by Application Domain

To derive our classification, we first skimmed over the
data and collected keywords for the security patterns such
as user, password, operating system, enterprise or process.
These keywords were gathered by information we found in
the pattern descriptions.

JEE

3
.
S

te
p

2
.
S

te
p

1
.
S

te
p

Webservice

Windows

AIX

Implementation

Threads

Cookie Linux

Web

Software

Operating
System

Figure 10. Proceeding steps in our classification model.

In the next iteration, we went through the pattern list
and extracted keywords for the patterns. On further reading,
these keywords were unified into common groups. For
instance, we united the keywords AIX, Linux and Preforking
to the group Operating System. The result contains a mixture
of purpose and domain criterion. We formed 13 different
groups this way. To further simplify the classification along
the lines described in Section II, these keywords were further
condensed to form an application-domain based distinction,
which is easy to understand and intuitively applicable (see

54

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10). Finally, Figure 11 depicts the five target appli-
cation domains that were discovered: Enterprise, Software,
Cryptographic, User, and Network. They are described in
the following in more detail.

Software

Network

Crypto. EnterpriseUser

Figure 11. Application-domain based classification.

B. The Application-Domain Criteria

Enterprise-security patterns deal with aspects that are im-
portant for enterprises to ensure security in several enterprise
segments such as third-party communication with suppliers.
This means security in processes, physical authentication
to several areas, risk mining or securing communication
in internal and external businesses. A good example of
this pattern type is the Manage Risk pattern introduced
by Elsinga and Hofman [44]. The problem addressed by
this pattern is as follows: “What is the right (combination
of) paradigm(s) to formulate the corporate security strategy
in order to select and implement the appropriate set of
security safeguards?” The pattern suggests to instruct people
and units to pay attention on known and unknown risks to
develop prevention and roll-back strategies.

Network-security patterns address network infrastructures
and their ideal composition. For instance, the Packet Filter
Firewall pattern describes how to shield an internal network
from Internet attacks just by tunneling the communication
traffic through a single controllable instance [20] and the
Virtual Private Network pattern [39] depicts how secure
connections over public networks such as the Internet can be
established. The point-to-point tunneling protocol (PPTP) is
a specific implementation of this pattern [97].

User-security patterns are focused on user behavior or
their awareness of security issues, for example, the Password
Lock Box pattern, which encourages the user to protect
master passwords with the highest level of security [52].
It stresses the significance of protecting master password
files and depicts situations where such a file can be useful.
The Keep It Secret pattern [52] highlights that published
or publicly known passwords pose a potential danger to be
misused by attackers. To minimize this effect, one should
keep a password secret or use Password Salt (another
security pattern) to vary the password [52]. Another pattern
in this domain describes how one can configure the web
browser to control how and when cookies are set and used
[54].

Software-security patterns describe mostly how to struc-
ture parts of software to ensure security requirements.
Sometimes they also describe a specific behavior or way to
manage or control a data flow in a secure way. On one hand,
patterns in this domain can be very specific like JEE patterns,
which can be applied only to Java enterprise applications
[22]. An example is the Container Managed Security pattern
[22], which is a standard way to enforce authentication and
authorization in a JEE application so that no special hard-
coded security policies are necessary. On the other hand,
patterns in this domain can be more general like the Single
Access Point pattern, which models a kind of login structure
that can be found in several software systems like UNIX,
ICQ or Twitter [3]. Patterns of this application domain can
also be called Security Design Patterns along the lines of
the GoF design patterns, which also focus on software.

Cryptographic security patterns depict secure commu-
nication between two applications over a network. They
are often described abstractly. Therefore, it is not clear
whether these patterns reside in the Network or Software
domain. Their implementation or application is possible in
both domains. On that account, we view them as a part
of network and software in our classification (see Figure
11). An example is the Sender Authentication pattern. It
presents the problem and solution how to guarantee that a
received message has been sent by a person one expected
[40]. Obviously, such a pattern can be applied at network
level (level 3 and 4) or at application level, and depending
on that, it resides on the Network or Software application
domain.

The aforementioned classifications in Section III cover
only parts of the fields we discovered. The Network domain
is partly touched by the classification of Konrad et al. [19].
Schumacher et al. [20] factor Enterprise requirements cus-
tomizable with viewpoints in their classification, but they
do not distinguish other domains as our approach does. The
domains User and Cryptographic are not mentioned in the
existing classification approaches, although they represent
approximately one sixth of the patterns (see Table III).

VII. MERGING PATTERN RECOGNITION AND SECURITY
NEEDS

The application-domain classification scheme can be tai-
lored further to practical or research interests by employing,
for example, viewpoints as recommended by Fernandez
et al. [27]. For software engineering in particular, applicable
patterns are located in the category Software, which can
be further divided into specific purposes such as pattern
detection by using the existing pattern classifications by
Shi and Olsson [17]. Developing new viewpoints or finer
grained classifications to cover new needs in terms of
special purposes for one of the application domains is also
conceivable.

An interesting issue for us is the effect of implemented

55

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application
Domain Publications Describing Security Patterns

Total no. of
Security Pat-
terns

Enterprise [20], [45], [46], [47], [44], [48], [49], [50], [51] 86

User [52], [53], [54] 24

Cryptographic [40], [55], [56], [57], [58] 37

Network [20], [29], [39], [30], [41], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73] 56

Software [3], [18], [20], [22], [42], [47], [50], [54], [55], [57], [59], [63], [64], [67], [74], [75], [76], [77], [78], [79],
[80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96]

161

Table III
PUBLICATIONS AND NUMBER OF SECURITY PATTERNS PER APPLICATION DOMAIN

security aspects in software. The usage of security patterns
can harden and protect a software against common threats
[4], [5]. Halkidis et al. [98] showed that one can determine
architectural risks for a software systems through the fact of
usage or non-usage of security patterns. Therefore, we as-
sume that software which is designed using security patterns
is more secure, and if we are able to detect these patterns, we
can rate the degree of security of a software system by the
usage of security patterns. This is comparable to software
design patterns, which imply a higher code quality when
used appropriately.

A. Classification

Our approach is motivated by searching for security pat-
terns in software to be able to determine the built-in security
mechanisms of a software system. The application-domain
classification scheme indicates which security patterns are
relevant for designing software. Due to the fact that this
classification scheme is very general, we decided to tailor the
patterns in the Software domain further to our research goal.
We chose two dimensions for our classification to show the
pattern’s security impact and its purpose in terms of software
development. The first dimension represents the pattern-
recognition aspects and the second common security aspects
(see Figure 12). All classified software-security patterns in
detail can be found in the Appendix. Our classification
dimensions will be described in depth in the following
sections.

1) Pattern-Recognition Aspects: Early approaches to
design-pattern detection date back to the year 1996 [99].
There exist several specialized approaches of pattern recog-
nition that use different aspects of patterns for their de-
tection, such as structural, behavioral aspects or software
metrics. The common matching techniques are all based on
structural and/or behavioral aspects, e.g., [17], [99], [100],
[101]. Patterns of these aspects need different information

and analyses to be automatically detected in a software
system. Having a distinction for these aspects is very helpful
to define which analyses and what kinds of information are
needed to find a specific pattern.

Some existing security-pattern classifications depicted in
Section III are formed on ideas from formerly published
design-pattern classifications. Thus, they imply that security
patterns are like design patterns. We gave another picture of
the security-pattern landscape with our application-domain
classification. Due to the fact that we extracted software-
security patterns of the whole set of security patterns, we
can use some of the design-pattern classification criteria for
our needs.

Representing information relevant to pattern recognition,
we choose some criteria of the design-pattern classification
of Shi and Olsson [17]. Structural software-security pat-
terns are characterized by their particular class structure.
This structure can be realized by inter-class relationships
like inheritance, association or delegation relationships (see
also [17]). The Single Access Point pattern [3], [20] is such
a structure-driven pattern. It provides a single access to a
protected system. The focus, is on the pattern’s structure in
a software described through static relations rather than its
behavior at runtime. Behavioral software-security patterns
are primarily designed from a behavioral point of view. They
can be easier described and found by their typical behavior
than their structure (see also [17]). An example of such a
pattern is the Secure Logger [22]. It is a class that manages
the logging of data in a secure and centralized manner.
Generic Concept security patterns describe very general
solutions for security problems. Unfortunately, many of the
patterns in this category do not provide implementation de-
tails, UML diagrams or other information, such as example
code snippets, that can be used to distinguish between a
structural or behavioral character of the pattern. An example
is the Password Authentication pattern [18], which describes

56

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the secure management of passwords while designing a user
login.

Shi and Olsson [17] also provide the criteria Domain
Specific and Language/Framework provided but they cannot
be directly used for our security-pattern classification. Due
to the fact that security patterns are mostly written in an
abstract way it is not possible to classify a pattern according
to these two criteria. A similar analysis has to be made
for the language-provided patterns which manifest through a
framework-specific structure or method names for this type
of patterns.

2) Security Aspects: Developers tend to view IT security
in terms of software requirements rather than taking the
perspective of an attacker. Software patterns are usually
chosen by developers with a particular goal in mind. For
this reason, we employ general security goals for our pattern
classification and not the STRIDE model, which focuses
on the attacker’s perspective. In the area of IT security,
the most common goals are confidentiality, integrity, and
availability of data [102]. Confidentiality guarantees the
secrecy of data, whereas integrity makes sure that data are
not modified in an unauthorized way. The Secure Visitor
pattern fulfills the latter aspect. Nodes can only be accessed
by a Secure Visitor who prevents unwanted access and unau-
thorized modifications of nodes in hierarchically structured
data. Availability means that data/services are accessible.
The Keep Session Data in Client pattern [92] provides the
accessibility to a website if the connection between client
and server is interrupted for a short time. Sometimes, non-
repudiation (proving an action to a neutral and trustworthy
third party) and accountability (logging certain actions for
audits) are also of interest. One pattern example of these
two aspects is the Audit Interceptor pattern [22]. It intercepts
audit requests and responses to and from the business tier
in JEE applications and logs them in an appropriate way.
In addition, the identification of principals (e.g., users, ma-
chines, and processes), called ”authentication“, is important
as well as access control, which determines which principal
may access which data. Both aspects are used in the Secure
Visitor pattern [20] where the visitor has to verify a user’s
credentials and check it against the access control rules
for modification. As a consequence, our classification con-
siders confidentiality, integrity, availability, non-repudiation,
accounting, authentication, and access control in the second
dimension.

B. Results

We organized all software-security patterns that we de-
scribed in Section III according to the aforementioned
aspects (see Appendix for details). We detected that the
software-security patterns often describe integrity and con-
fidentiality problems (83 and 62 times, respectively). Au-
thentication and access control issues are often used, too. In
total, 58 and 53 patterns per criterion can be found. Lesser

attention in the software-security patterns have the security
aspects availability, accountability, and non-repudiation with
22, thirteen, and two patterns, respectively, that deal with
these problems. As depicted in Figure 12, we found no
structural-driven pattern that covers accountability and no
generic-concept pattern that handles non-repudiation as-
pects. All other security criteria are matched by a software-
security pattern.

We detected 58 behavioral and 37 structural character-
ized software-security patterns. The majority of the patterns
are generic concepts. Generic concept patterns cannot be
directly used for a pattern recognition approach. Most of
these patterns do not provide implementation information
like example code that could enable a distinction into
structural or behavioral. A distinction can be made if further
inspections on the real usage of these pattern in software
systems have been conducted and concrete implementations
can be found and assessed. With this additional investigation,
it may be possible to detect such patterns in the future and
give designers a better idea of how to design and implement
these patterns in a software system. We also expect that for
some of the generic concept patterns like Red Team The
Design, we will find no implementations in software.

VIII. DISCUSSION

The presented application-domain classification scheme
fulfills the requirements of classifications in terms of ex-
pandability, intuitive use, and is applicable for security
laymen. This approach can be expanded by repeating the
proceeding steps described in Section VI-A for new patterns
if new application domains for security patterns emerge.
The intuitive use and the applicability for security laymen is
supported by the usage of only one criterion – selection by
domain– which is easy to decide for a user. We suppose
that a user knows in what domain she will work with
security patterns, e.g., an enterprise process designer may
select Enterprise as her application domain.

We expect that the application-domain classification helps
other researchers and practitioners with specific application
goals focusing on security patterns. A possible use case
for this classification is, e.g., when an enterprise process
architect is looking for a best practice to administer threats
and risks for his enterprise. Then she can have a look at all
enterprise-related patterns listed in the publications of Table
III and will find patterns like Risk Determination and Threat
Assessment [20] to solve her problems.

Furthermore, the second classification can help software
designers to choose the right security patterns for their
software system according to specific security requirements.
This classification gives also a detailed overview which
patterns can be used in general with respect to software
related issues. Moreover, it allows one to select a software-
security pattern according to its security attributes for the
software design phase or determining security features for a

57

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Recognition

Accountability

Authentication

Availability

Confidentiality

Integrity

Non−Repudiation

Secure Visitor

Secure Visitor

Partitioned Application

Partitioned Application

Password Authentication

Password Authentication

Keep Session Data In Client
Check Point

Subject Description

Subject Description

Single Access Point

Check Point

Subject Description

Password AuthenticationSecure Visitor

Access Control

Password Authentication

Keep Session Data In Client

Secure Logger

Secure Preforking

Secure Preforking

Secure Logger

Secure Visitor

Audit Interceptor

Audit Interceptor

Structural Behavioral Generic Concept
Security

Figure 12. Our software security-pattern classification with a few examples.

security assessment.
Besides the open issue – which concrete similarities

and differences design and security pattern have [11] –
we identified two additional gaps in research. One is that
additional work must be done to define a uniform description
for security patterns to increase the description quality. As
mentioned in Section V, some work has been done in this
area but as we showed, the heterogeneity even by newer
pattern publications is still very high. On account of this, it is
desirable to have all security patterns available from a single
source and presented in a uniform format like other existing
open databases for design patterns (e.g., [103], [104]).

Another open issue is that we found no structural pat-
terns with accountability aspects and no general concept
patterns with non-repudiation properties. The absence of
these aspects indicates a gap in the software-security pattern
landscape.

Additional investigations are necessary for all software-
security patterns not only generic concept patterns. For our
classification, we were able to decide whether a pattern falls
into the category of structural or behavioral patterns, but
the pattern descriptions are often not sufficient and exact
enough to use existing pattern recognitions out of the box for
their detection. It remains a high variability in their possible
implementations.

IX. CONCLUSION AND OUTLOOK

In this paper, we presented our systematic literature review
on security patterns, a comparison of design and security-
pattern classifications, discussed challenges in classifying
security patterns, and introduced two new classification
schemes.

The first classification scheme embraces 364 published
security patterns and exceeds in numbers existing classifi-
cations by far. The second classification unites the focus

of pattern recognition and security aspects. It classifies
161 software-security patterns that we obtained in the first
organization process.

This classification will support our future research by the
determined pattern characteristics and the indicated open
issues (see Section VIII). In particular, we plan to detect
and validate software-security patterns implemented in code.
Automatically detected security patterns can support security
and risk assessments and help in reengineering existing
software systems.

X. ACKNOWLEDGMENTS

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) under the grant
01IS10015B (ASKS project).

REFERENCES

[1] M. Bunke, R. Koschke, and K. Sohr, “Application-domain
classification for security patterns,” in Proceedings of the
International Conferences on Pervasive Patterns and Ap-
plications, IARIA Conferences. XPS (Xpert Publishing
Services), 2011, pp. 138–143.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Object-Oriented Software. Addison
Wesley, 1994.

[3] J. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” in Proceedings of the Conference
on Pattern Languages of Programs, Monticello/IL, 1997,
pp. 1–31, last access: 23.06.2012. [Online]. Available:
http://hillside.net/plop/plop97/Proceedings/yoder.pdf

[4] S. Haldikis, A. Chatzigeorigou, and G. Stephanides, “A
practical evaluation of security patterns,” in Proceedings
of the International Conference on Artificial Intelligence
and Digital Communications, Aug. 2006, pp. 1–8, last
access: 23.06.2012. [Online]. Available: http://inf.ucv.ro/
∼aidc/proceedings/2006/5%20shalkidis.pdf

58

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] M. Hafiz and R. E. Johnson, “Evolution of the mta ar-
chitecture: the impact of security,” Software—Practice and
Experience, Wiley, vol. 38, no. 15, pp. 1569–1599, 2008.

[6] M. Hafiz, P. Adamczyk, and R. E. Johnson, “Organizing
security patterns,” IEEE Software, vol. 24, pp. 52–60, 2007.

[7] K. R. van Wyk and G. McGraw, “Bridging the gap between
software development and information security,” Security
Privacy, IEEE, vol. 3, no. 5, pp. 75–79, Sep. 2005.

[8] M. Laverdiere, A. Mourad, A. Hanna, and M. Debbabi,
“Security Design Patterns: Survey and Evaluation,” IEEE
Canadian Conference on Electrical and Computer Engineer-
ing, pp. 1605–1608, 2006.

[9] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, “An
analysis of the security patterns landscape,” in International
Workshop on Software Engineering for Secure Systems.
Washington, DC, USA: IEEE Computer Society, 2007, p. 3.

[10] N. Yoshioka, H. Washizaki, and K. Maruyma, “A survey on
security patterns,” Progress in Informatics, vol. 5, pp. 35–47,
2008.

[11] M. VanHilst and E. B. Fernandez, “Reverse engineering
to detect security patterns in code,” in Proceedings of the
International Workshop on Software Patterns and Quality.
Information Processing Society of Japan, Dec. 2007, pp. 25–
30.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System
of Patterns. Chichester, UK: Wiley, 1996.

[13] E. B. Fernandez, N. Yoshioka, and H. Washizaki, “Using
security patterns to build secure systems,” in Proceedings
of the International Workshop on Software Patterns and
Quality. Information Processing Society of Japan, 2007,
pp. 47–48.

[14] W. Zimmer, Pattern languages of program design. New
York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1995, ch. Relationships between design patterns, pp.
345–364.

[15] D. Alur, D. Malks, and J. Crupi, Core J2EE Patterns: Best
Practices and Design Strategies. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2001.

[16] S. Hasso and C. Carlson, “A theoretically-based process for
organizing design patterns,” in Proceedings of the Confer-
ence on Pattern Languages of Programs, 2005, pp. 1–22,
last access: 23.06.2012. [Online]. Available: http://hillside.
net/plop/2005/proceedings/PLoP2005 shasso0 3.pdf

[17] N. Shi and R. A. Olsson, “Reverse engineering of design
patterns from java source code,” in Automated Software
Engineering. Los Alamitos, CA, USA: IEEE Computer
Society, 2006, pp. 123–134.

[18] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-
Hewitt, “Security patterns repository, version 1.0,” 2003,
last access: 23.06.2012. [Online]. Available: http://www.
scrypt.net/∼celer/securitypatterns/repository.pdf

[19] S. Konrad, B. H. Cheng, L. A. Campbell, and R. Wasser-
mann, “Using security patterns to model and analyze secu-
rity requirements,” in International Workshop on Require-
ments for High Assurance Systems, 2003, pp. 13–22.

[20] M. Schumacher, E. B. Fernandez, D. Hybertson, and
F. Buschmann, Security Patterns: Integrating Security and
Systems Engineering. John Wiley & Sons, 2005.

[21] “The zachmann framework for enterprise architecture,”
2012, last access: 23.06.2012. [Online]. Available: http:
//zachmaninternational.com/2/Zachman Framework.asp

[22] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns:
Best Practices and Strategies for J2EE(TM), Web Services,
and Identity Management. Prentice Hall International, 2005.

[23] D. G. Rosado, C. Gutiérrez, E. Fernández-Medina, and
M. Piattini, “Security patterns related to security require-
ments,” in Proceedings of the International Workshop on
Security in Information Systems, 2006, pp. 163–173.

[24] Commission of European Communities, “Informa-
tion technology security evaluation criteria, ver.
1.2,” 1991, last access: 23.06.2012. [Online].
Available: https://www.bsi.bund.de/cae/servlet/contentblob/
471346/publicationFile/30220/itsec-en pdf.pdf

[25] F. Swiderski and W. Snyder, Threat Modeling (Microsoft
Professional). Microsoft Press, 2004.

[26] M. VanHilst, E. B. Fernandez, and F. A. Braz, “A multi-
dimensional classification for users of security patterns,” in
Proceedings of the International Workshop on Security in
Information Systems, 2008, pp. 89–98.

[27] E. B. Fernandez, H. Washizaki, N. Yoshioka, A. Kubo, and
Y. Fukazawa, “Classifying security patterns,” in Proceedings
of the Asian-Pacific Web Conference, Apr. 2008, pp. 342–
347.

[28] H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo,
and N. Yoshioka, “Improving the classification of security
patterns,” Database and Expert Systems Applications, pp.
165–170, 2009.

[29] E. B. Fernandez, M. M. Larrondo-petrie, N. Seliya,
N. Delessy, and A. Herzberg, “A pattern language for
firewalls,” in Proceedings of the Conference on Pattern
Languages of Programs, Sep. 2003, pp. 1–13, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2003/Papers/Fernandez-firewalls.pdf

[30] S. R. Nelly Delessy-Gassant, Eduardo B. Fernandez and
M. M. Larrondo-Petrie, “Patterns for application firewalls,”
in Proceedings of the Conference on Pattern Languages
of Programs, 2004, pp. 1–19, last access: 23.06.2012.
[Online]. Available: http://www.hillside.net/plop/2004/
papers/ndelessygassant0/PLoP2004 ndelessygassant0 0.doc

[31] S. Henninger and V. Corrêa, “Software pattern communities:
Current practices and challenges,” in Proceedings of the
Conference on Pattern Languages of Programs, ser. PLOP
’07. New York, NY, USA: ACM, 2007, pp. 14:1–14:19.

59

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] “Securitypatterns.org,” 2012, last access: 23.06.2012.
[Online]. Available: http://www.securitypatterns.org/

[33] B. Kitchenham, “Procedures for performing systematic re-
views,” Keele University, Keele, UK, Technical Report
TR/SE-0401, 2004.

[34] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University, Keele, UK, Technical Report EBSE-2007-001,
2007.

[35] IEEE, “IEEE Digital Library,” 2012, last access: 23.06.2012.
[Online]. Available: http://www.computer.org/portal/

[36] ACM, “ACM Digital Library,” 2012, last access: 23.06.2012.
[Online]. Available: http://portal.acm.org/

[37] The Hillside Group, “The hillside group website,” 2012, last
access: 23.06.2012. [Online]. Available: http://hillside.net

[38] P. H. Meland and J. Jensen, “Secure software design in
practice,” in Proceedings of the International Conference on
Availability, Reliability and Security, Mar. 2008, pp. 1164–
1171.

[39] M. Schumacher and U. Roedig, “Security engineering
with patterns,” in Proceedings of the Conference on
Pattern Languages of Programs, 2001, pp. 1–17,
last access: 23.06.2012. [Online]. Available: http:
//www.hillside.net/plop/plop2001/accepted submissions/
PLoP2001/mschumacher0/PLoP2001 mschumacher0 1.pdf

[40] A. M. Braga, C. M. F. Rubira, and R. Dahab, “Tropyc: A
pattern language for cryptographic software,” in Proceedings
of the Conference on Pattern Languages of Programs, 1998,
pp. 1–27, last access: 23.06.2012. [Online]. Available:
http://hillside.net/plop/plop98/final submissions/P25.pdf

[41] E. B. Fernandez, J. C. Pelaez, and M. M. Larrondo-
Petrie, “Security patterns for voice over ip networks,” in
International Multi-Conference on Computing in the Global
Information Technology, ser. ICCGI ’07. Washington, DC,
USA: IEEE Computer Society, 2007, p. 33.

[42] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen, “A
system of security patterns,” K.U.Leuven, Department of
Computer Science, Report CW 469, Dec. 2006, last access:
23.06.2012. [Online]. Available: http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW469.abs.html

[43] S. T. Halkidis, A. Chatzigeorgiou, and G. Stephanides, “A
qualitative analysis of software security patterns,” Comput-
ers & Security, vol. 25, no. 5, pp. 379–392, 2006.

[44] B. Elsinga and A. Hofman, “Security paradigm pattern
language,” in Proceedings of the European Conference on
Pattern Languages of Programs. UVK - Universitaetsverlag
Konstanz, 2003, pp. 363–380.

[45] G. Dallons, P. Massonet, J.-F. Molderez, C. Ponsard, and
A. Arenas, “An analysis of the chinese wall pattern for guar-
anteeing confidentiality in grid-based virtual organisations,”
in International Workshop on Security, Trust and Privacy in
Grid Systems. IEEE, 2007, pp. 217–222.

[46] P. Dyson and A. Longshaw, “Patterns for managing internet-
technology systems,” in Proceedings of the European Con-
ference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, 2003, pp. 459–492.

[47] B. Elsinga and A. Hofman, “Control the actor-based access
rights,” in Proceedings of the European Conference on
Pattern Languages of Programs. UVK - Universitaetsverlag
Konstanz, 2002, pp. 233–244.

[48] A. M. Ernst, “Enterprise architecture management patterns,”
in Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2008, pp. 1–20.

[49] E. B. Fernandez, J. Ballesteros, A. C. Desouza-Doucet,
and M. M. Larrondo-Petrie, “Security patterns for physical
access control systems,” in Working Conference on Data and
Applications Security. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 259–274.

[50] S. Romanosky, “Security design patterns part 1,” Nov.
2001, last access: 23.06.2012. [Online]. Available: http:
//www.cgisecurity.com/lib/securityDesignPatterns.html

[51] A. P. Moore, M. Hanley, and D. Mundie, “A pattern
for increased monitoring for intellectual property theft
by departing insiders,” in Proceedings of the Conference
on Pattern Languages of Programs, 2011, pp. 1–
17, last access: 23.06.2012. [Online]. Available: http:
//www.hillside.net/plop/2011/papers/D-6-Moore.pdf

[52] D. Riehle, W. Cunningham, J. Bergin, N. Kerth, and
S. Metsker, “Password patterns,” in Proceedings of the
European Conference on Pattern Languages of Programs.
UVK - Universitaetsverlag Konstanz, 2002, pp. 279–288.

[53] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, and
B. Friedman, “Privacy patterns for online interactions,” in
Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 12:1–
12:9.

[54] M. Schumacher, “Security patterns and security standards -
with selected security patterns for anonymity and privacy,”
in Proceedings of the European Conference on Pattern Lan-
guages of Programs. UVK - Universitaetsverlag Konstanz,
2002, pp. 289–300.

[55] A. Cuevas, P. E. Khoury, L. Gomez, and A. Laube, “Security
patterns for capturing encryption-based access control to
sensor data,” in Proceedings of the International Conference
on Emerging Security Information, Systems and Technolo-
gies. Los Alamitos, CA, USA: IEEE Computer Society,
2008, pp. 62–67.

[56] S. Lehtonen and J. Pärssinen, “A pattern language for crypto-
graphic key management,” in Proceedings of the European
Conference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, 2002.

[57] S. Lehtonen and J. Pärssinen, “A pattern language for
key management,” in Proceedings of the Conference
on Pattern Languages of Programs, 2001, pp. 1–13,
last access: 23.06.2012. [Online]. Available: http:
//www.hillside.net/plop/plop2001/accepted submissions/
PLoP2001/slehtonen0/PLoP2001 slehtonen0 1.pdf

60

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[58] K. Hashizume and E. B. Fernandez, “Symmetric encryption
and xml encryption patterns,” in Proceedings of the Con-
ference on Pattern Languages of Programs, ser. PLoP ’09.
New York, NY, USA: ACM, 2009, pp. 13:1–13:8.

[59] B. Blakley, C. Heath, and members of The Open Group
Security Forum, Security Design Patterns. The Open
Group, Apr. 2004, last access: 23.06.2012. [Online].
Available: www.opengroup.org/onlinepubs/9299969899/toc.
pdf

[60] A. Cuevas, P. E. Khoury, L. Gomez, A. Laube, and
A. Sorniotti, “A security pattern for untraceable secret hand-
shakes,” in Proceedings of the International Conference on
Emerging Security Information, Systems and Technologies,
Jun. 2009, pp. 8–14.

[61] N. Delessy and E. B. Fernandez, “Patterns for the
extensible access control markup language,” in Proceedings
of the Conference on Pattern Languages of Programs,
2005, pp. 1–20, last access: 23.06.2012. [Online].
Available: http://www.hillside.net/plop/2005/proceedings/
PLoP2005 ndelessyandebfernandez0 1.pdf

[62] M. Schumacher, “Firewall patterns,” in Proceedings of the
European Conference on Pattern Languages of Programs.
UVK - Universitaetsverlag Konstanz, 2003, pp. 417–430.

[63] N. Delessy, E. B. Fernandez, M. M.Larrondo-Petrie, and
J. Wu, “Patterns for access control in distributed systems,”
in Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2007, pp. 1–11.

[64] L. B. Jr, F. L. Brown, J. Divietri, G. D. D.
Villegas, and E. B. Fernandez, “The authenticator
pattern,” in Proceedings of the Conference on Pattern
Languages of Programs, 1999, pp. 1–8, last access:
23.06.2012. [Online]. Available: http://hillside.net/plop/
plop99/proceedings/Fernandez4/Authenticator3.PDF

[65] E. B. Fernandez and R. Warrier, “Remote authenticator /
authorizer,” in Proceedings of the Conference on Pattern
Languages of Programs, 2003, pp. 1–8, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2003/Papers/Fernandez-remote-authenticator.pdf

[66] M. Hafiz, “A collection of privacy design patterns,” in
Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 1–13.

[67] T. Okubo and H. Tanaka, “Web security patterns for analysis
and design,” in Proceedings of the Conference on Pattern
Languages of Programs. New York, NY, USA: ACM, 2008,
pp. 1–13.

[68] M. Sadicoff, M. M. Larrondo-Petrie, and E. B.
Fernandez, “Privacy-aware network client pattern,”
in Proceedings of the Conference on Pattern
Languages of Programs, 2005, pp. 1–6, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/2005/proceedings/PLoP2005 msadicoff0 0.pdf

[69] B. Schleinzer and N. Yoshioka, “A security pattern
for data integrity in p2p systems,” in Proceedings of
the Conference on Pattern Languages of Programs,
Oct. 2010, last access: 23.06.2012. [Online]. Available:
http://www.hillside.net/plop/2010/papers/schleinzer.pdf

[70] P. Sommerlad, “Reverse proxy patterns,” in Proceedings of
the European Conference on Pattern Languages of Pro-
grams. UVK - Universitaetsverlag Konstanz, Jun. 2003,
pp. 431–458.

[71] S. Romanosky, “Enterprise security patterns,” 2002,
last access: 23.06.2012. [Online]. Available: http:
//www.romanosky.net/papers/EnterpriseSecurityPatterns.pdf

[72] A. Kumar and E. Fernandez, “A security pattern for a virtual
private network,” in Proceedings of the Latin American
Conference on Pattern Languages of Programming, 2010.

[73] I. A. Buckley, E. B. Fernandez, and M. M. Larrondo-Petrie,
“Patterns combining reliability and security,” in Proceedings
of the International Conferences on Pervasive Patterns and
Applications, IARIA Conferences. XPS (Xpert Publishing
Services), 2011, pp. 144–150.

[74] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and
K. Togashi, “Secure design patterns,” Carnegie Mellon
University, Software Engineering Institute, TECHNICAL
REPORT CMU/SEI 2009-TR-010, Oct. 2009, last access:
23.06.2012. [Online]. Available: www.cert.org/archive/pdf/
09tr010.pdf

[75] E. B. Fernandez and J. Sinibaldi, “More patterns for operat-
ing systems access control,” in Proceedings of the European
Conference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, Jun. 2003, pp. 381–398.

[76] E. B. Fernandez and T. Sorgente, “A pattern
language for security models,” in Proceedings of
the Conference on Pattern Languages of Programs,
2001, pp. 1–13, last access: 23.06.2012. [Online].
Available: http://www.hillside.net/plop/plop2001/accepted
submissions/PLoP2001/ebfernandezandrpan0/PLoP2001
ebfernandezandrpan0 1.pdf

[77] E. B. Fernandez, “Patterns for operating systems access
control,” in Proceedings of the Conference on Pattern
Languages of Programs, 2002, pp. 1–18, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2002/final/OSSecPatt7.doc

[78] E. B. Fernandez, T. Sorgente, and M. M. Larrondo-Petrie,
“Even more patterns for secure operating systems,” in
Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 1–9.

[79] E. B. Fernandez and D. laRed Martinez, “Patterns for the
secure and reliable execution of processes,” in Proceedings
of the Conference on Pattern Languages of Programs. New
York, NY, USA: ACM, 2008, pp. 1–16.

[80] E. B. Fernandez and G. Pernul, “Patterns for session-based
access control,” in Proceedings of the Conference on Pattern
Languages of Programs. New York, NY, USA: ACM, 2006,
pp. 8:1–8:10.

[81] V. Gondi, “Multiple secure observers using j2ee,” in
Proceedings of the Conference on Pattern Languages of
Programs, 2010, pp. 1–13, last access: 23.06.2012. [Online].
Available: http://www.hillside.net/plop/2010/papers/gondi.
pdf

61

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[82] M. Hafiz, “Secure pre-forking - a pattern for performance
and security,” in Proceedings of the Conference on Pattern
Languages of Programs, 2005, pp. 1–9, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/2005/proceedings/PLoP2005 mhafiz0 2.pdf

[83] M. Hafiz, R. E. Johnson, and R. Af, “The security
architecture of qmail,” in Proceedings of the Conference
on Pattern Languages of Programs, 2004, pp. 1–9, last
access: 23.06.2012. [Online]. Available: http://www.hillside.
net/plop/2004/papers/mhafiz1/PLoP2004 mhafiz1 0.pdf

[84] D. M. Kienzle and M. C. Elder, “Final technical report: Se-
curity pattern for web application development,” Tech. Rep.,
2002, last access: 23.06.2012. [Online]. Available: http:
//www.scrypt.net/∼celer/securitypatterns/final%20report.pdf

[85] S. R. Kodituwakku, P. Bertok, and L. Zhao, “Aplrac: A
pattern language for designing and implementing role-based
access control,” in Proceedings of the European Conference
on Pattern Languages of Programs. UVK - Universi-
taetsverlag Konstanz, 2001, pp. 331–346.

[86] Q. H. Mahmoud, “Security policy: A design pattern for
mobile java code,” in Proceedings of the Conference
on Pattern Languages of Programs, 2000, pp. 1–8, last
access: 23.06.2012. [Online]. Available: http://hillside.net/
plop/plop2k/proceedings/Mahmoud/Mahmoud.pdf

[87] H. Mouratidis, P. Giorgini, and M. Schumacher, “Security
patterns for agent systems,” in Proceedings of the European
Conference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, Jun. 2003, pp. 399–416.

[88] P. Morrison and E. B. Fernandez, “The credentials pattern,”
in Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 1–4.

[89] P. Morrison and E. B. Fernandez, “Securing the broker
pattern,” in Proceedings of the European Conference on
Pattern Languages of Programs. UVK - Universitaetsverlag
Konstanz, 2006, pp. 513–530.

[90] J. L. Ortega-Arjona and E. B. Fernandez, “The secure
blackboard pattern,” in Proceedings of the Conference on
Pattern Languages of Programs. New York, NY, USA:
ACM, 2008, pp. 1–5.

[91] T. Saridakis, “Design patterns for fault containment,” in Pro-
ceedings of the European Conference on Pattern Languages
of Programs. UVK - Universitaetsverlag Konstanz, 2003,
pp. 493–520.

[92] K. E. Sørensen, “Session patterns,” in Proceedings of the
European Conference on Pattern Languages of Programs.
UVK - Universitaetsverlag Konstanz, 2002, pp. 301–322.

[93] M. Weiss, “Credential delegation: Towards grid
security patterns,” in Proceedings of the Nordic
Conference on Pattern Languages of Programs,
2006, pp. 65–70, last access: 23.06.2012. [Online].
Available: http://hillside.net/vikingplop/vikingplop2006/
VikingPLoP2006 Proceedings.pdf

[94] Y. Zhou, Q. Zhao, and M. Perry, “Policy enforcement
pattern,” in Proceedings of the Conference on Pattern
Languages of Programs, 2002, pp. 1–14, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2002/final/ZZPerry PLOP.pdf

[95] E. B. Fernandez, S. Mujica, and F. Valenzuela,
“Two security patterns: Least privilege and secure
logger/auditor,” in Proceedings of the Asian Conference
on Pattern Languages of Programs, 2011, pp.
1–12, last access: 23.06.2012. [Online]. Avail-
able: http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/
proceedings2011/asianplop2011 submission 7.pdf

[96] O. Ajaj and E. B. Fernandez, “A pattern for the
ws-trust standard for web services,” in Proceedings
of the Asian Conference on Pattern Languages of
Programs, 2010, pp. 1–11, last access: 23.06.2012. [On-
line]. Available: http://patterns-wg.fuka.info.waseda.ac.jp/
asianplop/proceedings2010/11-WS-Trust march02-10.pdf

[97] The Internet Society, “Point-to-point tunneling protocol
(pptp),” 2012, last access: 23.06.2012. [Online]. Available:
http://tools.ietf.org/html/rfc2637

[98] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and
G. Stephanides, “Architectural risk analysis of software
systems based on security patterns,” IEEE Transactions on
Dependable and Secure Computing, vol. 5, no. 3, pp. 129–
142, 2008.

[99] C. Kramer and L. Prechelt, “Design recovery by auto-
mated search for structural design patterns in object-oriented
software,” in Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 1996, p.
208.

[100] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé, “Pattern-
based reverse-engineering of design components,” in Inter-
national Conference on Software Engineering. New York,
NY, USA: ACM, 1999, pp. 226–235.

[101] L. Wendehals, “Improving design pattern instance recogni-
tion by dynamic analysis,” in International Conference on
Software Engineering, May 2003.

[102] R. J. Anderson, Security Engineering: A Guide to Building
Dependable Distributed Systems, 1st ed. New York, NY,
USA: John Wiley & Sons, Inc., 2001.

[103] Yahoo! Inc., “Yahoo! Design Pattern Library,” last access:
23.06.2012. [Online]. Available: http://developer.yahoo.com/
ypatterns/

[104] Microsoft, “Microsoft patterns & practices,” last access:
23.06.2012. [Online]. Available: http://msdn.microsoft.com/
en-us/practices/default

APPENDIX

The tables IV, V, VI and VII depict our classification
of all software-security patterns that we collected during
the literature-review process. The first dimension ”Matching
Aspects“ is highlighted in light grey and a magnifier icon

62

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Access Control List (ACL) [63]

Administrator Hierarchy [78]

Capability [63]

Check Point [3], [20]

Checkpointed System [59], [83], [42]

Controlled Process Creator [75], [20]

Container Managed Security [22], [42]

Credential [88]

Encrypted Storage [18]

Execution Domain [77], [20]

Full Access With Errors [20]

Input Validation [74]

Multilevel Security pattern [76], [20]

Obfuscated Transfer Object [22], [42]

Pathname Canonicalization [74]

Partitioned Application [18]

Policy [59]

Protected System [59]

Roles [3]

Role-Based Access Control (RBAC) [76], [20]

Role Hierarchies [85]

Sandbox [87]

Secure Pipe [22], [42]

Secure Communication [59], [42]

Security Context [59]

Secure Directory [74]

Secure Process / Thread [78]

Secure Service Facade [22], [42]

Secure Session Object [22], [42]

Secure Service Proxy [22]

Session-Based Attribute-Based Authorization [80]

Session-Based Role-Based Access Control [80]

Single Session [85]

Single Access Point [3], [20]

Subject Description [59]

Symmetric Encryption [58]

XML Encryption Pattern [58]

A Pattern for WS-Trust [96]

Access Controller [87]

Account Lockout [18]

Agent Authenticator [87]

Agency Guard [87]

Audit Interceptor [22]

Table IV
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (1).

63

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Authenticator [64], [59], [20]

Authentication Enforcer [22]

Authorization Pattern [76]
Authorization Enforcer [22]
Assertion Builder Pattern [22]

Controlled Object Factory [20]

Controlled Object Monitor [75] [20]

Controlled Virtual Address Space [75]

Credential Delegation [93]

Credential Tokenizer [22]

Defer to Kernel [74]

Dynamic Service Management [22]

File Authorization [77], [20]

Full View With Errors [3]

Grant-Based Access Control Pattern (GBAC) [55]

ID/Password Authentication [67]

Information Obscurity [20]

Intercepting Validator [22]

Intercepting Web Agent [22]

Known Partners [20]

Limited Access [20]

Limited View [3]

Message Inspector [22]

Message Interceptor Gateway [22]

Multiple Secure Observers Using J2EE [81]

Network Address Blacklist [18]

Password Synchronizer Pattern [22]

Policy-Based Access Control [63]

Policy Delegate [22]

Policy Enforcement Pattern [94]

Privilege Separation (PrivSep) [74]

Protected Entry Points [79]

Protection Rings [79]

Secure Base Action [22]

Secure Logger [22]

Secure Message Router [22]

Single Sign-on Delegator Pattern [22]

Session [3]
Security Policy: A Design Pattern For Mobile Java
Code [86]
Secure Broker Pattern [89]

Security Session [20]

Session Timeout [92], [42]

Table V
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (2).

64

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Sealed And Signed Envelope [57]

Sealed Envelope [57]

Security Association [59]

Secure Builder Factory [74]

Secure Chain of Responsibility [74]

Secure Factory [74]

Secure State Machine [74]

Secure Strategy Factory [74]

Secure Visitor [74]

Secure Preforking [82]

Virtual Address Space Access Control [77]

Access Session [80]

Access Control requirements [20]

Actor and Role Lifecycle [47]

Address Book [57]

Administrator Objects [85]

Alice And Friends [57]

Authenticated Session [18]

Authorization [20]

Build The Server From The Ground Up [18]

Clear Sensitive Information [74]

Client Data Storage [18]

Client Input Filters [18]

Choose The Right Stuff [18]

Compartmentalization [83]

Content Independent Processing [83]

Controlled Execution Environment [77]

Demilitarized Zone [20]

Directed Session [18]

Distributed Responsibility [83]

Distrustful Decomposition [74]

Document The Security Goals [18]

Document The Server Configuration [18]

Enroll By Validating Out Of Band [18]

Enroll Using Third-Party Validation [18]

Enroll With A Pre-Existing Shared Secret [18]

Enroll Without Validating [18]

Face-To-Face [57]

Fault Container [91]

Front Door [20]

Hidden Implementation [18]

Input Guard [91]

Table VI
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (3).

65

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Keep Session Data In Client [92]

Keep Session Data In Server [92]

Key In The Pocket [57]

Load Balancer [92], [42]

Log For Audit [18]

Minefield [18]

Multilevel Secure Partitions [79]

Output Guard [91]

Password Authentication [18]

Password Propagation [18]

Patch Proactively [18]

Privilege-Limited Role [85]

Reference Monitor [77]

Red Team The Design [18]

Resource Acquisition Is Initialization (RAII) [74]

Role Based Access [85]

Role Validator [85]

Secure Access Layer [3]

Secure Assertion [18]

Secure Channels [20]

Server Sandbox [18]

Session Failover [92], [42]

Session Management [67]

Session Scope [92]

Seal Ring Engraver [57]

Signed Envelope [57]

Share Responsibility For Security [18]

Subject Descriptor [20]

Test On A Staging Server [18]

The Forged Seal Ring [57]

The Real Thing [57]

There Is Somebody Eavesdropping [57]

Trusted Proxy [18]

Unique Entry of Information [83]

Validated Transactions [18]

Virtual Address Space Structure Selection [78]

Table VII
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (4).

66

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

indicates that a pattern belongs to the aspect of this
dimension. The second dimension ”Security Aspects“ is
highlighted with a grey background and a lock shows
which security aspects a pattern addresses. Some patterns
were described by more than one publication. Therefore,
we put all publications that describe the pattern with this
name in the order of their publication year behind the pattern
name.

67

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

