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Abstract—Service-Oriented Architecture is an approach
where software systems are designed in terms of a composition
of services. OSGi is a Service-Oriented Framework dedicated
to 24/7 Java systems. In this Service-Oriented Programming
approach, software is composed of services that may dynami-
cally appear or disappear. In such a case, classical monitoring
approaches with statically injected monitors into services
cannot be used. In this paper, we describe ongoing work
proposing a dynamic monitoring approach dedicated to local
SOA systems, focusing particularly on OSGi. Firstly, we define
two key properties of loosely coupled monitoring systems:
dynamicity resilience and comprehensiveness. Next, we propose
the OSGiLarva tool, which is a preliminary implementation
targeted at the OSGi framework. Finally, we present some
quantitative results showing that a dynamic monitor based
on dynamic proxies and another based on aspect-oriented
programming have equivalent performances.

Keywords-Monitoring, Dynamic SOA, OSGi, Larva, LogOs.

I. INTRODUCTION

This article is an extended version of [1], which has been
published in IARIA Conferences 2012.

The service-oriented architecture (SOA) is one of the
current approaches to develop well structured software sup-
porting agility. It is focused on loosely coupled client-server
interaction enabling the client to request server functionality
through a repository that exposes appropriate interfaces.
Subsequently, the client is bound to the service and is
allowed to invoke methods as long as the interface types
match. Among SOA approaches, we distinguish between
web services and other more local approaches such as
OSGi [2] and .NET [3]. The main difference is that in the
case of web services one would not typically be able to have
the full view of the system, i.e., one can either monitor the
client or the server but not both. On the other hand, in the
case of local approaches one can reason about the full picture
by also taking into consideration the OSGi framework events
such as registration of services, service requests by different
clients, etc.

In this work, we focus on OSGi, usually used in 24/7
systems, where the system is not restarted when a service
appears or disappears. This framework is targeted to embed-
ded systems such as cars, ADSL boxes, or network systems.
In such systems, web services cannot be used either due to
the lack of connectivity, network limited bandwidth, or for

efficiency reasons. In the following, we focus on the OSGi
framework, but the same principles can be applied to other
local SOA systems, such as .NET.

In dynamic SOA, each service invocation must be con-
sidered as a complete context switch since potentially new
services may appear and others disappear at runtime. From
a dynamic SOA point of view, binding a client to a service
is a matter of interface matching, but, neither the client nor
the service has a guarantee that the other part behaves as
expected. So, after interface matching, continuously ensuring
the client’s authenticity and the validity of the activities
carried out are important for critical systems. For instance,
each time a client makes a request to a server, a formally
specified constraint can be checked to ensure that the client
is authorized to perform that call.

Existing runtime monitoring tools such as JavaMOP [4]
or Larva [5] weave interception calls using aspect-oriented
programming techniques. This approach works fine in non-
dynamic SOA since client-server bindings are usually gener-
ated upon the first invocation and preserved throughout the
entire client life cycle. On the other hand, in dynamic SOA,
due to runtime dynamic changes in the underlying service
implementation, the monitoring state woven into the service
implementation gets reset.

Our proposal is to bring a dynamic approach to runtime
monitoring systems by inserting monitors at the point of
client-server binding rather than "statically" at compile-time
or loading-time. This means that both the service bindings
and the behavioral monitoring bindings are dynamic and
loosely coupled, thus supporting service substitution. This
approach would preserve behavioral monitoring states across
different service versions and check that both versions are
behaviorally compatible.

Another major concern in a highly dynamic context,
where the implementation of an interface may be substituted,
is to ensure that no implementation, or part thereof, can
bypass the monitoring framework. Note that if this could
happen, the monitor would not be able to detect any mali-
cious code which might be executed. Moreover, what can
be concluded about a system’s observation if some events
could have been missed? Our aim is to enable the monitoring
system to be fully active, even if the service provider ignores
it.
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In this context, we conjecture that a dynamic runtime
monitor must have two significant traits: dynamicity re-
silience and comprehensiveness. The former refers to the
preservation of the behavior flow: in case the monitored
service is substituted, the monitor and its state should be
transfered; meaning that the property cannot be hard-linked
to the code. The latter characteristic means that we cannot
allow services to restrict what is observable by the monitor:
if we want to check a property, we need to ensure that
all the relevant events are monitored. Note that we are not
assuming that every service behaves as expected, but only
that if an authorized service is to be checked for a particular
property, then no event of the service behavior can bypass
the monitor observations. For this reason, the architecture
relies on a generic event-interception mechanism and a
dynamic, loosely coupled, wiring mechanism for automaton
verification. The verification logic of the automaton is then
handled by an adaptation of the existing monitoring tool
Larva [5].

Finally, the introduction of dynamicity to the monitor also
increases the scope of properties we are able to address.
Thus, we introduce some dynamic primitives in the property
description language in order to make it possible to describe
behavioral properties, where the registration/un-registration
of a service is an expressible event. Furthermore, we also
adapt the life cycle of properties, since, under different
circumstances, the monitor state might need to be preserved
or reset when the underlying service is substituted.

Section II is a case study showing some requirements
of this work. Section III presents some runtime verifi-
cation approaches and proposes a classification of them,
showing the gap we propose to fill. It also discusses the
trade-off between the observation scope and the expressible
properties. Section IV expresses the architectural model
for a dynamic runtime verification tool and introduces our
OSGi reference implementation. Section V describes our
modifications of the Larva specification language in order
to consider dynamicity. Section VI illustrates the OSGiLarva
tool by some quantitative results. Finally, Section VII shows
our initial conclusions and Section VIII our future works.

II. CASE STUDY

In order to ease the understanding of our contribution, this
section introduces an example of a dynamically monitored
system in line with our proposition.

Let us consider an embedded client on a mobile device
based on a dynamic SOA platform, which needs to com-
municate with a distant system according to a particular
protocol (Fig. 1). Let two services S1 and S2 provide
an identical interface to access the distant system through
different media: S1 using a WiFi connection, and S2 using
a 3G connection. With such a configuration, we can consider
that each time the WiFi connection goes down, the system

unregisters S1, effectively switching the client onto S2, and
vice-versa.

Moreover, we consider that the use of the distant system
requires that the client is authenticated with the service
and that some system actions have to execute atomically.
Such requirements correspond to any typical secured system
supporting concurrent access by transactions.

...Client

Service1

Service 2

Sub-
System

access

Interface:
Auth();
Lock();

SomeUse();
UnLock();
UnAuth();

Request

Figure 1. Dynamic SOA system supporting service substitution

In such an example, the possibility of service substitution
is crucial. We then propose, in Fig. 2, an example of an
execution scenario that has to be supported by the system.
In this scenario, the service S1 is substituted by S2 during
the atomic part of the run.

Auth()
Auth()

Lock()
Lock()

Auth()
Auth()

Unlock()
UnLock()

Client Interface Service1 Service2

Lock()
Lock()

UnLock()
Unlock()

Sub-Sys

SomeUse()
SomeUse() SomeUse()

SomeUse()

SomeUse() SomeUse()
SomeUse() SomeUse()

UnReg(Service1)

Service 
Manager

getService(Interface)
getService(Interface)

getService(Interface)

UnAuth()

getService(Interface)

UnAuth()

Figure 2. Example of scenario supported by example in Fig. 1

In another part, we can describe the correct use of the
system in some property and check it by monitoring at
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runtime. For instance, the two following properties express
the expected behavior, described earlier: (i) the client is
locally authenticated on the service before using it, and (ii)
the concrete use of the sub-system requires that the client
opens the lock and closes it after use. In this example,
one would like to ensure that the execution described in
Fig. 2 is correct with respect to these properties. Such
verification and the description of the property itself are the
main contributions of this article.

These properties can be described by a couple of automa-
tons (Fig. 3), but with a different interpretation of each.
The local authentication automaton’s (Fig. 3.A) internal state
should be maintained in case of service substitution and
should be instantiated for each distinct client using the
system. In the following, we will call such properties as
Instance-Properties as they are instantiated on a per object
basis; in this case a client. On the contrary, the management
of the atomic use of the sub-system (Fig. 3.B) needs to be
centralized and shared by all clients. Even if a service is
removed and substituted, we would want to keep the current
state of the sub-system in memory. In the following, we call
such properties Class-Properties because its lifetime spans
throughout the system’s life cycle and is not bound to a
particular entity.

Auth()

UnAuth()

UnReg()

s0

s1

s2Lock()

UnLock()

SomeUse()

s2

s2

       UnReg()

GetService()

Auth()

A. Client-side: instance property

s0 s1

Lock()

UnLock()

SomeUse()

clock\timer>=timerout\timer.reset()

B. Interface-side: class property

Figure 3. Example of a property associated to example in Fig. 1

In summary, our proposition is to provide a monitoring
framework, which is able to monitor such properties by
listening to method calls and OSGi framework events in a
dynamic, resilient, and comprehensive manner.

III. RELATED WORKS

The contributions of this article include a monitoring
approach for dynamic SOA and the expressiveness of its

associated description language. In this section, we discuss
separately related works about each of these two parts of
our contribution.

A. Resilience to Dynamicity and Monitoring Comprehen-
siveness

We propose to classify existing runtime verification ap-
proaches according to the monitor configuration with respect
to the monitored service. Property may be: manually written
inside the code (Hard-Coding), automatically injected inside
the code (Soft-Coding) and kept out of the code (Agnostic-
Coding). For each of these families, we will discuss two
points:

• resilience to dynamicity
• monitoring comprehensiveness

1) Hard-coding: In this category, where properties are
manually added at source time, we can cite all annotation
techniques, like JML [6] and Spec# [7]. In both cases, the
monitor is not resilient to dynamic code loading. If the
monitored system is substituted, then its monitor is also
substituted, since it is inlined. However, this approach is
interesting in terms of comprehensiveness, since we can
observe anything in the program. A limitation of this ap-
proach is the dispersion of the monitor throughout the code,
requiring significant intervention to write the property or to
check that its description is correct.

2) Soft-Coding: In this category, where properties are
injected at compilation time, or load-time, we can cite
Enforcement monitor [8], Larva [5] and JavaMOP [4]. These
tools use a standalone description of a property and inject the
synthesized monitor inside the code by AspectJ technology.

Advantages of Soft-Coding approach are then the same
as in the previous case, but specifying the monitor is easier,
since the description of the property is centralized. However,
these approaches from Enforcement monitor [8], Larva [5]
or JavaMOP [4] are only partially resilient to dynamicity; at
best, the tool may inject the property at first-time binding,
but once injected, the property is hard-coded within the
service for the whole execution of the class. Indeed, while
it is technically possible to use AspectJ to support dynamic
class loading and unloading in OSGi, then the monitored
bundle must declare the import of the AspectJ library
inside its Manifest file — an operation which is not really
transparent to the service. Note that this restriction does
not exists in Equinoxe implementation of OSGi (Eclipse),
but it is because some choices would have been done in
the configuration of the framework, requiring to restart the
whole framework each time a new service is installed.
Furthermore, if monitors need to be started or stopped at
runtime it cannot be done directly through AspectJ without
restarting the service — something which is undesirable in
24/7 services.
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3) Agnostic-Coding: In this third category, where the
monitor is kept out of the code, we include any trace
analyzes approach, such as intrusion detection systems [9] or
logging systems [10]. The main advantage of the approach
is the loose linking between the property and the monitored
system. Hence, if a package is substituted, the monitor
can observe it inside the logs and the monitored properties
are still the same for the whole system. Moreover, the
description of the property is located into a single location,
which facilitates property management.

However, such Agnostic-Coding systems can be bypassed,
e.g., [9] and [10] can only observe what services accept
to push. If a package provides a service without writing
sufficient logs, then the monitor does not have sufficient
information to check a particular property [11].

4) Monitoring of Web Services: There are a number
of works (e.g., [12], [13]) that support the monitoring of
web services. These provide both dynamicity resilience
and comprehensiveness (although these are not explicitly
identified as such) by listening to events from a web service
composition engine. Furthermore, they also enable prop-
erties to be defined both as class properties and instance
properties. However, to the best of our knowledge, no
similar monitoring techniques have been proposed for the
OSGi framework. Moreover, the context is not the same,
since in a web service context, we can easily distinguish
between callers by their IP address and port number, but
it is impossible to know who is the caller, or which class
or software is making the call. This can be a considerable
restriction in the expression of security policies.

B. Property description

This part discusses the property description language and
focuses mainly on the scope of the property, mainly induced
by the location of its associated monitor. Indeed, since we
are not in a 1-1 system, we could have many clients using
many services at the same time. In such a case, the location
of the monitor can change the point of view of the property
and hence its expressiveness. Each property can be defined
with at least three points of view (eg. Fig. 4): (i) client point
of view, (ii) service implementation point of view and (iii)
interface point of view.

The proposition made in this work consists in considering
all properties as a composition of two parts: a part that
handles the client’s point of view and a part that handles
the interface point of view. In this section, we discuss each
of these three possibilities to justify our proposition.

1) Property Described from Service Side Point of View:
If the designer describes a property with this point of
view, shown in Fig. 5, he/she considers the use of a single
service [14]. It is easy to consider some behavioral depen-
dence in some parallel uses by multiple clients. However,
since we are considering automaton-based properties, it is
not obvious how to distinguish between clients within the

Inter
face

Client1

Client2
Service2

Service1

Interface 
side 

property

Client 
side 

property
Service 

side 
property

Service 
side 

propertyClient 
side 

property

Figure 4. Possible point of view for properties

property. Moreover, it is complex to consider the use of
multiple implementations of an interface simultaneously,
with potentially some communication between them.

For the dynamical part, it is not intuitive to describe and
use the fact that a new implementation of the same service
interface has been loaded on the platform. Moreover, it
seems to be complex to share property memory between
implementations of the same interface. Hence, if a service
is substituted, there is no means of keeping its property in
memory, with its internal state, and to map it on another
implementation designated to continue the started work.

Inter
face

Client1

Client2
Service2

Service1

Service 
side 

property

Service 
side 

property

Figure 5. Property description: service implementation point of view

Advantages:
• Simplicity to describe behaviors of each service imple-

mentation without the need to make the link with other
possible implementations.

• In case of stateful services, with a different memory
address space for each implementation, it is very easy
to describe the system.

Disadvantages:
• Complexity to describe shared memory between ser-

vices.
• Impossibility to describe a generic behavior for each

client, since we cannot distinguish between clients.
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2) Property Described from Service Interface Point of
View: In this point of view, we consider what can be done
through a service interface. It is easy to describe the global
use of any implementation of this interface by any client,
but not to make distinction between clients or between used
implementations.

By its nature, such a property is not directly associated
to a service and thus describes a property shared by all
implementations. Note that it is easy to consider the loading
or unloading of a service implementation, even if it is a
substitution, willing to keep the current state of the property.

Since our property description language is automaton-
based, the only manner to consider parallel use of many
clients is to make some composition between the property
and itself. However, such technique leads to a combinatorial
explosion of the automaton size. Moreover, it limits the
maximum number of clients and services, since we need
to have this information to make the composition.

Inter
face

Client1

Client2
Service2

Service1

Interface 
side 

property

Figure 6. Property description: service interface point of view

Advantages :

• Easy to make a description of the authorized uses, with
a global point of view

• Easy to consider loading/unloading of implementations
• Possibility to share a single property state between

service implementations

Disadvantages :

• Risk of the shared property description size explosion if
we want to describe the concurrent behaviour of several
clients.

• Impossibility to describe a generic behavior for each
client, since we cannot distinguish between clients

3) Property Described from Client Point of View: This
third possibility considers that each client has its own
instance of the property (Fig. 7). Hence, it is easy to describe
the correct use of a service from one client point of view
and to consider as many parallel uses as we want, without
any combinatorial explosion.

Moreover, it is easy to describe the use of multiple
services by a single client and the behavioral dependence
in case of concurrent use of services.

In case of substitution of a service, this approach can be
resilient, since the property is attached to the client.

However, in case of the simultaneous use of a single
service by several clients, if there is some interactions
between these usages, it is more complex to describe it.

Inter
face

Client1

Client2
Service2

Service1

Client 
side 

property

Client 
side 

property

Figure 7. Property description: client point of view

Advantages :
• Easy to make a description of a particular client autho-

rized usages
• Easy to consider loading/unloading of implementations
• Possibility to share a single property state between

several service implementations
• No risk of size explosion of the shared property, since

it cannot be described
Disadvantages :
• Complexity of describing global behavior including

several clients
In this paper, we propose to consider properties as a com-

bination of two kind of properties, associated to two point of
views: client and interface. These two parts are respectively
called Instance-Property and Class-Property and are more
detailed in section V-B. We propose not to consider the first
case (i.e., service point of view), since in typical use of
OSGi, if multiple services implement a single interface, the
framework favours the use of the same implementation by
all clients. Moreover, from our experience we conjecture
that properties are typically client side, since an interface
property cannot consider the concurrent use of services by
many clients without a state explosion. Finally, to have the
possibility to add a centralized property, interface properties
can be useful to express some shared constraints such as
locking/unlocking systems.

In the following, we present the first part of our contri-
bution: the architecture.

IV. DYNAMIC-SOA MONITORING ARCHITECTURE

In the first part of this section, we describe an abstract
architecture of a monitoring system supporting specific
features of dynamic SOA systems, and we discuss its
characteristics. In the second part, we propose a concrete
implementation of this architecture under OSGi: OSGiLarva.
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A. Proposition of a Generic Architecture
Our proposition consists of dynamically inserting a moni-

toring proxy in front of each service, and executing monitors
in some autonomous services (Fig. 8). When a service
usage event occurs, a notification is sent to each associated
monitor, which checks the event against its property.

An interesting advantage of using a dynamic proxy over
AspectJ, is that we can start or stop the monitoring of a
property without restarting the service. Indeed, since the
proxy is bound upon a service request, this can be handled
easily, while AspectJ aspects are bound at class load-time,
requiring to restart the service.

Since services are treated as black boxes from the running
environment’s point of view, such an architecture is designed
to consider only properties of their external interface. This
corresponds to properties expressing the normal authorized
use of a service. However, since we are considering dynamic
systems, we also want to consider dedicated framework
events, such as unregistration of a service or getting a new
service. In this approach, we will then focus on behavioral
properties.

Since several clients can be running simultaneously within
the framework, the scope of properties should not be re-
stricted to the use of a single client. We consider the
possibility of adding a monitor in front of several client. By
considering both the monitoring of Instance-Properties and
Class-Properties, we enable the possibility of simultaneously
checking both local as well as global properties on the
system.

In order to enable properties expressed in terms of method
call events and framework events (requests, registration, un-
registration, etc.), we need to capture both kinds of events —
the ones between the client and the service, and events from
the service registration system. To inject a monitor between a
service and a client using it, we adapt the framework in order
to make this invisible both to the client and the service. Two
interesting characteristics of this approach are that it does not
change the binary signature of the service and that neither
the service, nor the client, are aware of a potentially running
monitor. By adding another proxy in front of the service
management system of the framework, we are notified of
requests for getting service references.

Fig. 8 describes the abstract architecture. In the following,
we delve deeper into our two main principles.

Resilience to Dynamicity: Since the monitoring sys-
tem is externalized in an autonomous service, monitors
are separated from the code. When changes occur in the
framework, the observation mechanism and its properties
remain unaffected.

Comprehensive Monitoring: One of the main concepts
of dynamic SOA is to have a framework which allows
dynamic loading and unloading of loosely coupled services.
Since the framework is in charge of providing an imple-
mentation to each service request, the framework can add

Get 
Service

Framework 
Event

Service 
Registration

Service 
UnregistrationRequest 

Service

Invocation 
Event

Monitor

Client Server

Service 
Management 

System

Proxy

Proxy

Figure 8. Proposed abstract architecture for monitoring system

a proxy between the client and the service to observe their
communications. This observation is comprehensive and no
communication can bypass this proxy, since neither the
client nor the service know each other directly.

B. OSGiLarva — A monitoring tool for OSGi

OSGiLarva (Fig. 9), is an implementation of the described
abstract architecture in the context of the OSGi framework.
In our tool, we use Java mechanisms in order to generate
a proxy between each client and service. This proxy is
dynamically generated from a framework proxy, hooked
onto the OSGi framework, and listens to all framework
events such as the introduction of a new service or the
requesting of a service by a client.

This implementation integrates two existing tools:
Larva [5] and LogOs [15]. LogOs is a special logging tool
based on the OSGi framework, developed at the CITI Lab
during the LISE project [16]. We will use it as a hooking
mechanism to observe services’ interactions. Larva is a
compiler which generates a verification monitor that may
be injected into Java code. We use an adaptation of Larva
to enable property verification on events reported by LogOs.

We describe the monitor implementation with three key
parts: we first present our adaptation of LogOs to intercept
service interactions; next, we give some details about our
modifications of Larva; finally, we describe how the registra-
tion process of a service under OSGi will take into account
an existing property monitor to insert it between the service
consumer and the service itself.
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Figure 9. OSGiLarva implementation

1) LogOs – a Hook to Intercept Services’ Interactions:
LogOs is a transparent logging toolkit for the service activity
inside the OSGi architecture. As soon as the LogOs bundle is
started, each service registration is observed by the system.
Thanks to the OSGi hooking mechanism, a LogOs proxy
is generated between the service and its consumer. Hence,
every method call, including parameters and returned values,
are automatically intercepted.

For each event captured by a LogOs proxy, a correspond-
ing LogOs event-description is forged and propagated to
LogOs. In our adaptation, LogOs proxy forwards them to
the associated monitors.

We have extended LogOs annotations to enable the user
to declare whether an interface is to be monitored or not.
If an annotation is present, the monitoring class is loaded
when a service implementation is registered.

Moreover, LogOs integrates a mechanism to observe
services registration, which is originally used to generate
service proxy at load-time. This information is sent to the
Larva monitor.

2) Larva — a Monitoring Tool: Larva is a tool that injects
monitoring code in a Java program to check a property
described in a Larva script file. Upon compiling a script,
the Larva Compiler generates two main outputs: (i) a Java
class coding the property and (ii) an aspect which links
the monitoring code with the source code. An aspect is
defined to statically inject some calls to the monitor inside
the Java software by using the AspectJ compiler. The Java
code translating the property is called each time an expected
event occurs.

We adapted Larva to OSGiLarva by removing the part

associated with the injection of aspects. In order to replace
this part by a call from LogOs, we make the generated Java
code from the properties implement an interface provided
by LogOs. In order to consider dynamic events in described
properties, we introduced some new primitives in the prop-
erty description language (Section V) corresponding to event
descriptions generated by the latest version of LogOs.

3) Registration of a Service Providing Specification:
We propose to enable the declaration of properties to be
monitored to be included as part of OSGi bundles, as
shown in Fig. 10. Indeed, an OSGi bundle is an archive
providing three elements: a collection of interfaces, a col-
lection of services implementations, and bootstrap code,
which is called when loading or unloading the bundle.
Thanks to the OSGi architecture, service interfaces, service
implementations and bundles may have different life cycles
depending on the deployment scheme, since interfaces may
be deployed with a bundle other than the one containing the
service implementation.

OSGi Bundle Interface

Properties Services 
Implementation

Bootstrap Code

Manifest

Figure 10. Structure of an OSGi bundle providing properties

As such, we propose to keep the same philosophy when
providing properties. We consider that they can be either pro-
vided by the same bundle as implementation or by another
one. Since interfaces are typing specifications of services
and OSGiLarva Class-Properties are behavioral specification
of services, it makes sense to map the life cycle of class
properties to that of interfaces. On the other hand, the
Instance-Properties life cycle describes the behavior of a
single service interaction and thus it makes sense to map
its life cycle to the client-service connection life cycle.

In next section, we introduce the property description
language, which is an adaptation of the one used in Larva.

V. INTRODUCING DYNAMICITY IN PROPERTY
DESCRIPTION

The OSGiLarva description language is originally based
on the Larva property description language, but we adapt it
in order to support more dynamicity. This adaptation is done
through two extensions. The first one is the introduction of
framework-event primitives in the language. The second one
expresses a property as a composition of Class-Properties
and Instance-Properties. In this section, we introduce these
modifications.

A. Adding Dynamic Primitives

Larva uses as input a property description language based
on automatons, extended by timers, variables and actions.
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In the property itself, the user can define the set of symbols
used in the automaton. These symbols are events which, in
the original version of Larva are defined in terms of method
names. We thus propose to add some new primitives in the
event definition in order to support framework-event.

A monitor is started when a monitored service is reg-
istered in the framework. From this moment, each event
related to this service is propagated to this monitor. Since
we are in a dynamic framework, dynamic events can occur,
e.g., the loading of a second implementation of the same
interface, or the un-registration of an existing service. We
propose to introduce the three following primitives:

• REGISTER: this event occurs when a new service im-
plementation is registered on the framework. It means
that a client can now get this service reference at any
time. If another implementation is already registered, it
shares the same Class-Property.

• GETSERVICE: this event occurs when a client is asking
for a service, by calling the framework getService
method. It can lead to two situations: client gets a
service or the client does not get any service. If a
client could not get a service from the server, it means
that there is no registered service corresponding to
the client request. For this reason, we introduce the
NOGETSERVICE event to handle this case.

• UNREGISTER: this event occurs when a bundle is
unregistered from the framework. It means that, the
stop method of the bundle has been executed. Used
resources are then considered as released. However, if
any reference to an instance of the code provided by this
bundle still exist, they are now called Stall references
— meaning that if a client was using this service it
has to consider this code as perhaps no longer safe or
functional.

In order to generate and provide these events to Larva-
monitors, LogOs needs to register some listeners on the
framework.

Event GETSERVICE is obtained by using an OSGi
FindHook instance, registered in the OSGi framework.
When registered, such object is called each time a ser-
vice is obtained. Originally, this mechanism was defined
in order to make a filter on services obtained as a result
of getService call. Indeed, the getService method
accepts as an input a description of the expected service and
returns an array of corresponding service implementations
among the available ones. The FindHook mechanism has
been introduced in order to allow service filtering (i.e.,
to hide some services). Note that LogOs also uses this
mechanism to ensure that, if a service is monitored, every
calls to this service are necessarily done through a proxy,
and never directly.

REGISTER and UNREGISTER events are obtained by
registering an OSGi EventHook with the service man-
agement system. An object implementing the EventHook

class and registered in the framework is called each time the
service management system observes a modification, such as
new incoming service, a service un-registration, or a service
property modification.

In each of these cases, an event descriptor is forged by
LogOs and sent to the Larva monitor. On its end, Larva treats
such events like all other events. Hence, the event descriptor
is compared to the list of events the monitor is listening to,
and, if the property is expecting this kind of event, it triggers
upon it.

B. Property Description Language

Since our contribution is based on the Larva description
language [17], chosen for its closeness to our requirements,
we mainly orient our proposition according to Larva. In
Larva, properties are described by automatons, where a
single script file can contain several automatons. Moreover,
Larva provides in its language the possibility of defining
parametrized automatons which can be instantiated using
event parameters, through the FOREACH keyword. We ex-
ploit this characteristics in order to use properties composed
by two parts (Instance-Property and Class-Property):

• Instance-Property: If a property is defined as an
Instance-Property, then each time a new client accesses
the interface, a new instance of the property is gen-
erated and added inside the monitor. When the client
terminates, the associated instance of the property can
also be removed. Hence, while such properties are still
resilient to service implementations’ dynamicity, they
are intentionally not resilient to clients’ dynamicity.

• Class-Property: This case corresponds to a centralized
property, meaning that several clients using a particular
interface will share the same Class-Property. Such
property is more resilient to dynamicity since a Class-
Property can be kept in memory until the associated
interface is unloaded. As such it is not associated to
a particular user’s interaction or a particular service
implementation, and can thus be used, for instance,
to express some centralized locking/unlocking mech-
anisms. However, if several implementations are used
concurrently, then they would probably need to be
synchronized.

In the following, we present the main principles of the
Larva property description language together with small
modifications done in the context of OSGiLarva.

1) Existing Larva Property Description Language: A
Larva property description file can contain several automa-
tons. The file is structured in terms of contexts. The global
context can contain several properties and each of them can
introduce a new context. A context is defined by variables
and listened events. Each inner context can access the global
variables.
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A FOREACH structure allows a property to be instantiated
for each different value of an element, considered as an
identifier.

Channels can be used by automatons to communicate
together. These channel-generated events are broadcasted to
the current context and below. So, if two inner contexts need
to communicate, they can do it through channels.

A generic structure of a Larva property file is given in
Fig. 11. It shows a file containing two properties: a global
one and an instantiated one.

GLOBAL{
VARIABLES{ ... }
EVENTS{ ... }
PROPERTY P1 {

STATES{...}
TRANSITIONS{ ... }

}
FOREACH (Object u ){

VARIABLES{ ... }
EVENTS{

%% Property designer needs to
%% express how to retrieve the
%% identifier:
someEvent(User u1) = {

u1.someMethod(); where u=u1;
}
...

}
PROPERTY P2 {

STATES{...}
TRANSITIONS{ ... }

}
}

}

Figure 11. Generic larva property file with two properties of two types

2) OSGiLarva Properties: One way of introducing a new
context is to use a FOREACH clause. This clause is a
quantification on an object. Hence, for each instance of a
given class, Larva generates a new instance of the inner
property. We propose to adapt this structure to our needs,
by introducing a new clause: FOREACHCLIENT.

In classical Larva, in order to distinguish between users,
Larva uses the information given by the caller such as a
Session ID passed as a parameter. Hence, Larva only has the
same information as the service implementation to check a
property. We propose to improve on this by introducing this
construct based on the address of the caller. As an example,
such a clause could make it possible to check that there is
no IDsession spoofing.

A property described in the FOREACHCLIENT context
will be re-instantiated for each loaded client. It will be the
instance-part of the property. Conversely, the class part of
the property is instantiated only once and is then shared by
all clients. We will then express it in the GLOBAL clause.

It can communicate with all “instance-part” instances of
the property. Fig. 12 shows the global syntax of a global
property, composed by an Instance-Property and a Class-
Property.

A very important difference between the FOREACH and
FOREACHCLIENT clauses is that the first one is based on
values computed inside the EVENTS clause from observed
parameters, while the second one is based on values provided
directly by LogOs observation, without any interpretation of
parameters.

Moreover, since FOREACHCLIENT is an extension of the
FOREACH clause, then we keep all language characteristics
of the latter.

GLOBAL{
VARIABLES{ ... }
EVENTS{ ... }
PROPERTY P1 {

%% Class property (same as Larva)
STATES{...}
TRANSITIONS{ ... }

}
%% Introduction of this new keyword
FOREACHCLIENT(Long pid,String s){

%% Instance property.
%% Parameters are:
%% - pid: client identifier
%% - s: name of the client
%% (for logs)
VARIABLES{ ... }
%% EVENTS clause do not need to
%% provide method to compute the
%% identifier. It is intricated
%% inside the language.
EVENTS{

%% Just an event description
someEvent()=frameworkEvent();
anotherEvent()=someMethod();
...

}
PROPERTY P2 {

STATES{...}
TRANSITIONS{ ... }

}
}

}

Figure 12. Introducing the FOREACHCLIENT keyword

VI. EVALUATION

In this section, we present some benches of OSGiLarva.
There are mainly two implementations used for executing
OSGi services: Apache Felix and Eclipse Equinox. In our
benches, we use the current Apache Felix which is an
open source implementation of the OSGi Release 4 core
framework specification, on the top of the Java 1.6.0-06
Virtual Machine. The machine used for these tests runs on
an Intel Pentium M at 1.4GHz CPU with 640MB of RAM
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and running under Gentoo 4.2.3 with 2.6.22-gentoo-r8 kernel
version.

In the following, we are using two examples: one without
dynamicity and another with dynamicity. Indeed, since we
will make efficiency comparisons against Larva, which does
not support dynamicity, we then need to have a static
example. This example is just a loop making some calls
to a function provided by a service. On the other hand,
the dynamic example is very close to the one described in
Section II, but with a loop on the client side. This loop
specifies the concrete actions from the client and contains a
call to a service, followed by an unregistration of the service,
a get service to have a second service, a second call, and
finally a new registration of the unregistered service. In our
benches, we modify the amount of loop iterations to study
the variation of the time cost in the long run and its variation
due to JIT compilation.

We made three kinds of tests to study performances of
OSGiLarva: a comparison between the execution time of
OSGiLarva and Larva, a comparison between the execution
time of OSGiLarva and OSGi, and a comparison between
the execution time of OSGiLarva and a Class-Property-only
in OSGiLarva. Indeed, we hypothesized that the identifi-
cation of the client (and hence the Instance-Property) is a
bottleneck, but benches show that it is not so costly.

Here is the definition of some keywords appearing in this
section:

• Larva: the time cost from the example with the original
Larva system.

• OSGiLarva: the time cost from the example with the
OSGiLarva tool.

• WithoutOSGiLarva: the time cost from the example
running under OSGi, but without any monitoring sys-
tem.

• OSGiLarvawithoutPID: the time cost from the example
with a weaker version of OSGiLarva where we removed
the generation of a caller Id from the system.

Finally, for each test, we made two curve charts. The
"Time cost comparison" curve chart shows amount of loop
iterations on the horizontal axis, and time cost in millisec-
onds on the vertical axis. The "Cost ratio" curve chart shows
amount of loop iterations on the horizontal axis, and change
ratio of time cost in percentage points on the vertical axis.
The cost ratio is calculated by the time cost of the example
with the monitor divided by the time cost of the example
without the monitor.

A. Monitoring cost by Using a Proxy (OSGiLarva VS Larva)

The goal of this test is to evaluate the performance of
OSGiLarva (with a proxy) and to compare with the one of
the Larva tool (with AspectJ) on the same functions example.
Since Larva does not support OSGi dynamicity, we made the
comparison on a example without loading of services. In this
kind of comparison, we just use the two tools to monitor

the normal events from the communication of client using
services.

Fig. 13 is a comparison of the time cost in the execution
of a static example with Larva and OSGiLarva monitors. We
can observe that both curves are very close. Hence, OSGi-
Larva does not add too much cost by its proxy approach.

In order to be more precise, in Fig. 14 we plot the curves
of the cost ratio between Larva and OSGiLarva time cost
results. The change ratio of time cost is lower than 1%.
This change ratio is from the proxy in OSGiLarva. Thanks to
this proxy, OSGiLarva can make the behavioral monitoring
bindings dynamic and loosely coupled. The pre-condition
of this test is that the monitored service is never replaced
by another one. If the monitored service is replaced during
runtime, Larva will not be able to detect any of its events.
But OSGiLarva can continue to monitor it.

Since these two technologies are not using the same
Virtual Machine, the JIT is also not the same. We think
that this difference is the explanation for the behaviour
observed in the first run, which is stable and always faster on
OSGiLarva. This difference is probably also the explanation
for diminution of the overhead when the loop is longer.
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Figure 13. Comparing time cost of a static example with OSGiLarva and
Larva

B. OSGiLarva Efficiency (OSGi VS OSGiLarva)

This test runs the dynamic example described as a running
example in this article, but with a loop inside the client. We
then run it with and without OSGiLarva in an OSGi environ-
ment. It aims to evaluate the raw impact of OSGiLarva on
service invocation and service events from the framework.
The property events includes normal events and framework
events.

From Fig. 15, we know that the performance impact of
OSGiLarva is stable at around 23% on this example.
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Figure 14. Comparing cost ratio of a static example with OSGiLarva and
Larva

For every monitored service invocation and framework
events, OSGiLarva performs its indirection work: it verifies
the actions from the original system and computes the
current client id, and finally it outputs the monitored traces
to the developer or the user at real-time. The cost ratio
almost becomes a horizontal line shown in Fig. 16, except
for the two first points at about loop 100 runs and 500 runs.
We presume that it is the initialization of the JIT which is
causing this anomaly.

It is important to note that this 23% overhead is a metric
including the call of methods events and the framework
events. The biggest part of this overhead is associated to
the cost of generating a new proxy and placing it in front
of newly requested service.

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Tim
e c

os
t(s

)

L o o p  r u n s

 O S G i L a r v a
 W i t h o u t O S G i L a r v a

Figure 15. Comparing time cost of the case study example with and
without OSGiLarva (simple method in service side)
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Figure 16. Comparing cost ratio of the case study example with and
without OSGiLarva (simple method in service side)

C. Overhead Associated to Getting the Caller Id

In order to associate each communication to the right
client in Instance-Properties, we compute a caller Id. How-
ever, we get it through the SecurityManager which is a
non-internal way of finding the caller class and caller Id.
As such, one would expect extra time costs because of the
SecurityManager, warranting further investigation.

Thus, the following test is just for knowing the per-
formance impact from compute current caller Id during
runtime. We then compare the cost of the Case Study with
and without the Instance-Property and then, with or without
getting the caller Id.

From Figs. 17 and 18, we observe that the time cost of
the two kind of monitoring are very closed. The impact cost
is lower than 5%.

Indeed, in such a simple test example, the body of the
called methods are very small. Hence, the most of the time
cost is from invocation itself. So, if the service method is a
more complex and real one, the time cost for getting caller
id and caller name will far less than 5%.

Moreover, even at 5% time cost, we conjecture that it is an
acceptable price to pay for obtaining the crucial information
for identifying which client is currently using a particular
service.

VII. CONCLUSIONS

In the highly dynamic environment of the SOA, where
software can be replaced on the fly at runtime, the challenges
for ensuring correct behavior increase as the software has to
be checked at runtime. In this context, we have identified
two properties, that we consider are required to make a
dynamic monitor for dynamic SOA systems: (i) resilience
to dynamicity, i.e., the monitor is able to maintain state even
if the service implementation is substituted at runtime, and
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Figure 17. Comparing time cost of the case study example with OSGiLarva
but with or without client Id
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Figure 18. Comparing cost ratio of the case study example with OSGiLarva
but with or without Client Id

(ii) comprehensiveness, i.e., that no implementation of the
service can bypass the monitor’s observation.

We have instantiated the approach in the context of the
OSGi framework through a preliminary implementation,
OSGiLarva, which integrates an adaptation of two existing
tools: Larva and LogOs. Similar to Larva, OSGiLarva ac-
cepts the Larva property description language as input, hence
inheriting all its features, including its expressiveness and its
readability for non-expert users. Furthermore, it enables the
description of both class properties and instance properties.
This feature has been instrumental for OSGiLarva to monitor
both properties which span the whole duration of the inter-
face life cycle, and the individual client’s point of view of the
service, possibly spanning over different implementations of
the service requests. We have also extended the Larva event

description language, in order to consider not only calls or
return of method calls, but also OSGi framework events such
as the registration of a service or its request by a client;
this has been achieved by introducing reserved event names
which are usable transparently as if using standard method
calls.

As observed in section VI, our approach is not so inef-
ficient when compared to injection-based monitoring tools
like Larva. While our approach is based on an OSGi hook
observing all occurring events instead of aspect-oriented
programming, the extra cost is small: tending to less than
1% increase in overheads. Since, this approach is crucial
for dynamicity resilience, the cost incurred seems to be a
reasonable.

An interesting element of this approach is its non-intrusive
aspect. Indeed, in contrast to the aspect-oriented approach,
we keep the original byte-code unchanged. This property can
be useful if we want to switch off a monitor or be able to
check the binary signature of the code as an authentication
credential [18].

Finally, the notion of comprehensiveness also has a num-
ber of benefits since anybody with some privileged access
to the platform (user, developer, or service) can define a
behavioral property and ask the system to check if services
respect it. This can be done for many reasons, such as:
debugging deployment, privacy concerns, or to learn about
typical usage patterns of a service.

VIII. FUTURE WORKS

The current implementation of OSGiLarva is not complete
with respect to our requirements. For instance, we have
some works to do on the deployment step, in order to
make it more autonomous. Each Larva property file is
associated to a single interface. In the future, we aim to
enable the framework to associate one file to possibly several
interfaces. Moreover, in a next version of the tool, we could
make some propositions to reduce the OSGiLarva time cost.
For instance, we could make OSGiLarva asynchronous, by
exporting monitors to separate threads, or we can limit
monitoring to only occur within a fixed period of time: if the
property is respected during one week by a given consumer,
we can consider that it will still respect it afterwards. In OS-
GiLarva, the removal of a monitor is straightforward since
it is non-intrusive. Similarly, one can consider sampling:
monitoring only a random distribution of users, relying on
the probability that the error would still occur in the sample.
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