
1

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Maturing the Distribution of Supportive Tasks in Web Service Framework:
Security and Reliability

Beytullah Yildiz
Department of Computer Engineering

TOBB Economics and Technology University
Ankara, Turkey

E-mail: byildiz@etu.edu.tr

Abstract—Security and reliability are the crucial features of
distributed computing, of which one of the key enabling
technologies is Web Service. In a service execution, the main
task is carried out by endpoint logic, which is supported by
additive functionalities and/or capabilities, called Web Service
handlers. The handlers can be detached from the endpoint and
distributed to suitable locations to improve availability,
scalability, and performance. In this paper, security and
reliability, which are among the most fundamental and
essential requirements of the handler distribution, are
investigated. The proposed environment contains a hybrid
encryption scheme, digital signing, authentication, replication,
and guaranteed message delivery. The benchmark results are
presented to illustrate that the utilized reliability and security
mechanisms for the handler distribution are reasonable and
efficient.

Keywords-Web Service; distributed computing; replication;
reliability; security.

I. INTRODUCTION

Web Service is a technology providing seamless and
loosely coupled interactions that help to build platform-
independent distributed systems. Software standards and
communication protocols offering common languages are at
the foundation of Web Service. The strength of Web Service
originates from its ability to hide platform-specific details of
the implementations, to expose service interfaces, and to let
these self-describing services be registered, published, and
discovered dynamically across the Internet. Web Service
utilizes the most basic distributed computing approach of
client-server interaction. However, it also allows for the
creating of complex service composed of many
communicating services. Powerful Web Service
applications can be assembled by combining the remote and
local services.

A single Web Service application integrates endpoint
logic and its handlers in a common framework. The main
task is accomplished by the service endpoint logic.
Supportive functionalities and capabilities, called Web
Service handlers, are utilized to provide a full-fledged
service. These capabilities might be related to security,
reliability, orchestration, and logging, as well as any other
necessary capabilities for a distributed system. These
capabilities may help to compose a complex service as the

handlers can deal with orchestration. They may also be
utilized to provide high enough quality of services for a
single client-server interaction as the handlers offer security
or logging. A Web Service can employ several handlers in a
single interaction; a chain of handlers can contribute to a
service execution. A service can have a pair of handlers
offering functions on both the server and client sides. Some
handlers can be, in contrast, employed only in one side of
the interaction.

Although handlers are required and inevitable in many
cases, they may cause degradation in service quality if their
numbers overload the service. A service endpoint with many
handlers may suffocate in a single memory space. Hence, it
is wise to use additional computing power. This raises the
idea of distribution. There are different reasonable
approaches for distribution of Web Service handlers. Some
suggest that they can be deployed as services; others create
a specific distributed environment for them. Distributing the
handlers by using a designated setting provides a superior
computing environment, especially when the concern is
performance. On the other hand, the distribution requires
certain features to ensure a suitable environment [1].

Security and reliability are among the most important
criteria that need to be considered when a distributed system
is being evaluated. Hence, this paper investigates reliability
and message security for the distributed Web Service
handlers and their effect on the system performance. A
fundamental task of cryptography is to protect the secrecy of
messages transmitted over public communication lines. For
this purpose, in this research, an encryption scheme using a
secret key is utilized to encode a message in such a way that
an eavesdropper cannot make sense of it. To handle key
exchange smoothly, the secret key is ciphered with a public
key encryption algorithm. Moreover, a digital signature is
used to verify the sender. Reliability mechanisms are also
employed to attain a robust environment for Web Service
handlers.

The rest of this paper is organized as follows: Section II
provides information about related works on reliability and
security. Distributed Web Service handler execution is
briefly explained in Section III. Section IV investigates
reliability. Section V gives details about message security.
Finally, the paper is concluded in Section VI.

2

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORKS

Web Services, an ideal type of technology for distributed
applications, benefit from several specifications for security
and reliability purposes: WS-Security [2], WS-Trust [3],
WS-Federation [4], and WS-ReliableMessaging [5]. These
specifications provide the common language to develop
secure, reliable, and interoperable interactions between
clients and services.

WS-Security addresses security by leveraging existing
standards and provides a framework to embed these
mechanisms into a SOAP message. This happens in a
transport-neutral fashion. WS-Security defines a SOAP
header element, which contains the information defined by
the XML signature that conveys how the message was
signed, the key that was used, and the resulting signature
value. Likewise, the encryption information is inserted into
the SOAP header. WS-Trust explains the mechanisms to use
security token and methods to establish trust relationships. It
enables secure conversations between Web Services by
defining how to issue, renew, and cancel the security tokens.
WS-Federation defines mechanisms to let different security
realms unite. Hence, authorized access to a resource handled
in one realm can be provided to security principals whose
identities are controlled in other realms.

In the Web Service reliability, the WS-
ReliableMessaging specification offers an outline to ensure
reliable message delivery between the sender and receiver
for Web Services. The specification provides an
acknowledgement-based scheme to guarantee that data are
transferred between the communicating entities. Although it
is mainly for point-to-point communication, the
specification also supports service composition and
transactional interaction.

Web Service specifications describe the syntax and do
not define implementation mechanisms or APIs, which
remain proprietary to individual vendors. Other than
specifications, there are also works and research on security
and reliability for Web services. Jayalath and Fernando
describe a basic design and implementation approach for
building security and reliability layers for Apache Axis 2
[6]. Moser et al. explain dependability features, including
SOAP connection failover, replication, and checkpointing,
in addition to reliable messaging and transaction
management. Their paper also presents security
technologies, including encryption and digital signatures for
Web Services specifications, as well as other security
technologies [7]. Pallemulle et al. present a middleware that
supports interaction between replicated Web Services while
providing strict fault isolation assurances [8]. Lei et al.
propose greedy replica optimizers to improve reliability for
a data-intensive online grid system [9]. Aghdaie and Tamir
present a transparent mechanism that provides high
reliability and availability for Web Services. Their paper
explores fault tolerance even for the requests being
processed at the time of server failure. The scheme can
handle dynamic execution and does not enforce

deterministic servers [10]. Zhang presents an integrated
security framework based on the use of authentication,
authorization, confidentiality, and integrity mechanisms for
Web Services, and proposes a model to integrate and
implement these security mechanisms in order to make Web
Services robust [11]. Yamany et al. propose a metadata
framework providing different levels to describe the
available variations of the authentication, authorization, and
privacy features. With the metadata, the security features are
constructed to assist the service consumer and provider in
reaching an agreement on how to meet their needs [12].

Security and reliability are not the concerns of only Web
and Grid Service technologies. Other distributed computing
applications also offer necessary reliability and security
mechanisms. Fault tolerance approaches such as replication,
recovery techniques, self-reconfiguration of systems, and
dynamic binding are applied in various studies to improve
reliability. Many research projects and applications utilize
Secure Sockets Layer (SSL)/Transport Layer Security
(TSL) protocols. Others prefer to utilize symmetric or
asymmetric crypto systems. Some research projects offer a
hybrid approach combining symmetric and asymmetric key
encryption algorithms to offer superior solution.

Vaca et al. propose an automatic identification of faults
by means of model-based diagnosis, which helps to
establish particular fault tolerance mechanisms such as
replications and checkpoints [13]. Zhao et al. design a
scheduling algorithm offering reliability satisfying the
user’s requirement without exceeding the system capacity.
The authors explain how to achieve the minimum number of
replicas for each task while satisfying the user’s reliability
requirement with the minimum resources. They also target
acceptable performance for execution time [14].

Desmedt et al. demonstrate a scheme that uses a public
key to encrypt a random key, which is used to encrypt the
actual message with a symmetric encryption algorithm [15].
Ramachandran et al. use a public/private key model for
securely communicating messages [16]. Rizvi et al. present
an implementation of a secure application syndicating
symmetric and asymmetric key algorithms to minimize the
execution time and maximize the security [17]. Ramaraj et
al. describe a hybrid encryption based on AES and RSA for
online transactions [18]. Palanisamy et al. propose the use of
a symmetric key algorithm to encrypt and decrypt data and
RSA for the symmetric key’s encryption/decryption [19].
Damiani et al. discuss the applicability of outsourced
Database Management System solutions to the cloud and
provide an outline for management of confidential data in
public clouds. It utilizes symmetric and asymmetric
encryption for privacy and signing [20].

Kemathy et al. investigate a component-based security
solution for XML messaging [21]. Ammari et al. provide
architecture securing XML messages by encrypting flagged
XML parts, each with a different type of encryption
depending on data sensitivity and the defined importance
level [22].

3

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. DISTRIBUTION

In this paper, the distribution of Web Service handlers is
explored by utilizing a Message-Oriented Middleware
(MOM), which is more narrowly focused on messaging.
The MOM is designed to be as simple as possible while still
offering robust support for messaging. Unlike SOAP
messaging, MOM message headers and basic routing
information are not contained in XML. This allows more
efficient processing, since XML parsing is slow compared
to the speed at which routing decisions are made in a
specialized messaging system.

In general, the same proven security and reliability
mechanisms from the related works are utilized. However,
the present research differs in the use of a designated
messaging system to improve efficiency and in having an
end-to-end solution to complete the distributed handlers’
secure and reliable execution in this setting.

The distributed handler execution is organized by a
specialized management tool, which contains the
orchestration engine explored in [23]. The constructs of the
orchestration engine answer the wide range of the handler’s
execution configuration, such as serial, parallel, and
conditional processing. In addition to orchestration, the
distribution manager employs an efficient execution engine
to meet the performance requirements. The details of the
manager are provided in [24]. The engine utilizes a MOM to
distribute the tasks to the handlers. The execution manager
is so efficient that the overhead justifies the distribution, as
investigated in [25]. This paper extends the required security
and reliability mechanisms for the handler distribution
explained in [1].

The execution of a message in the distributed
environment is shown in Figure 1. The incoming requests to
the Web Service are delivered to the distributed handler
manager by a Web Service Container such as Apache Axis.
The manager stores the requests, called messages, in the
Message Execution Queue. The messages are sent to the
distributed handlers and the responses are received after the
successful handler execution. The manager ensures that
each message is executed without being interrupted. Every
message execution contains one or more stages. Several
distributed handlers may construct a single stage for which
handlers concurrently process the message. The manager
awaits the completion of the handler executions before
starting the delivery of the message to the next stage. This
procedure continues until all stages of a message are
completed. At the end, the successfully obtained output
returns to the Web Service Container. All of the messages in
the Message Execution Queue are executed concurrently.

Since the handlers are located in separate memory spaces,
the message on the wire should be secured against
unauthorized access. An adversary can see the important
information and/or modify the message. Moreover, the
handler distribution manager and the handlers should
authenticate themselves to prevent an adversary from

intervening in the interaction. Hence, the following issues
need to be addressed for the purpose of security:

• Eavesdropping: Potential hackers who have access to
the network are able to read the messages.

• Message modification: The message travelling
between the handlers and distribution manager can
be modified by an unauthorized person.

• False messages: It is fairly easy to produce false
messages and send them as if from an actual
computing node.

• Message replay: Similar to message modification,
the message formed by a handler or the distribution
manager can be saved by others and sent again.

• Repudiation: As messages can be forged, there is no
way of validating that a message has been sent by a
particular node.

The reliability of a handler itself is also essential for
successful execution. The message must reach the
distributed handlers and be executed without failure. Hence,
the reliability of the message delivery is critical.
Additionally, the system must have mechanisms in place to
deal with the failure of the handlers.

Figure 1. Executing the messages in the distributed Web Service

handlers.

4

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. RELIABILITY

Software reliability is described as the probability that the
software functions without failure under given conditions
during a specified period of time [26]. Reliability is also
measured in terms of percentage of failure circumstances in
a given number of attempts to compensate for variations in
usage over time [27]. For Web Services, although reliability
is viewed by some researchers as a non-functional
characteristic [28], Zhang and Zhang describe one of the
more comprehensive definitions of Web Service reliability
as a combination of correctness, fault tolerance, availability,
performance, and interoperability, where both functional
and non-functional components are considered [29].

In this paper, reliability will be investigated in two
categories: the reliability originating from the handler
replication and the reliability coming from the utilization of
a reliable messaging system.

A. Replicating handlers

Replication is critical for reliability, mobility,
availability, and performance of a computing system. There
are basically three replications: data, process, and message.
These concepts are extensively explored in [30]. Data
replication is the most heavily investigated one. However,
the other replications are also very important in the
distributed systems, especially for Service-Oriented
Architecture.

The process replication is particularly of main interest in
this paper because the intention is to investigate the
replication of the handlers. There exist two main approaches
in this area. The first one is modular redundancy [31]. The
second approach is called primary/standby [32]. Modular
redundancy has replicated components that perform the
same functionalities. All replicas are active. On the other
hand, the primary/standby approach utilizes a primary
process to perform the execution. The remaining replicas
wait in their standby state. They become active when the
primary replica fails.

The processes can be classified into two categories: no
consistency and consistency. The first category is the
simplest one; the processes are stateless. They do not keep
any information for the processed data. Therefore,
consistency is not an issue between the processes.
Replicated instances can be allowed to run concurrently. On
the other hand, replicas may enter an inconsistent state if the
process is not atomic and stateful. Inconsistency has been
extensively investigated in [33].

Replication is a very important capability where a
handler is inadequate. Sometimes, a handler may not be able
to answer the incoming requests. The tasks may line up such
that the overall performance degrades. This is similar to a
shopping center, where customers are waiting in line to be
served. The solution is to add one or more persons to serve
when necessary. Similarly, adding a replica to help with the
execution contributes to the overall performance.

In addition to the performance, a replica can be leveraged
for fault tolerance. It is possible that a handler crashes. The
replication contributes to the continuity of the execution and
improves the availability and reliability. Without using
handler replication in the case of an error, the whole
computation cannot continue. The computation becomes
more resilient with handler replication. The execution
continues as long as at least one replica of every handler has
not failed.

For n handlers with the replication factor of R, the
execution can be successful for R-1 failures per handler. The
maximum allowable number of errors is:

��� − 1

�

���

	

(1)

where n is the number of Web Service handlers and �� is the
replication number of the i-th handler. The execution cannot
continue even in a single handler fault, where ∀� ∈ �:	�� =

1.
In the distributed Web Service handler execution

environment, a variation of the primary/standby approach is
utilized. Dynamic binding ideas are employed for the
replicated handlers using the primary/standby approach.
Dynamic binding is a technique that allows services to be
linked at run-time [34] [35]. The execution manager decides
at run-time which distributed handler is invoked: the
primary handler or a replica. The handlers are prioritized.
The handler with the highest priority is assigned to execute
a message. The other replicas wait until their priorities
become highest. The system is able to change the priority
during the execution. When a fault occurs, the handler
priority is minimized.

If the replicated handlers were executed concurrently, a
checkpoint mechanism must have been utilized. The
checkpoint mechanism is based on the idea of saving the
state of the system. In fault detection, the execution of the
system is recovered from the checkpoint where the state was
saved. The recovery mechanism is only launched when a
fault occurs. Compensation handlers (Rollback) are specific
computing nodes that limit and confine the effects created
by a faulty handler. Compensation handlers allow the
execution of the faulty replicated handlers to be rolled back
to a specific point.

The checkpoint approach presents some drawbacks. It
necessitates the introduction of additional elements into the
distributed handler execution design. It requires extra time
to check each important point, and recovery processes need
to be activated when the rollback occurs. In fact,
establishing the correct and minimal checkpoint and
recovery structure is a highly complex task. The checkpoint
solution is not, in short, suitable in view of the fact that the
rollback mechanism could introduce a very high overhead in
the case of a fault. Hence, the primary/standby approach is
preferred for the distributed replica handlers.

5

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. The execution of replicas using the primary/standby

approach.

The replicas are never allowed to be executed
concurrently, except in the case of stateless handlers. Even
though they are allowed to run in a parallel manner, they
cannot join the processing of the same message. The
messages have to be different so that the parallel execution
does not cause inconsistency. Figure 2 depicts a replicated
handler processing the incoming message while the other
replicas await their turns.

When only one of the several replicated handlers is
executed, as shown in the square in Figure 3, the following
formula works to compute the reliability value:

��� = ���	��

�

���

(2)

where ��� is the reliability of the replicated handlers’
execution, �� is the execution probability of handler i, and
∑ �� = 1�

���
.

The reliability of the parallel handlers with the AND
junction and the reliability of the serial handlers can be
formulated as:

�� = ���

�

���

(3)

where �� is the reliability of the handlers’ execution and
��	is the reliability of handler i.

Figure 3. A sample configuration for the handlers’ execution.

By using formulas 2 and 3, the reliability of the handlers’
execution in Figure 3 can be formulated as:

�� = ���

	

���

. � ������
	

	

����

.�

(4)

�� = ���

���

. � ��� 	���

	

����

(5)

where �� is the reliability of the handlers’ execution.	�� is
the reliability of the ith replica and ��� = 1 for only one
replicated handler, which is executed; the value is 0 for the
remaining handlers.

B. Reliable messaging

The distributed handler mechanism benefits from two
different sources for reliable message delivery: a messaging
broker and its own execution mechanism.

The messaging system, NaradaBrokering, provides
message-level reliability. It also offers supportive
functionalities to the messaging and a very reasonable
performance [36]. The messages can be queued up to
several thousands and are gradually delivered to their
destinations to provide flow control for the messaging.
Additionally, the system has a Reliable Delivery Service
(RDS) component that delivers the payload even if a node
fails [37].

RDS stores all the published events that match up with
any one of its managed templates, which contain the set of
headers and content descriptors. This archival operation is
the initiator for any error correction, which is caused by the
events being lost in transit to their targeted destinations and
also by the entities recovering either from disconnect or a
failure. For every managed template, RDS also maintains a
list of entities for which it facilitates reliable delivery. RDS
may also manage information regarding access controls,
authorizations, and credentials of the entities that generate
or consume events, which are targeted to this managed
template.

When an entity is ready to start publishing events on a
given template, it issues a discovery request to find out the
availability of RDS, which provides the archival
environment for the generated template events. The
publisher will not circulate template events until it receives
a confirmation that RDS is available.

The publisher ensures that the events are stored by RDS
for every template event that it produces. After successful
delivery of the event to RDS, the event is archived and a
message is sent to the publisher to verify that the message
was received by RDS successfully. Otherwise, a failure
message with the related event id is sent back to the
publisher. After verification, the suitable matching engine is
utilized to compute the destinations associated with the
template event.

6

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A subscriber registers with RDS. A sequence number
linked with the archival of the interaction is recorded. The
number can be also described as an epoch, which signifies
the point from which the registered entity is authorized to
receive events conforming to the template. Once a template
event has been archived, RDS issues a notification. The
notifications allow a subscribing entity to keep track of the
template events while facilitating error detection and
correction. Upon receipt of the notification, the subscribing
entity confirms the reception of the corresponding template
event.

When an entity reconnects to the broker network after
failures, the entity retrieves the template events that were
issued and those that were in transit before the entity’s
leaving. After the receipt of the recovery request, RDS scans
the dissemination table starting at the sync related to the
entity and then generates an acknowledgment-response
invoice event outlining the archival sequences that the entity
did not previously receive. Accordingly, the missing events
are provided to the receiver.

In addition to this, a reliable mechanism for the Web
Service handler execution environment is built on top of the
reliable messaging that NaradaBrokering provides. The
distributed Web Service handler mechanism is able to repeat
the execution of a specific handler in the event of a failure.
Failure is declared when a response is not received from a
distributed handler. There are several possible reasons
behind an unsuccessful response. For example, the
communication link may be broken, or the handler may not
have successfully processed the message because of either
an error or a crash. The distributed Web Service handler
mechanism checks the possibilities by sending the message
several times to its destination. In each attempt, it waits for a
specific amount of time. This duration is either assigned or
calculated by the system. After several unsuccessful
attempts, the message processing may switch to a replica,
depending on its priority. As discussed previously, handlers
can populate their replicas to improve availability and
reliability.

Figure 4. The cost of the reliability mechanism for the distributed Web

Service handlers.

For a reliable messaging benchmark, two HP DL 380 G7,
2 x Xeon Six Core, 2.93 GHz, 48 GB memory physical
machines are utilized. The machines are virtualized to create
four 4-core and 16 GB memory machines and one 8-core 32
GB memory machine. These machines are connected to
each other via a LAN and share a common storage system.
Virtual machines use Windows Server 2008 R2 64-bit
operating systems. The cost of the reliable mechanism of the
messaging for the distributed handlers is shown in Figure 4.
The cost contains the time needed for reliability procedures
to send the tasks to the distributed Web Service handlers or
receive the responses back. The time for the handlers’
executions and the time for the messaging are excluded to
illustrate only the reliability cost for varying message sizes.
Figure 4 shows that the message size does not affect the cost
of the reliability of the messaging very much. The cost is
very reasonable when reliability is a necessity for the
distribution.

V. MESSAGE SECURITY

Security is one of the most important issues for
computing systems. Critical data can be seen or altered by
an unauthorized person. This is increasingly important if the
data are transferred through the network, which is a more
vulnerable environment.

Local computing does not expose its data to the outside
world very much, but this is not the case for distributed
computing. The computation is shared between nodes,
which may be physically dispersed in the distributed
environment. The transmission of the data among the nodes
may expose critical information to dangerous
vulnerabilities. Hence, the transportation channels between
the computing nodes must be secured in addition to the
security of the nodes.

NaradaBrokering, which is utilized for messaging, has a
security framework that is able to support secure
interactions between the distributed handlers [38]. The
security infrastructure consists of a Key Management Center
(KMC), which provides a host of functions specific to the
management of keys in the system. The KMC stores the
public keys of the interacting entities. It also provides
authentication and authorization mechanisms to offer an
enhanced environment for secure messaging.

Authentication is an elementary security requirement to
prove that an entity possesses a claimed identity [39]. The
basic tool that a person can use to prove a claimed identity
is generally something that the person knows (e.g., a
password), something that the person has (e.g., an
authentication token), or a biometric property (e.g.,
fingerprints or iris recognition). Different mechanisms can
be used for cryptographic authentication. Keyed hash
functions or symmetric ciphers that utilize a specific key are
among the examples. The key is only available to the entity
to be authenticated and the verifier. One requirement for
authentication mechanisms using the key is obviously the
protection of the applied key. The leakage of the key causes

5

10

15

20

25

30

100 200 300 400 500

E
xe

cu
tio

n
tim

e
in

 m
ill

is
ec

on
ds

Message size in KB

7

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the collapse of the security mechanism. Another
requirement is that the key should preferably be unique for
the interacting entities. An attack is confined with this
specific communication if the key of an interaction gets
compromised.

Asymmetric cryptography can also be used for
authentication. A proper procedure based on elliptic curves
is described in [40]. A cryptographic operation is
performed, to be authenticated using the entity’s private
key. The verifier checks the received response using the
corresponding public key by performing a cryptographic
verification operation on the received value.
NaradaBrokering utilizes an authentication mechanism for
the publishers and subscribers, which are the computing
nodes for the distributed handler execution. For the
authentication, the publisher or subscriber sends its signed
request by using private key. The broker verifies this request
by using the public key of the entities.

The KMC incorporates with an authorization module to
manage the usage of the messaging. Every topic has an
access control list that authorizes the subscribers. Similarly,
an access control list exists for the publishers. After
verification of the signature, the publisher or subscriber is
permitted to access the entity according to the relevant
access control lists.

The message traveling between the computing nodes is
described in Figure 5. It contains a unique id, properties, and
a payload. The unique message id is a distinctive name for a
message. The handler execution mechanism may host many
messages being executed at one moment. Hence, an
identifier is necessary to achieve the correct executions; a
Universally Unique Identifier (UUID) generated id is
assigned to every message. The generator assures that there
will not be more than one of the same id in the system.
Thus, the design gives enough assurance that the message
executions are not blended.

<context>
 <id>4099d6dc-0b0e-4aaa-95ff-2e758722a959</id>
 <properties>
 <encKey> bèø3DKUQ …</encKey >
 <sender>
 <senderId>12345… </ senderId >
 <signed>šZQSİÑU,k…</signed >
 </sender >
 ….
 </properties>
 <payload>
 ….
 </payload>
</context>

Figure 5. The message format for the distributed Web Service
handlers.

Figure 6. Security mechanism for a distributed handler execution.

The second important part of the message format is the
properties section. This part conveys the required additional
information to the computing nodes. The information can be
specific to a single handler or generic for all handlers. There
is a property that contains the encryption key. It is a
symmetric key that is created for a single message. The key
size is usually selected to be large enough to provide the
necessary security. On the other hand, it must be kept in
mind that generating larger keys is time-consuming. The
average time taken for key generation for different bit sizes
is presented in [41]. Therefore, the same symmetric key can
be utilized to send a group of messages for a period of time.
Additionally, the properties section contains the sender’s
signature to prove the sender’s authenticity. The sender
signs its unique id with its private key. Both the sender’s id
and signature are added to the properties section. The last
part of the distributed handler message format is the
payload, which contains the encrypted message.

The performance of the asymmetric key encryption is
worse than the performance of the symmetric key
encryption [42]. It can take about 1000 times more CPU
time to process an asymmetric encryption or decryption than
a symmetric encryption or decryption. Nevertheless, an
important advantage of asymmetric ciphers over symmetric
ciphers is that no secret channel is necessary to exchange
the keys. The receiver needs only to be confident about the
authenticity of the public key provider. Asymmetric ciphers
also cause fewer key management problems than symmetric
ciphers. Only 2n keys are needed for n nodes to
communicate securely with each other in an asymmetric key
encryption system. However, in a system based on a
symmetric cipher, n(n - 1)/2 secret keys are needed for
secure interaction among n nodes. Because of these features,

8

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

asymmetric ciphers are typically used for non-repudiation,
for authentication through digital signatures, and for the
distribution of symmetric keys. Thus, the asymmetric key
algorithm is able to support the solving of the key exchange
and management problem of the symmetric keys. On the
other hand, symmetric ciphers are used for bulk encryption.

To use the best part of the algorithms, a hybrid approach
is utilized. Figure 6 demonstrates a secure messaging
architecture for the distributed handlers. The payload of the
message is encrypted by a symmetric cipher algorithm.
Advanced Encryption Standard (AES) is used for the
encryption. AES is a natural choice for the symmetric key
algorithm because it has been analyzed extensively and used
worldwide. The cryptography scheme is a symmetric block
cipher that encrypts and decrypts blocks of data. The AES
key generation algorithm takes a random seed as an input. A
256-bit session key is created and passed within the
properties section of the message to the other computing
node for decryption.

The RSA algorithm is utilized for the asymmetric key
encryption. The sender encrypts the symmetric session key
with the 2048-bit public key of the receiver to present the
confidentiality. The RSA algorithm requires two large prime
numbers as the input along with a random seed. All of these
inputs, which are created randomly, are provided for key
generations. The created private keys are then kept locally,
and the public key is stored in the KMC.

With the commonly used RSA implementations,
doubling the RSA key length means that encryption will be
more than two times slower and decryption will be almost
four times slower, as shown in Table I. In general, RSA
encryption is much faster than RSA decryption. The fast
encryption relies on the use of a short public exponent. The
RSA algorithm is commonly used in this way. It is possible
to have an RSA public key with a long public exponent,
which will make encryption as slow as decryption.
However, because a long public exponent does not improve
security, short public exponents are widespread. Some well-
known RSA implementations do not even support long
public exponents. Hence, the decryption exponent is
typically huge, whereas the encryption exponent is small.

TABLE I. PUBLIC KEY ENCRYPTION AND DECRYPTION RESULTS.

Encryption time in
milliseconds

Decryption time in
milliseconds

Plain text
size in KB 1024-bit 2048-bit 1024-bit 2048-bit

100 262 470 4703 14906

200 563 892 8844 29594

300 784 1298 13703 44542

400 1048 1735 17766 59064

500 1298 2391 22454 73737

TABLE II. COMPERISON OF CIPHER TEXT SIZE IN PUBLIC KEY
ENCRYPTION.

Plain text size
in KB Cipher text size in KB

 1024-bit 2048-bit

100 109 105

200 218 209

300 329 314

400 438 418

500 547 522

The key length of an RSA key specifies the number of

bits in the modulus. A larger key increases the maximum
number of bytes that we can encrypt in a block at once, as
well as the security of the encryption. On the other hand,
with every doubling of the RSA key length, decryption
becomes much slower. Key length also affects the speed of
encryption, but the speed of decryption is usually of greater
concern.

Moreover, depending on the padding scheme, the cipher
text size increases in RSA encryption. This is another factor
that is taken into consideration while using this system.
Table II shows the text sizes for 1024-bit and 2048-bit key
encryptions. When using a 1024-bit RSA key with PKCS #1
padding, it is not possible to encrypt a string that is longer
than 117 bytes. Increasing the size of the RSA key to 2048
bits will allow the encrypting of 245 bytes of data, but
longer RSA keys are expensive and they take more time to
generate and operate. On the other hand, the AES
encryption algorithm does not show the size increase in the
encrypted text even though it also does block ciphering with
128 bytes.

The size of cipher text can be calculated with the
following formula:

	 = 	
 + 	�	 − 	(
	mod	�)		 (6)

where 	 is the cipher text size,
 is the plain text and � is
the block size.

As mentioned earlier, the authentication of the sender
and receiver and authorization to access the message are
established by the security mechanisms of the messaging
broker. Figure 7 shows the tasks happening between the
sender and receiver for a single interaction. The sender
generates the symmetric session key for a message or a
group of messages. The payload containing the message is
encrypted with this symmetric session key with the AES
algorithm. The sender looks up the receiver’s public key in
the KMC. The RSA algorithm is used to encrypt the
symmetric session key with the receiver’s public key.
Hence, only the node that has the right private key can
decrypt the session key to get the encrypted payload. At the
same time, the sender authenticates itself by signing its id
with its private key.

9

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Get receiver’s public key

Return receiver’s public key

Generate symmetric

session key

Encrypt the message

Encrypt the session

key

Sign ID with own

private key

Receive message

Get sender’s public key

Return sender’s public key

Decrypt the session key

with own private key

Verify the sender

Decrypt the message

Figure 7. Interactions while sending a message between computing

nodes.

Figure 8. The cost of the security mechanism for the distributed Web

Service handlers.

When the subscriber receives the message, it identifies
and verifies the sender by using the sender’s public key,
which is retrieved from the KMC. The session key carried
within the “encKey” tag is then decrypted by the receiver’s
private key. The retrieved session key is used to decrypt the
payload to get the original message. In this interaction, the
senders and receivers are either the distributed Web Service
handlers or the distribution manager.

The benchmarks showing the cost of the aforementioned
security mechanism and the results of the tables containing
public key encryption are determined in the same
environment as the reliability benchmark, as discussed in
Section IV.B. Figure 8 shows the cost of the secure
environment for varying payload sizes. The signing of the
sender’s id to present the authentication causes very small
overhead. Instead of asymmetric key encryption, the usage
of the symmetric key to encrypt the messages provides
reasonable execution time. As stated earlier, even though
asymmetric key encryption solves the problem of key
exchange, it does not accomplish the message encryption
and decryption for large sizes at an affordable cost. In short,
a hybrid approach using both asymmetric and symmetric
ciphers helps to improve security at a reasonable cost.

VI. CONCLUSION

Although the distribution of Web Service handlers
provides many advantages in terms of scalability,
availability, and performance, it necessitates a reliable and
secure atmosphere. The instruments explained in this paper
for secure and reliable handler distribution and the support
tools of the utilized messaging broker grant the necessary
features for this atmosphere. Utilized reliability mechanisms
deal with the distributed computing node failures by using
replication and ensure the message delivery. The hybrid
security approach advances the environment by offering a
solution for the key exchange problem of the symmetric
encryption and by reducing the cost of the asymmetric
cipher algorithm. The design also delivers the authentication
and authorization mechanisms for the distributed handlers.
The benchmark results show that the costs originating from
the utilized instruments are acceptable and affordable. In
short, the design of the distributed execution with the
security and reliability tools offers a satisfactory
environment for Web Service handlers. Moreover, it should
be kept in mind that a secure and reliable environment must
be employed in many mission-critical tasks.

REFERENCES
[1] B. Yildiz, “Reliability and message security for distributed

web service handlers,” Proc. the Seventh International
Conference on Internet and Web Applications and Services
(ICIW 2012) , Stuttgart, Germany, May 2012, pp. 17-22.

[2] Web Service Security (WS-Security), Available:
http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=wss, [Retrieved: May 20, 2013].

[3] Web Service Reliable Messaging (WS-ReliableMessaging),
Available:http://public.dhe.ibm.com/software/dw/specs/ws-

40

60

80

100

120

100 200 300 400 500

E
xe

cu
tio

n
tim

e
in

 m
ili

se
co

nd
s

Message size in KB

10

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

rm/ws-reliablemessaging200502.pdf, [Retrieved: May 20,
2013].

[4] Web Service Trust (WS-Trust), Available:http://docs.oasis-
open.org/ws-sx/ws-trust/v1.4/errata01/os/ws-trust-1.4-
errata01-os-complete.html, [Retrieved: May 20, 2013].

[5] Web Service Federation (WS-Federation),
Available:http://docs.oasis-open.org/wsfed/federation/v1.2/os
/ws-federation-1.2-spec-os.html, [Retrieved: May 20, 2013].

[6] C. M. Jayalath and R. U. Fernando, “A modular architecture
for secure and reliable distributed communication,” Proc. the
Second International Conference on Availability, Reliability
and Security (ARES07), Washington, DC, USA, 2007, pp.
621-628, DOI=10.1109/ARES.2007.7.

[7] L. E. Moser, P. M. Melliar-Smith, and W. Zhao, ‘‘Building
dependable and secure web services,’’ Journal of Software,
vol.2, no.1, 2007, pp. 14-26.

[8] S. L. Pallemulle, H. D. Thorvaldsson, and K. J. Goldman,
“Byzantine fault-tolerant web services for n-tier and service
oriented architectures,” Proc. the 28th International
Conference on Distributed Computing Systems (ICDCS '08),
Washington, DC, USA, 2008, pp. 260-268.
DOI=10.1109/ICDCS.2008.94.

[9] M. Lei, S. V. Vrbsky, and Z. Qi, “Online grid replication
optimizers to improve system reliability,” Proc. IEEE
International Parallel and Distributed Processing Symposium
(IPDPS 2007), March 2007, pp.1-8.

[10] N. Aghdaie and Y. Tamir, “CoRAL: a transparent fault-
tolerant web service,” Journal of System Software, vol. 82,
no. 1, January 2009, pp. 131-143,
DOI=10.1016/j.jss.2008.06.036.

[11] W. Zhang, “Integrated security framework for secure web
services,” Proc. the Third International Symposium on
Intelligent Information Technology and Security Informatics
(IITSI '10), Washington, DC, USA, 2010, pp. 178-183,
DOI=10.1109/IITSI.2010.8.

[12] H. F. EL Yamany, M. A. M. Capretz, and D. S. Allison,
“Quality of security service for web services within SOA,”
Proc. Congress on Services (SERVICES '09). Washington,
DC, USA, 2009, pp. 653-660, DOI=10.1109/SERVICES-
I.2009.95.

[13] A. J. Varela-Vaca, R. M. Gasca, D. B. Nunez, and S. P.
Hidalgo, “Fault tolerance framework using model-based
diagnosis: towards dependable business processes,”
International Journal on Advances in Security, issn 1942-2636
vol. 4, no. 1 & 2, year 2011, pp.11-22.

[14] L. Zhao,Y. Ren, Y. Xiang, and K Sakurai, “Fault-tolerant
scheduling with dynamic number of replicas in heterogeneous
systems”, Proc. 12th IEEE International Conference on High
Performance Computing and Communications (HPCC),
Melbourne, September 2010, pp. 434-441,
DOI=10.1109/HPCC.2010.72.

[15] Y. Desmedt, R. Gennaro, K. Kurosawa, and V. Shoup, “A
new and improved paradigm for hybrid encryption secure
against chosen ciphertext attack,” Journal of Cryptology, vol.
23, iss. 2, January 2010, pp. 91-120, DOI=10.1007/s00145-
009-9051-4.

[16] K. Ramachandran, H. Lutfiyya, and M. Perry, “Chaavi: a
privacy preserving architecture for webmail systems,” Proc.
the Second International Conference on Cloud Computing,
GRIDs, and Virtualization, 2011, pp. 133–140.

[17] S. S. Rizvi, A. Riasat, and K. M. Elleithy, “Combining private
and public key encryption techniques for providing extreme
secure environment for an academic institution application,”
International Journal of Network Security & Its Application
(IJNSA), vol.2, no.1, January 2010, pp. 82-96.

[18] E. Ramaraj, S. Karthikeyan, and M. Hemalatha, “A Design of
security protocol using hybrid encryption technique (AES-

Rijndael and RSA),” International Journal of the Computer,
the Internet and Management, vol. 17, no. 1, January 2009,
pp. 78-86.

[19] V. Palanisamy and A. M. Jeneba, “Hybrid cryptography by
the implementation of RSA and AES,” International Journal
of Current Research, vol. 3, iss. 4, April 2011, pp.241-244.

[20] E. Damiani, F. Pagano, and D Pagano, “iPrivacy: a
distributed approach to privacy on the cloud,” International
Journal on Advances in Security, vol. 4, no. 3&4, 2011, pp.
185-197.

[21] K. Komathy, V. Ramachandran, and P. Vivekanandan,
“Security for XML messaging services: a component-based
approach,” Journal of Network and Computer Applications,
vol. 26, iss. 2, April 2003, pp. 197-211,
DOI=10.1016/S1084-8045(03)00003-1.

[22] F. T. Ammari and J. Lu, “Advanced XML security:
framework for building secure XML management system
(SXMS),” Proc. the Seventh International Conference on
Information Technology: New Generations (ITNG '10),
Washington, DC, , 2010, pp. 120-125,
DOI=10.1109/ITNG.2010.124.

[23] B. Yildiz, G. Fox, and S. Pallickara, “An orchestration for
distributed web service handlers,” Proc. International
Conference on Internet and Web Applications and Services
(ICIW08), June 2008, Athens, Greece, pp. 638-643.

[24] B. Yildiz, “Distributed handler architecture,” Ph.D.
Dissertation. Indiana University, Bloomington, IN, USA.
Advisor: Geoffrey C. Fox. 2007.

[25] B. Yildiz and G. Fox, "Measuring overhead for distributed
web service handler," Proc. the Third IEEE International
Conference on Computer Science and Information
Technology (ICCSIT 2010), July 2010, pp. 566-570.

[26] H. Zo, D. Nazareth, and H. Jain, "Measuring reliability of
applications composed of web services," Proc. 40th Annual
Hawaii International Conference on System Sciences (HICSS
'07), 2007, pp. 278- 288.

[27] J. D. Musa, Software reliability engineering, McGraw-Hill,
New York, NY, 1999.

[28] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr, “Web
services: promises and compromises, ”ACM Queue, 1 (1),
pp. 48-58, March 2003.

[29] J. Zhang and L.-J. Zhang, “Criteria analysis and validation of
the reliability of Web Services-oriented systems,” Proc. the
IEEE International Conference on Web Services (ICWS'05),
Orlando, Florida, July 2005, pp. 621-628.

[30] A. Helal, A. Heddaya, and B.K. Bhargava, "Replication
techniques in distributed systems," Advances in Database
Systems, vol. 4, 2002, pp. 61-71, DOI: 10.1007/0-306-
47796-3_3.

[31] P.A. Lee and T. Anderson, Fault tolerance: principles and
practice, Springer-Verlag New York, Inc. Secaucus, 1990.

[32] P. P. W. Chan, M. R. Lyu, and M. Malek, “Making services
fault tolerant,” Proc. 3rd International Conference on Service
Availability (ISAS'06), Berlin, Heidelberg, 2006, pp. 43-61,
DOI=10.1007/11955498_4.

[33] P.T.T. Huyen and K. Ochimizu, "Toward inconsistency
awareness in collaborative software development," Proc. 18th
Asia Pacific Software Engineering Conference (APSEC),
Dec. 2011, pp. 154-162.

[34] A. Erradi and P. Maheshwari, “Dynamic binding framework
for adaptive web services,” Proc. the 2008 Third International
Conference on Internet and Web Applications and Services.
Washington, DC, USA, 2008, pp. 162–167.

[35] U. K¨uster and B. K¨onig-Ries, “Dynamic binding for BPEL
processes - a lightweight approach to integrate semantics into
web services,” Proc. 4th International Conference on Service

11

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Oriented Computing (ICSOC06), Chicago, Illinois, USA,
2006, pp. 116–127.

[36] S. Pallickara and G. Fox, “NaradaBrokering: a distributed
middleware framework and architecture for enabling durable
peer-to-peer grids,” Proc. the ACM/IFIP/USENIX
International Conference on Middleware (Middleware '03),
2003, pp. 41-61.

[37] S. Pallickara and G. Fox, "A scheme for reliable delivery of
events in distributed middleware systems," Proc. the IEEE
International Conference on Autonomic Computing
(ICAC'04), New York, NY, May 2004, pp. 328-329.

[38] S. Pallickara, M. Pierce, G. Fox, Y. Yan, and Y, Huang, "A
Security framework for distributed brokering systems,"
Available:http://www.naradabrokering.org, [Retrieved: May
20, 2013].

[39] R. Falk and S. Fries, “Advances in protecting remote
component authentication,” International Journal on
Advances in Security, issn 1942-2636 vol. 5, no. 1 & 2, year
2012, pp. 28-35.

[40] M. Braun, E. Hess, and B. Meyer, “Using Elliptic Curves on
RFID Tags,” International Journal of Computer Science and
Network Security, vol. 2, February 2008, pp. 1-9.

[41] K. Ramachandran, H. Lutfiyya, and M. Perry, “A Privacy
preserving solution for web mail systems with searchable
encryption,” International Journal on Advances in Security,
issn 1942-2636 vol. 5, no. 1 & 2, year 2012, pp. 26-45.

[42] C. Narasimham and J. Pradhan,“Evaluation of performance
characteristics of cryptosystem using text files”, Journal of
Theoretical and Applied Information Technology, vol. 4, iss.
1, 2008, pp. 56-60.

