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Abstract—Security and reliability are the crucial features of 
distributed computing, of which one of the key enabling 
technologies is Web Service. In a service execution, the main 
task is carried out by endpoint logic, which is supported by 
additive functionalities and/or capabilities, called Web Service 
handlers. The handlers can be detached from the endpoint and 
distributed to suitable locations to improve availability, 
scalability, and performance. In this paper, security and 
reliability, which are among the most fundamental and 
essential requirements of the handler distribution, are 
investigated. The proposed environment contains a hybrid 
encryption scheme, digital signing, authentication, replication, 
and guaranteed message delivery. The benchmark results are 
presented to illustrate that the utilized reliability and security 
mechanisms for the handler distribution are reasonable and 
efficient.  
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I.  INTRODUCTION  

Web Service is a technology providing seamless and 
loosely coupled interactions that help to build platform-
independent distributed systems. Software standards and 
communication protocols offering common languages are at 
the foundation of Web Service. The strength of Web Service 
originates from its ability to hide platform-specific details of 
the implementations, to expose service interfaces, and to let 
these self-describing services be registered, published, and 
discovered dynamically across the Internet. Web Service 
utilizes the most basic distributed computing approach of 
client-server interaction. However, it also allows for the 
creating of complex service composed of many 
communicating services. Powerful Web Service 
applications can be assembled by combining the remote and 
local services.  

A single Web Service application integrates endpoint 
logic and its handlers in a common framework. The main 
task is accomplished by the service endpoint logic. 
Supportive functionalities and capabilities, called Web 
Service handlers, are utilized to provide a full-fledged 
service. These capabilities might be related to security, 
reliability, orchestration, and logging, as well as any other 
necessary capabilities for a distributed system. These 
capabilities may help to compose a complex service as the 

handlers can deal with orchestration. They may also be 
utilized to provide high enough quality of services for a 
single client-server interaction as the handlers offer security 
or logging. A Web Service can employ several handlers in a 
single interaction; a chain of handlers can contribute to a 
service execution. A service can have a pair of handlers 
offering functions on both the server and client sides. Some 
handlers can be, in contrast, employed only in one side of 
the interaction.  

Although handlers are required and inevitable in many 
cases, they may cause degradation in service quality if their 
numbers overload the service. A service endpoint with many 
handlers may suffocate in a single memory space. Hence, it 
is wise to use additional computing power. This raises the 
idea of distribution. There are different reasonable 
approaches for distribution of Web Service handlers. Some 
suggest that they can be deployed as services; others create 
a specific distributed environment for them. Distributing the 
handlers by using a designated setting provides a superior 
computing environment, especially when the concern is 
performance. On the other hand, the distribution requires 
certain features to ensure a suitable environment [1].  

Security and reliability are among the most important 
criteria that need to be considered when a distributed system 
is being evaluated. Hence, this paper investigates reliability 
and message security for the distributed Web Service 
handlers and their effect on the system performance. A 
fundamental task of cryptography is to protect the secrecy of 
messages transmitted over public communication lines. For 
this purpose, in this research, an encryption scheme using a 
secret key is utilized to encode a message in such a way that 
an eavesdropper cannot make sense of it. To handle key 
exchange smoothly, the secret key is ciphered with a public 
key encryption algorithm. Moreover, a digital signature is 
used to verify the sender. Reliability mechanisms are also 
employed to attain a robust environment for Web Service 
handlers.  

The rest of this paper is organized as follows: Section II 
provides information about related works on reliability and 
security. Distributed Web Service handler execution is 
briefly explained in Section III. Section IV investigates 
reliability. Section V gives details about message security. 
Finally, the paper is concluded in Section VI. 
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II. RELATED WORKS 

Web Services, an ideal type of technology for distributed 
applications, benefit from several specifications for security 
and reliability purposes: WS-Security [2], WS-Trust [3], 
WS-Federation [4], and WS-ReliableMessaging [5]. These 
specifications provide the common language to develop 
secure, reliable, and interoperable interactions between 
clients and services. 

WS-Security addresses security by leveraging existing 
standards and provides a framework to embed these 
mechanisms into a SOAP message. This happens in a 
transport-neutral fashion. WS-Security defines a SOAP 
header element, which contains the information defined by 
the XML signature that conveys how the message was 
signed, the key that was used, and the resulting signature 
value. Likewise, the encryption information is inserted into 
the SOAP header. WS-Trust explains the mechanisms to use 
security token and methods to establish trust relationships. It 
enables secure conversations between Web Services by 
defining how to issue, renew, and cancel the security tokens. 
WS-Federation defines mechanisms to let different security 
realms unite. Hence, authorized access to a resource handled 
in one realm can be provided to security principals whose 
identities are controlled in other realms.  

In the Web Service reliability, the WS-
ReliableMessaging specification offers an outline to ensure 
reliable message delivery between the sender and receiver 
for Web Services. The specification provides an 
acknowledgement-based scheme to guarantee that data are 
transferred between the communicating entities. Although it 
is mainly for point-to-point communication, the 
specification also supports service composition and 
transactional interaction. 

Web Service specifications describe the syntax and do 
not define implementation mechanisms or APIs, which 
remain proprietary to individual vendors. Other than 
specifications, there are also works and research on security 
and reliability for Web services. Jayalath and Fernando 
describe a basic design and implementation approach for 
building security and reliability layers for Apache Axis 2 
[6]. Moser et al. explain dependability features, including 
SOAP connection failover, replication, and checkpointing, 
in addition to reliable messaging and transaction 
management. Their paper also presents security 
technologies, including encryption and digital signatures for 
Web Services specifications, as well as other security 
technologies [7]. Pallemulle et al. present a middleware that 
supports interaction between replicated Web Services while 
providing strict fault isolation assurances [8]. Lei et al. 
propose greedy replica optimizers to improve reliability for 
a data-intensive online grid system [9]. Aghdaie and Tamir 
present a transparent mechanism that provides high 
reliability and availability for Web Services. Their paper 
explores fault tolerance even for the requests being 
processed at the time of server failure. The scheme can 
handle dynamic execution and does not enforce 

deterministic servers [10]. Zhang presents an integrated 
security framework based on the use of authentication, 
authorization, confidentiality, and integrity mechanisms for 
Web Services, and proposes a model to integrate and 
implement these security mechanisms in order to make Web 
Services robust [11]. Yamany et al. propose a metadata 
framework providing different levels to describe the 
available variations of the authentication, authorization, and 
privacy features. With the metadata, the security features are 
constructed to assist the service consumer and provider in 
reaching an agreement on how to meet their needs [12]. 

Security and reliability are not the concerns of only Web 
and Grid Service technologies. Other distributed computing 
applications also offer necessary reliability and security 
mechanisms. Fault tolerance approaches such as replication, 
recovery techniques, self-reconfiguration of systems, and 
dynamic binding are applied in various studies to improve 
reliability. Many research projects and applications utilize 
Secure Sockets Layer (SSL)/Transport Layer Security 
(TSL) protocols. Others prefer to utilize symmetric or 
asymmetric crypto systems. Some research projects offer a 
hybrid approach combining symmetric and asymmetric key 
encryption algorithms to offer superior solution. 

Vaca et al. propose an automatic identification of faults 
by means of model-based diagnosis, which helps to 
establish particular fault tolerance mechanisms such as 
replications and checkpoints [13]. Zhao et al. design a 
scheduling algorithm offering reliability satisfying the 
user’s requirement without exceeding the system capacity. 
The authors explain how to achieve the minimum number of 
replicas for each task while satisfying the user’s reliability 
requirement with the minimum resources. They also target 
acceptable performance for execution time [14]. 

Desmedt et al. demonstrate a scheme that uses a public 
key to encrypt a random key, which is used to encrypt the 
actual message with a symmetric encryption algorithm [15]. 
Ramachandran et al. use a public/private key model for 
securely communicating messages [16]. Rizvi et al. present 
an implementation of a secure application syndicating 
symmetric and asymmetric key algorithms to minimize the 
execution time and maximize the security [17]. Ramaraj et 
al. describe a hybrid encryption based on AES and RSA for 
online transactions [18]. Palanisamy et al. propose the use of 
a symmetric key algorithm to encrypt and decrypt data and 
RSA for the symmetric key’s encryption/decryption [19]. 
Damiani et al. discuss the applicability of outsourced 
Database Management System solutions to the cloud and 
provide an outline for management of confidential data in 
public clouds. It utilizes symmetric and asymmetric 
encryption for privacy and signing [20].  

Kemathy et al. investigate a component-based security 
solution for XML messaging [21]. Ammari et al. provide 
architecture securing XML messages by encrypting flagged 
XML parts, each with a different type of encryption 
depending on data sensitivity and the defined importance 
level [22]. 
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III.  DISTRIBUTION 

In this paper, the distribution of Web Service handlers is 
explored by utilizing a Message-Oriented Middleware 
(MOM), which is more narrowly focused on messaging. 
The MOM is designed to be as simple as possible while still 
offering robust support for messaging. Unlike SOAP 
messaging, MOM message headers and basic routing 
information are not contained in XML. This allows more 
efficient processing, since XML parsing is slow compared 
to the speed at which routing decisions are made in a 
specialized messaging system.  

In general, the same proven security and reliability 
mechanisms from the related works are utilized. However, 
the present research differs in the use of a designated 
messaging system to improve efficiency and in having an 
end-to-end solution to complete the distributed handlers’ 
secure and reliable execution in this setting. 

The distributed handler execution is organized by a 
specialized management tool, which contains the 
orchestration engine explored in [23]. The constructs of the 
orchestration engine answer the wide range of the handler’s 
execution configuration, such as serial, parallel, and 
conditional processing. In addition to orchestration, the 
distribution manager employs an efficient execution engine 
to meet the performance requirements. The details of the 
manager are provided in [24]. The engine utilizes a MOM to 
distribute the tasks to the handlers. The execution manager 
is so efficient that the overhead justifies the distribution, as 
investigated in [25]. This paper extends the required security 
and reliability mechanisms for the handler distribution 
explained in [1].  

The execution of a message in the distributed 
environment is shown in Figure 1. The incoming requests to 
the Web Service are delivered to the distributed handler 
manager by a Web Service Container such as Apache Axis. 
The manager stores the requests, called messages, in the 
Message Execution Queue. The messages are sent to the 
distributed handlers and the responses are received after the 
successful handler execution. The manager ensures that 
each message is executed without being interrupted. Every 
message execution contains one or more stages. Several 
distributed handlers may construct a single stage for which 
handlers concurrently process the message. The manager 
awaits the completion of the handler executions before 
starting the delivery of the message to the next stage. This 
procedure continues until all stages of a message are 
completed. At the end, the successfully obtained output 
returns to the Web Service Container. All of the messages in 
the Message Execution Queue are executed concurrently. 

Since the handlers are located in separate memory spaces, 
the message on the wire should be secured against 
unauthorized access. An adversary can see the important 
information and/or modify the message. Moreover, the 
handler distribution manager and the handlers should 
authenticate themselves to prevent an adversary from 

intervening in the interaction. Hence, the following issues 
need to be addressed for the purpose of security: 

• Eavesdropping: Potential hackers who have access to 
the network are able to read the messages.  

• Message modification: The message travelling 
between the handlers and distribution manager can 
be modified by an unauthorized person.  

• False messages: It is fairly easy to produce false 
messages and send them as if from an actual 
computing node. 

• Message replay: Similar to message modification, 
the message formed by a handler or the distribution 
manager can be saved by others and sent again. 

• Repudiation: As messages can be forged, there is no 
way of validating that a message has been sent by a 
particular node.  

The reliability of a handler itself is also essential for 
successful execution. The message must reach the 
distributed handlers and be executed without failure. Hence, 
the reliability of the message delivery is critical. 
Additionally, the system must have mechanisms in place to 
deal with the failure of the handlers. 

 

 
Figure 1.  Executing the messages in the distributed Web Service 

handlers. 
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IV.  RELIABILITY 

Software reliability is described as the probability that the 
software functions without failure under given conditions 
during a specified period of time [26]. Reliability is also 
measured in terms of percentage of failure circumstances in 
a given number of attempts to compensate for variations in 
usage over time [27]. For Web Services, although reliability 
is viewed by some researchers as a non-functional 
characteristic [28], Zhang and Zhang describe one of the 
more comprehensive definitions of Web Service reliability 
as a combination of correctness, fault tolerance, availability, 
performance, and interoperability, where both functional 
and non-functional components are considered [29].  

In this paper, reliability will be investigated in two 
categories: the reliability originating from the handler 
replication and the reliability coming from the utilization of 
a reliable messaging system.  

A. Replicating handlers 

Replication is critical for reliability, mobility, 
availability, and performance of a computing system. There 
are basically three replications: data, process, and message. 
These concepts are extensively explored in [30]. Data 
replication is the most heavily investigated one. However, 
the other replications are also very important in the 
distributed systems, especially for Service-Oriented 
Architecture. 

The process replication is particularly of main interest in 
this paper because the intention is to investigate the 
replication of the handlers. There exist two main approaches 
in this area. The first one is modular redundancy [31]. The 
second approach is called primary/standby [32]. Modular 
redundancy has replicated components that perform the 
same functionalities. All replicas are active. On the other 
hand, the primary/standby approach utilizes a primary 
process to perform the execution. The remaining replicas 
wait in their standby state. They become active when the 
primary replica fails. 

The processes can be classified into two categories: no 
consistency and consistency. The first category is the 
simplest one; the processes are stateless. They do not keep 
any information for the processed data. Therefore, 
consistency is not an issue between the processes. 
Replicated instances can be allowed to run concurrently. On 
the other hand, replicas may enter an inconsistent state if the 
process is not atomic and stateful. Inconsistency has been 
extensively investigated in [33]. 

Replication is a very important capability where a 
handler is inadequate. Sometimes, a handler may not be able 
to answer the incoming requests. The tasks may line up such 
that the overall performance degrades. This is similar to a 
shopping center, where customers are waiting in line to be 
served. The solution is to add one or more persons to serve 
when necessary. Similarly, adding a replica to help with the 
execution contributes to the overall performance. 

In addition to the performance, a replica can be leveraged 
for fault tolerance. It is possible that a handler crashes. The 
replication contributes to the continuity of the execution and 
improves the availability and reliability. Without using 
handler replication in the case of an error, the whole 
computation cannot continue. The computation becomes 
more resilient with handler replication. The execution 
continues as long as at least one replica of every handler has 
not failed. 

For n handlers with the replication factor of R, the 
execution can be successful for R-1 failures per handler. The 
maximum allowable number of errors is: 

 

��� − 1

�

���

	 
 

(1) 

 
where n is the number of Web Service handlers and �� is the 
replication number of the i-th handler. The execution cannot 
continue even in a single handler fault, where ∀� ∈ �:	�� =

1.   
In the distributed Web Service handler execution 

environment, a variation of the primary/standby approach is 
utilized. Dynamic binding ideas are employed for the 
replicated handlers using the primary/standby approach. 
Dynamic binding is a technique that allows services to be 
linked at run-time [34] [35]. The execution manager decides 
at run-time which distributed handler is invoked: the 
primary handler or a replica. The handlers are prioritized. 
The handler with the highest priority is assigned to execute 
a message. The other replicas wait until their priorities 
become highest. The system is able to change the priority 
during the execution. When a fault occurs, the handler 
priority is minimized. 

If the replicated handlers were executed concurrently, a 
checkpoint mechanism must have been utilized. The 
checkpoint mechanism is based on the idea of saving the 
state of the system. In fault detection, the execution of the 
system is recovered from the checkpoint where the state was 
saved. The recovery mechanism is only launched when a 
fault occurs. Compensation handlers (Rollback) are specific 
computing nodes that limit and confine the effects created 
by a faulty handler. Compensation handlers allow the 
execution of the faulty replicated handlers to be rolled back 
to a specific point. 

The checkpoint approach presents some drawbacks. It 
necessitates the introduction of additional elements into the 
distributed handler execution design. It requires extra time 
to check each important point, and recovery processes need 
to be activated when the rollback occurs. In fact, 
establishing the correct and minimal checkpoint and 
recovery structure is a highly complex task. The checkpoint 
solution is not, in short, suitable in view of the fact that the 
rollback mechanism could introduce a very high overhead in 
the case of a fault. Hence, the primary/standby approach is 
preferred for the distributed replica handlers. 
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Figure 2.  The execution of replicas using the primary/standby 

approach. 

The replicas are never allowed to be executed 
concurrently, except in the case of stateless handlers. Even 
though they are allowed to run in a parallel manner, they 
cannot join the processing of the same message. The 
messages have to be different so that the parallel execution 
does not cause inconsistency. Figure 2 depicts a replicated 
handler processing the incoming message while the other 
replicas await their turns. 

When only one of the several replicated handlers is 
executed, as shown in the square in Figure 3, the following 
formula works to compute the reliability value: 

 

��� = ���	��

�

���

 
 

(2) 

 
where ��� is the reliability of the replicated handlers’ 
execution, ��  is the execution probability of handler i, and 
∑ �� = 1�

���
. 

The reliability of the parallel handlers with the AND 
junction and the reliability of the serial handlers can be 
formulated as: 

�� = ���

�
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(3) 

 
where �� is the reliability of the handlers’ execution and 
��	is the reliability of handler i. 
 

 
 

Figure 3.  A sample configuration for the handlers’ execution.  

By using formulas 2 and 3, the reliability of the handlers’ 
execution in Figure 3 can be formulated as: 
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where �� is the reliability of  the handlers’ execution.	�� is 
the reliability of the ith replica and ��� = 1 for only one 
replicated handler, which is executed; the value is 0 for the 
remaining handlers. 

B. Reliable messaging 

The distributed handler mechanism benefits from two 
different sources for reliable message delivery: a messaging 
broker and its own execution mechanism. 

The messaging system, NaradaBrokering, provides 
message-level reliability. It also offers supportive 
functionalities to the messaging and a very reasonable 
performance [36]. The messages can be queued up to 
several thousands and are gradually delivered to their 
destinations to provide flow control for the messaging. 
Additionally, the system has a Reliable Delivery Service 
(RDS) component that delivers the payload even if a node 
fails [37]. 

RDS stores all the published events that match up with 
any one of its managed templates, which contain the set of 
headers and content descriptors. This archival operation is 
the initiator for any error correction, which is caused by the 
events being lost in transit to their targeted destinations and 
also by the entities recovering either from disconnect or a 
failure. For every managed template, RDS also maintains a 
list of entities for which it facilitates reliable delivery. RDS 
may also manage information regarding access controls, 
authorizations, and credentials of the entities that generate 
or consume events, which are targeted to this managed 
template. 

When an entity is ready to start publishing events on a 
given template, it issues a discovery request to find out the 
availability of RDS, which provides the archival 
environment for the generated template events. The 
publisher will not circulate template events until it receives 
a confirmation that RDS is available. 

The publisher ensures that the events are stored by RDS 
for every template event that it produces. After successful 
delivery of the event to RDS, the event is archived and a 
message is sent to the publisher to verify that the message 
was received by RDS successfully. Otherwise, a failure 
message with the related event id is sent back to the 
publisher. After verification, the suitable matching engine is 
utilized to compute the destinations associated with the 
template event. 



6

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A subscriber registers with RDS. A sequence number 
linked with the archival of the interaction is recorded. The 
number can be also described as an epoch, which signifies 
the point from which the registered entity is authorized to 
receive events conforming to the template. Once a template 
event has been archived, RDS issues a notification. The 
notifications allow a subscribing entity to keep track of the 
template events while facilitating error detection and 
correction. Upon receipt of the notification, the subscribing 
entity confirms the reception of the corresponding template 
event. 

When an entity reconnects to the broker network after 
failures, the entity retrieves the template events that were 
issued and those that were in transit before the entity’s 
leaving. After the receipt of the recovery request, RDS scans 
the dissemination table starting at the sync related to the 
entity and then generates an acknowledgment-response 
invoice event outlining the archival sequences that the entity 
did not previously receive. Accordingly, the missing events 
are provided to the receiver. 

In addition to this, a reliable mechanism for the Web 
Service handler execution environment is built on top of the 
reliable messaging that NaradaBrokering provides. The 
distributed Web Service handler mechanism is able to repeat 
the execution of a specific handler in the event of a failure. 
Failure is declared when a response is not received from a 
distributed handler. There are several possible reasons 
behind an unsuccessful response. For example, the 
communication link may be broken, or the handler may not 
have successfully processed the message because of either 
an error or a crash. The distributed Web Service handler 
mechanism checks the possibilities by sending the message 
several times to its destination. In each attempt, it waits for a 
specific amount of time. This duration is either assigned or 
calculated by the system. After several unsuccessful 
attempts, the message processing may switch to a replica, 
depending on its priority. As discussed previously, handlers 
can populate their replicas to improve availability and 
reliability. 

 

 
Figure 4.  The cost of the reliability mechanism for the distributed Web 

Service handlers. 

For a reliable messaging benchmark, two HP DL 380 G7, 
2 x Xeon Six Core, 2.93 GHz, 48 GB memory physical 
machines are utilized. The machines are virtualized to create 
four 4-core and 16 GB memory machines and one 8-core 32 
GB memory machine. These machines are connected to 
each other via a LAN and share a common storage system. 
Virtual machines use Windows Server 2008 R2 64-bit 
operating systems. The cost of the reliable mechanism of the 
messaging for the distributed handlers is shown in Figure 4. 
The cost contains the time needed for reliability procedures 
to send the tasks to the distributed Web Service handlers or 
receive the responses back. The time for the handlers’ 
executions and the time for the messaging are excluded to 
illustrate only the reliability cost for varying message sizes. 
Figure 4 shows that the message size does not affect the cost 
of the reliability of the messaging very much. The cost is 
very reasonable when reliability is a necessity for the 
distribution. 

V. MESSAGE SECURITY  

Security is one of the most important issues for 
computing systems. Critical data can be seen or altered by 
an unauthorized person. This is increasingly important if the 
data are transferred through the network, which is a more 
vulnerable environment. 

Local computing does not expose its data to the outside 
world very much, but this is not the case for distributed 
computing. The computation is shared between nodes, 
which may be physically dispersed in the distributed 
environment. The transmission of the data among the nodes 
may expose critical information to dangerous 
vulnerabilities. Hence, the transportation channels between 
the computing nodes must be secured in addition to the 
security of the nodes. 

NaradaBrokering, which is utilized for messaging, has a 
security framework that is able to support secure 
interactions between the distributed handlers [38]. The 
security infrastructure consists of a Key Management Center 
(KMC), which provides a host of functions specific to the 
management of keys in the system. The KMC stores the 
public keys of the interacting entities. It also provides 
authentication and authorization mechanisms to offer an 
enhanced environment for secure messaging.  

Authentication is an elementary security requirement to 
prove that an entity possesses a claimed identity [39]. The 
basic tool that a person can use to prove a claimed identity 
is generally something that the person knows (e.g., a 
password), something that the person has (e.g., an 
authentication token), or a biometric property (e.g., 
fingerprints or iris recognition). Different mechanisms can 
be used for cryptographic authentication. Keyed hash 
functions or symmetric ciphers that utilize a specific key are 
among the examples. The key is only available to the entity 
to be authenticated and the verifier. One requirement for 
authentication mechanisms using the key is obviously the 
protection of the applied key. The leakage of the key causes 
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the collapse of the security mechanism. Another 
requirement is that the key should preferably be unique for 
the interacting entities. An attack is confined with this 
specific communication if the key of an interaction gets 
compromised.  

Asymmetric cryptography can also be used for 
authentication. A proper procedure based on elliptic curves 
is described in [40]. A cryptographic operation is 
performed, to be authenticated using the entity’s private 
key. The verifier checks the received response using the 
corresponding public key by performing a cryptographic 
verification operation on the received value. 
NaradaBrokering utilizes an authentication mechanism for 
the publishers and subscribers, which are the computing 
nodes for the distributed handler execution. For the 
authentication, the publisher or subscriber sends its signed 
request by using private key. The broker verifies this request 
by using the public key of the entities. 

The KMC incorporates with an authorization module to 
manage the usage of the messaging. Every topic has an 
access control list that authorizes the subscribers. Similarly, 
an access control list exists for the publishers. After 
verification of the signature, the publisher or subscriber is 
permitted to access the entity according to the relevant 
access control lists. 

The message traveling between the computing nodes is 
described in Figure 5. It contains a unique id, properties, and 
a payload. The unique message id is a distinctive name for a 
message. The handler execution mechanism may host many 
messages being executed at one moment. Hence, an 
identifier is necessary to achieve the correct executions; a 
Universally Unique Identifier (UUID) generated id is 
assigned to every message. The generator assures that there 
will not be more than one of the same id in the system. 
Thus, the design gives enough assurance that the message 
executions are not blended. 

 
 
<context> 
  <id>4099d6dc-0b0e-4aaa-95ff-2e758722a959</id> 
    <properties> 
     <encKey> bèø3DKUQ …</encKey > 
     <sender> 
       <senderId>12345… </ senderId > 
       <signed>šZQSİÑU,k…</signed > 
     </sender > 
      …. 
  </properties> 
  <payload> 
     …. 
  </payload> 
</context> 
 

Figure 5.  The message format for the distributed Web Service 
handlers. 

 
Figure 6.  Security mechanism for a distributed handler execution. 

The second important part of the message format is the 
properties section. This part conveys the required additional 
information to the computing nodes. The information can be 
specific to a single handler or generic for all handlers. There 
is a property that contains the encryption key. It is a 
symmetric key that is created for a single message. The key 
size is usually selected to be large enough to provide the 
necessary security. On the other hand, it must be kept in 
mind that generating larger keys is time-consuming. The 
average time taken for key generation for different bit sizes 
is presented in [41].  Therefore, the same symmetric key can 
be utilized to send a group of messages for a period of time. 
Additionally, the properties section contains the sender’s 
signature to prove the sender’s authenticity. The sender 
signs its unique id with its private key. Both the sender’s id 
and signature are added to the properties section. The last 
part of the distributed handler message format is the 
payload, which contains the encrypted message.  

The performance of the asymmetric key encryption is 
worse than the performance of the symmetric key 
encryption [42]. It can take about 1000 times more CPU 
time to process an asymmetric encryption or decryption than 
a symmetric encryption or decryption. Nevertheless, an 
important advantage of asymmetric ciphers over symmetric 
ciphers is that no secret channel is necessary to exchange 
the keys. The receiver needs only to be confident about the 
authenticity of the public key provider. Asymmetric ciphers 
also cause fewer key management problems than symmetric 
ciphers. Only 2n keys are needed for n nodes to 
communicate securely with each other in an asymmetric key 
encryption system. However, in a system based on a 
symmetric cipher, n(n - 1)/2 secret keys are needed for 
secure interaction among n nodes. Because of these features, 
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asymmetric ciphers are typically used for non-repudiation, 
for authentication through digital signatures, and for the 
distribution of symmetric keys. Thus, the asymmetric key 
algorithm is able to support the solving of the key exchange 
and management problem of the symmetric keys. On the 
other hand, symmetric ciphers are used for bulk encryption. 

To use the best part of the algorithms, a hybrid approach 
is utilized. Figure 6 demonstrates a secure messaging 
architecture for the distributed handlers. The payload of the 
message is encrypted by a symmetric cipher algorithm. 
Advanced Encryption Standard (AES) is used for the 
encryption. AES is a natural choice for the symmetric key 
algorithm because it has been analyzed extensively and used 
worldwide. The cryptography scheme is a symmetric block 
cipher that encrypts and decrypts blocks of data. The AES 
key generation algorithm takes a random seed as an input. A 
256-bit session key is created and passed within the 
properties section of the message to the other computing 
node for decryption.  

The RSA algorithm is utilized for the asymmetric key 
encryption. The sender encrypts the symmetric session key 
with the 2048-bit public key of the receiver to present the 
confidentiality. The RSA algorithm requires two large prime 
numbers as the input along with a random seed. All of these 
inputs, which are created randomly, are provided for key 
generations. The created private keys are then kept locally, 
and the public key is stored in the KMC.  

With the commonly used RSA implementations, 
doubling the RSA key length means that encryption will be 
more than two times slower and decryption will be almost 
four times slower, as shown in Table I. In general, RSA 
encryption is much faster than RSA decryption. The fast 
encryption relies on the use of a short public exponent. The 
RSA algorithm is commonly used in this way. It is possible 
to have an RSA public key with a long public exponent, 
which will make encryption as slow as decryption. 
However, because a long public exponent does not improve 
security, short public exponents are widespread. Some well-
known RSA implementations do not even support long 
public exponents. Hence, the decryption exponent is 
typically huge, whereas the encryption exponent is small. 

 

TABLE I.  PUBLIC KEY ENCRYPTION AND DECRYPTION RESULTS.   

Encryption time in 
milliseconds 

Decryption time in 
milliseconds 

Plain text 
size in KB 1024-bit 2048-bit 1024-bit 2048-bit 

100 262 470 4703 14906 

200 563 892 8844 29594 

300 784 1298 13703 44542 

400 1048 1735 17766 59064 

500 1298 2391 22454 73737 

  

TABLE II.  COMPERISON OF CIPHER TEXT SIZE IN PUBLIC KEY 
ENCRYPTION. 

Plain text size 
in KB Cipher text size in KB 

  1024-bit  2048-bit 

100 109 105 

200 218 209 

300 329 314 

400 438 418 

500 547 522 
 
The key length of an RSA key specifies the number of 

bits in the modulus. A larger key increases the maximum 
number of bytes that we can encrypt in a block at once, as 
well as the security of the encryption. On the other hand, 
with every doubling of the RSA key length, decryption 
becomes much slower. Key length also affects the speed of 
encryption, but the speed of decryption is usually of greater 
concern.  

Moreover, depending on the padding scheme, the cipher 
text size increases in RSA encryption. This is another factor 
that is taken into consideration while using this system. 
Table II shows the text sizes for 1024-bit and 2048-bit key 
encryptions. When using a 1024-bit RSA key with PKCS #1 
padding, it is not possible to encrypt a string that is longer 
than 117 bytes. Increasing the size of the RSA key to 2048 
bits will allow the encrypting of 245 bytes of data, but 
longer RSA keys are expensive and they take more time to 
generate and operate. On the other hand, the AES 
encryption algorithm does not show the size increase in the 
encrypted text even though it also does block ciphering with 
128 bytes. 

The size of cipher text can be calculated with the 
following formula: 

 
	 = 	
 + 	�	 − 	(
	mod	�)		                  (6)  

   
where 	 is the cipher text size,  
 is the plain text and � is 
the block size. 

As mentioned earlier, the authentication of the sender 
and receiver and authorization to access the message are 
established by the security mechanisms of the messaging 
broker. Figure 7 shows the tasks happening between the 
sender and receiver for a single interaction. The sender 
generates the symmetric session key for a message or a 
group of messages. The payload containing the message is 
encrypted with this symmetric session key with the AES 
algorithm. The sender looks up the receiver’s public key in 
the KMC. The RSA algorithm is used to encrypt the 
symmetric session key with the receiver’s public key. 
Hence, only the node that has the right private key can 
decrypt the session key to get the encrypted payload. At the 
same time, the sender authenticates itself by signing its id 
with its private key. 
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Get receiver’s public key 

Return receiver’s public key

Generate symmetric 

session key

Encrypt the message

Encrypt the session 

key

Sign ID with own 

private key

Receive message

Get sender’s public key

Return sender’s public key

Decrypt the session key 

with own private key

Verify the sender

Decrypt the message 

 
Figure 7.  Interactions while sending a message between computing 

nodes. 

 
Figure 8.  The cost of the security mechanism for the distributed Web 

Service handlers.  

When the subscriber receives the message, it identifies 
and verifies the sender by using the sender’s public key, 
which is retrieved from the KMC. The session key carried 
within the “encKey” tag is then decrypted by the receiver’s 
private key. The retrieved session key is used to decrypt the 
payload to get the original message. In this interaction, the 
senders and receivers are either the distributed Web Service 
handlers or the distribution manager. 

The benchmarks showing the cost of the aforementioned 
security mechanism and the results of the tables containing 
public key encryption are determined in the same 
environment as the reliability benchmark, as discussed in 
Section IV.B. Figure 8 shows the cost of the secure 
environment for varying payload sizes. The signing of the 
sender’s id to present the authentication causes very small 
overhead. Instead of asymmetric key encryption, the usage 
of the symmetric key to encrypt the messages provides 
reasonable execution time. As stated earlier, even though 
asymmetric key encryption solves the problem of key 
exchange, it does not accomplish the message encryption 
and decryption for large sizes at an affordable cost. In short, 
a hybrid approach using both asymmetric and symmetric 
ciphers helps to improve security at a reasonable cost. 

VI.  CONCLUSION 

Although the distribution of Web Service handlers 
provides many advantages in terms of scalability, 
availability, and performance, it necessitates a reliable and 
secure atmosphere. The instruments explained in this paper 
for secure and reliable handler distribution and the support 
tools of the utilized messaging broker grant the necessary 
features for this atmosphere. Utilized reliability mechanisms 
deal with the distributed computing node failures by using 
replication and ensure the message delivery. The hybrid 
security approach advances the environment by offering a 
solution for the key exchange problem of the symmetric 
encryption and by reducing the cost of the asymmetric 
cipher algorithm. The design also delivers the authentication 
and authorization mechanisms for the distributed handlers. 
The benchmark results show that the costs originating from 
the utilized instruments are acceptable and affordable. In 
short, the design of the distributed execution with the 
security and reliability tools offers a satisfactory 
environment for Web Service handlers. Moreover, it should 
be kept in mind that a secure and reliable environment must 
be employed in many mission-critical tasks. 
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