
78

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Enhanced Usability of IT Security Mechanisms
How to Design Usable IT Security Mechanisms Using the Example of Email Encryption

Hans-Joachim Hof
Munich IT Security Research Group (MuSe)

Department of Computer Science and Mathematics
Munich University of Applied Sciences,
Lothstraße 64, 80335 Munich, Germany

email: hof@hm.edu

Abstract—Nowadays, advanced security mechanisms exist to
protect data, systems, and networks. Most of these mechanisms
are effective, and security experts can handle them to achieve a
sufficient level of security for any given system. However, most
of these systems have not been designed with focus on good
usability for the average end user. Today, the average end user
often struggles with understanding and using security mecha-
nisms. Other security mechanisms are simply annoying for end
users. As the overall security of any system is only as strong as
the weakest link in this system, bad usability of IT security
mechanisms may result in operating errors, resulting in inse-
cure systems. Buying decisions of end users may be affected by
the usability of security mechanisms. Hence, software provid-
ers may decide to better have no security mechanism then one
with a bad usability. Usability of IT security mechanisms is one
of the most underestimated properties of applications and sys-
tems. Even IT security itself is often only an afterthought.
Hence, usability of security mechanisms is often the after-
thought of an afterthought. This paper presents some guide-
lines that should help software developers to improve end user
usability of security-related mechanisms, and analyzes com-
mon applications based on these guidelines. Based on these
guidelines, the usability of email encryption is analyzed and an
email encryption solution with increased usability is presented.
The approach is based on an automated key and trust man-
agement. The compliance of the proposed email encryption
solution with the presented guidelines for usable security
mechanisms is evaluated.

Keywords-usability; IT security; usable security; email
encryption.

I. INTRODUCTION
This paper is an extension of the usability design guide

presented in [1].
Any improvement of the overall security level of any sys-

tem requires to improve the security level of all subsystems
and available mechanisms as the overall security level of a
system is determined by the weakest link in this system [2,3].
Howe et al. found that current software and approaches for
security are not adequate for end users, because these mech-
anisms are missing ease of use [4]. In [2,3] end user are iden-
tified as weakest link in a company. Hence, improving the
usability of security mechanisms helps to improve the over-
all security level of a system.

Examples of bad usability of security mechanisms are all
around, some are discussed in Section IV. Bad usability of
security mechanisms may slow down the adoption of a secu-
rity system. This happened for example with email encryp-
tion. Today, it is very unlikely that an average user uses
email encryption. Major problems for average users are key
exchange and trust management, both having a very bad us-
ability in common email encryption solutions. Figure 1
shows a completely useless error message during the genera-
tion of a key pair for email encryption in GPGMail [5], as
one example of bad usability.

Figure 1. Error message during generation

of a key pair for email encryption in GPGMail [5]

The use of email encryption in companies shows that an

improved usability may lead to the adoption of the formerly
despised technology. In companies, key exchange and trust
management are usually not done by the users themselves,
but they can rely on central infrastructures such as a central
company directory with keys that are trusted by default (all
employees). Such a directory ensures average users can use
email encryption.

The example of email encryption shows that designing
security mechanisms with good usability is worth an effort.
For the ordinary software developer, i.e., non security expert,
it makes sense not to implement core security mechanisms
like encryption algorithms or signature algorithms. Those
mechanisms are usually available in security libraries written
by security experts and could be easily used by software de-
velopers. However, software developers often decide on how
security mechanisms are integrated into an application. For
example, when implementing an email encryption security
solution like GPGMail [5], the software developer decides
on the interfaces for setting up trust and importing keys.
Both mechanisms are application specific, hence must be
implemented by the application developers. Usually, these
functionalities are exposed to the users, hence should have a

79

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

good usability. Guidelines for usability that focus on IT secu-
rity mechanisms and their integration into applications may
help software developers to improve the usability of IT secu-
rity mechanisms in these applications. This paper presents
some guidelines that should help software developers to im-
prove end user usability of security-related mechanisms. To
underline the importance of the presented guidelines, weak-
nesses of security mechanisms in common applications re-
garding usability for end users are shown in an analysis of
common applications and security mechanisms on basis of
the presented guidelines. Other important aspects of software
security, e.g., secure coding guidelines, testing of security,
and threat analysis are out of scope of this paper.

The rest of this paper is structured as follows: Section II
gives an overview on related work, especially on existing
guidelines for usability. Section III presents guidelines for
usable IT security mechanisms. Section IV analyzes the usa-
bility of some common security mechanisms and applica-
tions on the basis of the guidelines of Section III. Section V
uses email encryption as an example on how to apply the
guidelines on a problem from the field. An email encryption
solution with good usability is presented. Section VI evalu-
ates the usability of the email encryption solution on the ba-
sis of the guidelines presented in Section III. Section VII
concludes the paper and gives an outlook on future work.

II. RELATED WORK
Several standards focusing on usability in general exist,

e.g., EN ISO 9241 [6]. In EN ISO 9241-11, which is part of
EN ISO 9241, requirements for the usability of system are
described. These requirements include effectiveness, effi-
ciency and satisfaction. EN ISO 9241-10, another part of EN
ISO 9241, lists requirements for usable user dialogs. Howev-
er, the rules and guidelines of EN SIO 9241 are very general
and not targeted on security mechanisms. The design guide-
lines presented in this paper interpret the general require-
ments and rules of EN ISO 9241 and its parts for the special
case of security mechanisms. As the guidelines presented in
this paper are focused only on the topic IT security, the pre-
sented guidelines are more detailed and may be easier to
follow for software developers.

Other publications like [7-11] focus on the usability of
security mechanisms in special applications (e.g., email en-
cryption), or focus on the usability of special security mech-
anisms (e.g., use of passwords). The guidelines presented in
this paper are more general such that they are useful for the
design of a wide variety of applications and security mecha-
nisms.

Existing guidelines for usability of security mechanisms
like those in [12, 13] focus very much on user interface de-
sign. The design guide presented in this paper take a slightly
different approach by focusing more on the security mecha-
nism itself. It is considered possible to change the design of a
security mechanism for the sake of good usability.

Markotten shows how to integrate user-centred security
engineering into different phases of the software develop-
ment process [14]. However, the emphasize of Markotten’s
work is more on integration of usability engineering into the
software development process than on a design guide.

Several works on zero-configuration IT security exist,
e.g., [15-22]. While zero-configuration can significantly im-
prove the usability of an application, a systematic approach
to usability for IT security is still missing. Zero-
configuration may be one building block of usable security.

To summarize, previous works either are not focused on
usability of IT security at all, are focused on one special as-
pect of usable IT security, or are focused on user interface
design. This paper presents some guidelines for software
developers to help them improve the usability of security-
related functionality.

III. GUIDELINES FOR GOOD USABILITY OF SECURITY
MECHANISMS

The guidelines presented in this section are the result of
several years in teaching IT security to beginners (and seeing
their difficulties) as well as industrial experience in the de-
sign of products requiring IT security mechanisms that are
operated by end users. The guidelines reflect our viewpoint
on usability of security mechanisms. It is not assumed that
those guidelines are complete. It is important to notice that
the usability of any system depends on the specific user and
his experiences, knowledge and context of use, which in-
cludes the task at hand, the equipment at hand, and the phys-
ical and social environment of the user. Hence, it is hard to
objectively evaluate the usability of a system. However, we
hope that the following set of nine design guidelines coming
from the field may be of help for software developers:

G1 Understandability, open for all users: This paper
focuses on usability for end users. The average end users
should be able to use the security mechanism. Otherwise, the
security mechanism is not useful for the intended audience.
The average user neither has a special interest in IT security
nor understands IT security. It is the responsibility of the
software developer to hide as many security mechanisms as
possible from the user. For those security mechanisms that
are exposed to the end user it is necessary to get security
awareness. The process of educating people is easier if suita-
ble metaphors are used. A good metaphor is taken from eve-
ryday life of the average user and is easy to grasp. A good
metaphor is simple but powerful in its meaning. Example: an
email encryption application should not use the term “en-
crypted email.” It is better to talk about a “secret message for
xy” or “email readable only by xy” where xy is the receiver
of the message.

Usable security should be available for all users. It
should especially not discriminate against any group of peo-
ple. For example, usable security mechanisms should not
exclude disabled people that use special tools to access ap-
plications (e.g., Braille reader for vision impaired people).
Example of compliance with G1: if captchas are used in an
application, multiple versions of the captcha should exist.
Each version of the captcha should address another sense.

G2 Empowered users: Ideally, a usable security mecha-
nism should not be used to restrict the user in what he is do-
ing or what he wants to do. This allows end users to effi-
ciently fulfill their tasks. Efficiency is one of the general
usability requirements of EN ISO 9241 [6]. The absence of
user restrictions often results in a better acceptance of securi-

80

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ty by users. The focus of a security mechanism should be on
protecting the user. Any security-motivated restriction of the
user should be carefully evaluated regarding necessity for
system security and adequateness. The user should at least
have the impression that he is in control of the system and
not the system is controlling him. Security mechanisms
should interfere with the usual flow of user activities in the
least possible way. Security mechanisms should allow the
user to execute activities in any way he wants. Other drivers
than protecting the user and the system should not be moti-
vation for restrictions. Especially, users should not be re-
stricted by a security mechanism for the only reason of copy-
right protection or other business reasons. While such securi-
ty mechanisms are of great use for businesses, they constant-
ly restrict the user, hence force him to bypass security mech-
anisms. As users are very imaginative in bypassing unwanted
restrictions, it is very likely that a non-security-motivated
restriction decreases the security level of a system. The Ap-
ple iPhone is a good example: as the phone enforces many
restrictions, many user bypass the security mechanisms by
using a jailbreak software to revoke those restrictions.

Another important rule is that the user should decide on
trust relations. A security mechanism should not enforce
trust relations given by a software vendor. The user should
always have the possibility to revoke preinstalled trust rela-
tions. Trust relations should only be established in advance
for the purpose of IT security. For example, having a prein-
stalled certificate to verify software patches is OK. Establish-
ing trust relations out of business purposes should be avoid-
ed. Example of compliance with G2: applications should
have an interface that lists preinstalled certificates. The user
should have the possibility to revoke certificates and install
custom certificates.

G3 No jumping through hoops: Users should only be
forced to execute as little tasks as possible that exist only for
IT security reasons. Otherwise, users get annoyed and refuse
collaboration with IT security mechanisms. The ideal securi-
ty mechanism does not interfere with user tasks at any time
(also see G2) if it is not absolutely necessary to maintain the
user’s security.

An example on how to not design security mechanisms
are captchas: the user is forced to read a nearly unreadable
and meaningless combination of letters and numbers and
enter it before he can execute the wanted task. Example of
compliance with G3: an application that uses a challenge-
response mechanism similar to hashcash [23] instead of a
captcha to avoid abuse of a service by automated scripts.

G4 Efficient use of user attention and memorization
capability: Users have problems memorizing data that does
not belong to their social background. Hence, they tend to
use all kind of optimization to reduce the amount of data
they have to remember. This is why users only use few
passwords for all logins where they need passwords. In [24],
it is stated that an average user uses only 6.5 passwords for
all his web accounts. A later survey [25] found that more
than 80% of all participants of the survey reuse a set of
password in different places. 73% of the participants use one
password with slight modification on different accounts.

 But not only does an average user use the same pass-
word more than once, he also selects easy to remember
passwords as he is not good in memorizing passwords with a
mix of upper and lower case letters, numbers and special
characters. Hence, security mechanisms should require the
user only to remember little data or no data at all. Example
of compliance with G4: an application uses an existing ac-
count from another site for login, e.g., by using OpenID [26].
The user can use an existing account, hence does not have to
remember another password.

Security mechanisms should only require as little interac-
tion with the user as possible. The security mechanism
should only requests the attention of the user if it is absolute-
ly necessary. Interaction with the user should be done in the
most minimalistic way. See also G1 for user interaction. Ex-
ample of compliance with G4: an email encryption applica-
tion that does not ask a user for each mail if he wants to en-
crypt the mail or not. Instead, the email application offers a
configuration option to always encrypt mails. Additionally,
the email composition window clearly states the current pro-
tection status and offers a possibility to override the prefer-
ences.

G5 Only informed decisions: A user only feels secure
and cooperates with a system if the system does not ask too
much of him. Hence, users should only have to make deci-
sions they can decide on. If there is an important security
decision to take, it must be ensured that the user has the ca-
pability to make this decision. This means that the user has
enough information about the situation that requires him to
make a decision, and it must be ensured that the average user
is capable to make an informed decision on this issue. If it is
not clear if the user can decide on an issue, the decision
should be avoided. G5 is hard to achieve and requires a care-
ful examination during the design of an application. Example
of compliance with G5: an application automatically deals
with unknown certificates and does not prompt a user for a
decision (see Section IV.D).

 G6 Security as default: Good usability requires effi-
ciency. Hence, the user should not have to configure security
when he first starts an application. Software for end users
should always come preconfigured such that the software is
reasonable secure and usable. All security mechanisms of a
system should be delivered to the end user with a configura-
tion that offers adequate security for the end users. If a pre-
configuration is not possible, the configuration effort must be
minimized for users. This requires an analysis of the security
requirements of average users during software development
prior to the deployment of the software to find the adequate
security level for most users. Example of compliance with
G6: a home wifi access point comes preconfigured with a
random WiFi password.

G7 Fearless System: The security system should support
a positive attitude of the user towards the security system. A
user with a positive attitude towards security mechanisms is
cooperative and more likely to not feel interrupted by securi-
ty mechanisms. Hence, security mechanisms should protect
the overall system in a way that the user neither has fear
when the system is in a secure state nor feels secure when the
system is not in a secure state. The security state of the sys-

81

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tem should be visible at all times. A security mechanism
should be consistent in its communication with its user. A
security mechanism should not use fear to force users to
obey security policies or get a wanted reaction. G7 is hard to
achieve and requires a careful examination during the design
of an application.

G8 Security guidance, educating reaction on user er-
rors: Users tend to make mistakes, especially in respect to
IT security. It is important that the security system hinders
the user to make mistakes. However, as blocked operations
can be very frustrating for users, the response of the security
system must provide information why a given operation was
blocked and should also offer a solution on how the user
could proceed. The solution must be adapted on the situation
and should keep the overall security of the system in mind. A
security system should guide the user in the usage of security
mechanisms. Errors should be prevented and there should be
ways to “heal” errors. Example of compliance with G8:
when an email encryption application fails to encrypt an
email because of a missing public key of the recipient, the
error message should explain how to import certificates from
and how to verify certificates by comparing fingerprints of
keys. To “heal” the error, the email encryption application
offers to send the mail as password-protected PDF and in-
struct the user to call the recipient and tell him the password
for the PDF.

G9 Consistency: Consistency allows users to efficiently
fulfill their tasks. Security mechanisms should fit into both
the application and the system context where they are used.
Security mechanisms should have the look and feel the user
is used to. G9 is hard to achieve and requires a careful exam-
ination during the design of an application.

IV. ANALYSIS OF THE USABILITY OF COMMON SECURITY
MECHANISMS AND APPLICATIONS ON BASIS OF THE

PRESENTED GUIDELINES
In this section, common applications and security

mechanisms are analyzed on basis of the guidelines given in
Section III. The analysis identifies room for improvement in
these applications and security mechanisms. It also shows
some good examples for certain aspects of security usabil-
ity.

A. Email Encryption using GPGMail
GPGMail is a popular open source email encryption so-

lution for Mac home users [5]. The encryption process itself
is fairly easy, usually requiring one click to enable email
encryption. However, key and trust management requires
significant effort. For a secure exchange of public keys, the
user has to get the public key itself (e.g., from a key server
or the homepage of the receiver of a message) and verify the
authenticity of the key. Certificates may be in use. The au-
thentication requires the use of another channel to com-
municate with the key owner (e.g., telephone or in person)
and to read a number to the owner that is meaningless for
the user. There is no guidance for this process. Then, the
user has to change the trust of the exchanged public key. It
gets more complicated when using a web of trust for trust

management: for the web of trust to work, the user must
decide on how trustworthy a person is to verify public
keys/certificates in addition to managing direct trust into
keys. The distinction between those different types of trust
is very hard to understand for average users.

This application is compliant with the following guide-
lines:

• G2 (user decides on trust relations)
• G4 (minimal interaction)
• G7 (does not frighten user)
• G9 (usually good integration, depends on system,

mail client)
This application is not compliant with the following

guidelines:
• G1 (hard to understand trust management and pro-

cess of key verification)
• G3 (complicated trust management)
• G5 (hard to understand trust management and pro-

cess of key verification)
• G6 (not set to “encrypt all” by default)
• G8 (not much guidance with trust management)

B. Forced Updates
Keeping a system up-to-date requires a timely use of

provided security patches. However, many users are quite
lax in applying security patches. Hence, nowadays, more
and more software providers let not the users decide on
when to patch a system but automatically apply security
patches as soon as available. While this relieves the user
from applying patches, it does not take into consideration
the situation of the user at the moment of a forced update.
The update process may require downloading a large
amount of data. This is a problem when the user is tempo-
rary on a low-bandwidth connection. The update process
may change security or trust relevant configuration of the
application, e.g., by revoking certificates or adding new
certificates that are considered trustworthy by the software
provider. Often, forced updates cannot be stopped by the
user, hence hinder the user.

This security mechanism is compliant with the follow-
ing guidelines:

• G1 (easy to understand)
• G5 (no user decisions involved)
• G6 (keeps system up-to-date)
• G7 (does not frighten user)
• G8 (no user action necessary (or possible))
• G9 (well integrated)
This security mechanism is not compliant with the fol-

lowing guidelines:
• G2 (user can not decide to not apply a patch, user

can not decide on time to apply patch (e.g., do not
patch presentation application before presentation
on CENTRIC 2012))

• G3 (in some cases user has to wait until patch was
applied)

82

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• G4 (full attention of the user when waiting for pro-
cess to finish)

C. Captchas
A captcha is a security mechanism avoiding that auto-

mated scripts use services. In theory, a captcha should be
designed in a way that only humans can solve the given
problem. Common captcha design requires users to read a
distorted and meaningless combination of letters and num-
bers and enter it before he can use the service. Figure 2
shows a captcha that is even worse from a usability point of
view. Another side effect of the use of captchas is that cap-
tchas may discriminate against disabled people (e.g., vision
impaired people). Some websites offer different types of
captchas (e.g., an image captcha and an audio captcha). Vi-
sion impaired people can decide to use the audio captcha.

Figure 2. Complicated captcha

This security mechanism is compliant with the follow-

ing guidelines:
• G5 (no user decision needed)
• G6 (always used)
• G7 (does not frighten user)
• G8 (gives instructions on how to use it)
• G1 (if multiple captchas are used, e.g., image and

audio)
This security mechanism is not compliant with the fol-

lowing guidelines:
• G1 (if only a single image captcha is used that dis-

criminates against disabled people)
• G2 (does not allow users to use automation tools)
• G3 (additional task without value for the user)
• G4 (unnecessary user interaction)
• G9 (many different kinds of captchas are in use)

D. HTTPS Certificate Validation in Common Browsers
HTTPS allows for confidential and integrity protected

communication on the web. For example, HTTPS is used
for online banking or shopping. Nowadays HTTPS is wide-
ly used on the web. However, for a secure communication it
is necessary to avoid man-in-the-middle attacks. To do so,
certificates are used to authenticate the web site that one
communicates with. As it is not practicable to install a cer-
tificate for each and every web site one visits, most common
browsers come with preinstalled certificates of so-called
Certificate Authorities (CAs). A browser accepts all certifi-
cates that have been signed by such a CA. For example,
Mozilla Firefox version 14.0.1 comes with over 70 prein-

stalled CA certificates. The browser software developer
decides on the trustworthiness of a CA (and hence on the
trustworthiness of web sites), not the end user.

Figure 3 shows a typical error message of Firefox when
encountering a certificate signed by an unknown CA. The
text of this error message may be too complicated for aver-
age users. Above this, average users are not capable of de-
ciding on the validity of unknown certificate anyway. As
this error often occurs, the users get used to it and usually
just add a security exception to the system to access the web
site, bypassing the security mechanism. Adding a security
exception involves multiple steps (see Figure 4 for a screen-
shot of the second page of the error message when clicking
on “Add Exception.”

Figure 3. Typical error message of Firefox when encountering an unknown

certificate

Figure 4. Second dialogue page if user clicked

"Add Exception"

This security mechanism is compliant with the follow-
ing guidelines:

• G6 (large number of preinstalled CAs for secure
communication)

83

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• G8 (guidance is given, however, the texts used may
be not suited for average users)

This security mechanism is not compliant with the fol-
lowing guidelines:

• G1 (hard to understand error message given when
browser encounters an unknown certificate / a cer-
tificate from an unknown CA)

• G2 (many preinstalled CA certificates, the user
does not initially decide on trust relations. Howev-
er, expert users can change the trust settings)

• G3 (annoying additional tasks when unknown cer-
tificate / a certificate from an unknown CA is en-
countered)

• G4 (error unknown certificate happens often, hence
most users simply ignore the message and add a
security exception)

• G5 (no informed decision possible)
• G7 (error message unknown certificate implies an

ongoing attack)
• G9 (look and feel is not consistent with the rest of

the browser – it changes from a website (Figure 3)
to a window (Figure 4))

V. APPLICATION OF THE PRESENTED DESIGN GUIDE:
DESIGN OF AN EMAIL ENCRYPTION SOLUTION WITH GOOD

USABILITY
Section IV shows usability problems of security mech-

anisms in common applications. This section shows for one
class of application, email encryption solutions, how good
usability of security mechanisms can be achieved using the
guidelines presented in Section III. Section IV.A identifies
the complicated key and trust management in email encryp-
tion solutions like GPGMail [5] as cause of most of the usa-
bility problems. Hence, the design of an email encryption
solution presented in this paper focuses on automated key
and trust management to improve the usability of email en-
cryption.

A. Definitions
Figure 5 shows a simplified email encryption setup: A

sender wants to send an email to a receiver. The sender has
his own private key (PrivS) that it uses for email signatures
and for decryption of emails. Please note that usually two
private keys are used, one for decryption and another for
signature. For the sake of simplification, this distinction is
omitted in this paper. In the rest of this paper, the term
“email encryption solution” is used for the presented system
despite the fact that the system also decrypts and signs
emails.

The sender keeps a list of email addresses and associat-
ed public keys. Public keys usually have meta information,
e.g., expiration date and the like. This meta information is
usually stored together with the public key and the associat-
ed email addresses in a certificate. To encrypt emails, the
sender uses a public key associated with the email address
of the receiver.

!"#$"%& '"(")*"%&

+,-'&
+%)*!&

+,-!&
+%)*'&

"./)0&

Figure 5. Keys used in email encryption

In Figure 5, the sender uses the key of the receiver,

called PubR, to encrypt the email. When the receiver gets an
email, he uses the public key of the sender (PubS) to verify
the email signature. The receiver uses his private key (PrivR)
to decrypt messages encrypted with PubR. The simplified
secure email setup described here is implemented by many
email encryption solutions, e.g., GPG Mail [5].

B. Approach
The email encryption solution described in this paper

offers an automated key and trust management that does not
require the user to take any action. Hence, it hides the most
complicated part of email encryption from the user. For ex-
pert users, a manual key and trust management is still possi-
ble. The automated key and trust management is described
in the following subsections in detail.

The proposed email encryption solution offers security
by default: all emails are encrypted and signed by default.
The necessary keys are established by the automated key
and trust management if necessary and without any interac-
tion with the user.

The user can override the default security settings: he is
offered the possibility to send emails as “public postcard”
by a button when composing a mail. The term “public post-
card” is used as a metaphor for an unsecured email. This
metaphor comes from the experience of a user, hence is a
better fit than the term “unencrypted and unsigned email.”
The proposed email solution is realized as a plug-in to an
email client, e.g., as an extension of the well-known GPG-
Mail plugin. Existing security functionality for email is
used, e.g., public key encryption and decryption as well as
symmetric key encryption and decryption. The solution pre-
sented in this paper does not suppose that the receiver of an
email uses the same email encryption solution. However, if
the receiver of an email uses another encryption solution or
no encryption solution at all, the email handling of the re-
ceiver may be a little bit more complicated then usual.

C. Triggers for Invocation of Automated Key And Trust
Management
Actions of the key and trust management are performed

in the following situations:
• A user wants to send an encrypted and signed

email (default) and does not have a valid public
key of the receiver (PubR missing). An automated
key exchange must take place.

84

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A key of a receiver will expire in the near future,
hence an automated rekeying is necessary.

Automated rekeying and automated key exchange are
described in the following.

D. Automated Rekeying
Automated Rekeying is invoked when the key of a re-

ceiver is about to expire. In this case, there has already been
a key exchange in the past and a valid key for the receiver is
still available. On the receiver side, there are two possibili-
ties:

• The receiver has a valid key of the sender
• The receiver does not have a valid key of the send-

er, e.g., because the key of the sender already ex-
pired and there was no rekeying or the rekeying
was not successful. This may for example be the
case if the receiver does not use the same email en-
cryption solution.

For management of keys, a list of all public keys of all
past email receivers is kept. The email encryption solution
regularly checks for all keys if the expiration time is near.
Already expired keys are removed from the list. If the expi-
ration time is within the time period now+maxCheck, a
rekeying request email is sent to the owner of the associated
public key. The constant maxCheck is a system parameter,
e.g., 14 days. The rekeying request is sent by an ordinary
email. It includes a certificate with the current public key of
the sender and an explaining text that states something like:
“Your public key with the fingerprint [fingerprint] is about
to expire. Please send a new key. Please send the mail by
replying to this mail and attaching a certificate with the new
key.” The text helps receivers that do not use the same email
encryption solution to still communicate with the sender. If
the receiver uses the same email encryption solution, the
receiver will not see this email but a reply message will be
sent. The receiver part of automated rekeying is described
below. The sender waits for a reply message with a certifi-
cate holding the new public key of the receiver. The mes-
sage must be signed with the old key of the receiver. If the
sender does not get a reply to the rekeying request email
before the expiration of the key, the key will be removed
from the list. A new key exchange is necessary next time the
sender sends an email to the receiver. Otherwise, it stores
the received certificate and the included public key that has
a validity starting in the future in the list of keys together
with the current key.

If the receiver uses the email encryption solution de-
scribed in this paper, each rekeying request email is deleted
from the account of the user so the user never sees those
requests in his emails. The following checks are performed:

• Is the email signature valid?
• Is the expiration time of the key within

now+maxCheck (maxCheck is a system pa-
rameter see above)?

If the first check fails, the rekeying request is ignored to
avoid denial of service attacks on public keys. If the other
check fails, the key of the sender is deleted from the list. A
new key exchange will be necessary in the future.

If none of the checks failed, the receiver of the key re-
quest email checks if he already has a key with a validity
starting after the expiration time of the current key. If this is
the case, it sends this key to the sender of the rekeying re-
quest by an encrypted and signed email that has the certifi-
cate with the new public key attached. Otherwise, the re-
ceiver of the key request email creates a new public key and
associated private key with a validity starting at the expira-
tion date of the current key and an expiration date after the
starting date. The receiver creates a certificate for the public
key and sends the new public key as described above. Fig-
ure 6 summarizes the control flow of the receiver on recep-
tion of a rekeying request email.

!"#"$%&'(!")*"+,(
-"."%/"0(

/12%0(
+%'&1,*-"(3(

%'&4-"(
!"#"$%&'(
!")*"+,(

#"$(45(+"&0"-(
1/1%2162"(1&0(

/12%0(3(

"78%-194&(9:"(
6"54-"(&4;
<:17=>".#(3(

0"2","(#"$(
45(+"&0"-(

5*,*-"(#"$(
1/1%2162"3(

+"&0(5*,*-"(#"$(
"&.-$8,"0(1&0(

+%'&"0(

'"&"-1,"((
5*,*-"(#"$(

&4(

&4(

&4(

&4(

$"+(

$"+(

$"+(

$"+(

Figure 6. Control flow after receiving a rekeying request email

E. Automated Key Exchange
The automated key exchange takes place when an email

is sent to a receiver and no public key is available for this
receiver. The missing key may be the result of an unsuccess-
ful rekeying (see above). In most cases, there is no key be-
cause the sender never ever has sent an email to the receiv-
er. In both cases, it is not clear if the receiver uses the same

85

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

email encryption solution or not. To deal with receivers not
using the proposed email encryption solution, all messages
used during the automated key exchange are human reada-
ble and give detailed information what must be done to in-
teract with the sender of the email. All actions can be done
manual. Please note that good usability for the receiver can
be achieved if both sides use the proposed solution. Two
different automated key exchange implementations are de-
scribed below.

1) Automated Key Exchange Using a Leap of Faith
In IT security, a “leap of faith” means that at some

point in time an entity has blind trust in another entity. For
the automated key exchange this means that it is expected
that at the time of key exchange, there is no attacker. At-
tackers may be present in the future. A leap of faith ap-
proach may for example protect against adversaries that
hack into email accounts e.g., by guessing weak passwords.
If a key exchange took place before the hacking of the email
account, the exchanged keys cannot be manipulated, as the
keys are stored in the email client of the user. The hacker
cannot read or manipulate any email because he only has
access to the account but not to the keys and all emails are
encrypted and signed. However, if the key exchange takes
place and the account was already hacked, a man in the
middle attack is possible. Please note that automated rekey-
ing is not prone to this attack because all messages are en-
crypted and signed.

Actions of the automated key exchange at sender side:
1. Generate a random string with at least 20 chars.
2. Send the random string to the receiver in an email

that states: “There will be an encrypted email for
you in the near future. Please use this password to
decrypt the email. This email is not protected.
Hence, this is the leap of faith.

3. The sender composes the key exchange message:
original email is modified as follows:

a. The sender creates an ASCII armor for the
public key. An ASCII armor is a human
readable representation of a public key or
certificate. GPGMail offers the possibility
to export certificates using an ASCII ar-
mor

b. The sender creates an encrypted PDF that
includes the original text of the message,
the public key in its ASCII armor, and
some explaining text: “The sender of this
message wants to exchange a public key
with you. Please reply with a public key in
an ASCII armor in an encrypted PDF us-
ing the same password as this PDF.” As
password of the encrypted PDF, the send-
er uses the random string from step 1. The
encrypted PDF is intended for receivers
that do not use any email encryption solu-
tion at all.

c. The sender creates a message encrypted
by a symmetric key encryption using a
string to key function to get a symmetric
key from the random string generated in
step 1. The message includes the original
email text, some explaining text similar to
the text in step 3.b and the public key of
the sender.

d. Finally, the sender prepares an email with
the following text: “This message contains
an encrypted email and an encrypted PDF.
A password for these files was sent to you
before.” The encrypted PDF and the
symmetrically encrypted message are both
attached to the email.

4. The receiver stores the random string from step 1
in the list of keys together with an expiration time
that is leapOfFaithPeriode in the future
(leapOfFaithPeriode is a system value, usu-
ally a few days).

If the receiver uses the same email encryption solution,
it is triggered on reception of a key exchange message. It
performs the following actions:

1. Store random string together with the sender ad-
dress.

2. Remove email with random string from mail serv-
er. This ensures that an attacker does not have ac-
cess to the random string if the account is hacked
in the future.

3. Decrypt message using the string to key function to
convert the random string to a key. Retrieve public
key and store it in the list of public keys.

4. Restore the original mail and encrypt it with the
own public key. Delete the received mail and re-
place it with the mail encrypted with the public
key. This avoids that an attacker can get access to
the mail if the account is hacked in the future. Al-
so, it allows forgetting the random string.

5. Compose an email including the own public key in
a certificate, encrypt it with the random string us-
ing a symmetric key encryption and send it to the
sender of the original message.

On reception of a reply to its key exchange email, the
sender performs the following actions:

1. Retrieve random string from list of keys. If there is
no random string, the message is ignored.

2. Decrypt information
a. If it is a PDF, open it using the random

key as a password. Extract the certificate
and convert the ASCII armor to a binary
representation of the certificate. Store the
certificate in the list of keys.

b. If it is a symmetrically encrypted mes-
sage, use the string to key function to get
a symmetric key from the random string.

86

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Decrypt the message. Store the certificate
in the list of keys.

3. Remove random string from the list of keys.
2) Automated Key Exchange Using Side Channels

The idea of the automated key exchange is to use side
channels for the exchange of the random key. Compared
with the leap of faith approach described in the last section,
the use of a side channel improves the possibility that an
attacker does not have access to the side channel used.
Side channels can be harvested from the system the email
client is running on. Side channels include:

• Alternative email addresses: many people use more
than one email address.

• Instant messenger addresses.
• Telephone numbers for text messaging.
The first two side channels can easily be used to send a

short random string. To use side channels for key exchange,
the automated leap of faith using a leap of faith is modified
as follows:

In step 2, the sender sends the email message with the
random string not to the same email address as the encrypt-
ed email but to a selection of available side channels for a
user. If email is used as side-channel, it is very likely that
the receiver collects more than one email account in the
same email client. Hence, the email encryption solution has
access to the side channel. An automated response is possi-
ble in this case.

F. User Controlled Trust Management and Security as
Default
While automated key and trust management relives us-

ers from the burden of manual key and trust management,
the user now does not decide on trust relations. This is
against G2. The proposed usable email encryption solution
lets the user decide on general trust management rules dur-
ing installation. The user is presented several scenarios,
which he can state that he believes in or not. These ques-
tions are used to configure the key and trust management.
For example, if a user answers yes to the first question, the
“leap of faith” approach is not used for key exchange.

G. Error Handling
Error Handling has been omitted in this section for sake

of clarity of the presentation. Errors may occur during the
automated key exchange or during automated rekeying. By
sending a message again after a certain amount of time, the
proposed email encryption solution presented in this paper
deals with lost emails and the like. However, there are situa-
tions where automated key exchange or automated rekeying
permanently fails, including situations in which the intended
receiver of an email does not want to participate in a key
exchange. As the message has already been transferred in
the encrypted PDF, no further action must be taken.

VI. EVALUATION OF THE PROPOSED EMAIL ENCRYPTION
SOLUTION BASED ON THE DESIGN GUIDE

In this section, it is evaluated if the proposed email en-
cryption solution follows the design guidelines presented in
Section III:

G1 (Understandability, open for all users): the proposed
solution is compliant with G1 as only good metaphors and
scenarios are used for security related configurations.

G2 (Empowered users): the proposed solution is com-
pliant with G2 as the user can decide on the key and trust
management configuration. Also, the user can override the
security settings by sending an email without protection as
“public postcard”.

G3 (No jumping through hoops): the proposed solution
is compliant with G3 as there are no security specific ac-
tions the user must take. It should be noted that this is not
true for the receiver of an email if the receiver does not use
the proposed email encryption system.

G4 (Efficient use of user attention and memorization
capability): no user actions are necessary and the user does
not have to memory anything, hence the proposed solution
is compliant with G4.

G5 (Only informed decisions): no user actions are nec-
essary. Hence, the proposed solution is compliant with G5.

G6 (Security as default): emails are encrypted and
signed by default. Hence, the proposed solution is compliant
with G6.

G7 (Fearless System): no user actions are necessary.
Hence, the proposed solution is compliant with G8.

G8 (Security guidance, educating reaction on user er-
rors): no user actions are necessary. Hence, no security
guidance or education reaction on user errors is necessary.

G9 (Consistency): No user actions are necessary.
Hence, there are no consistency issues. It should be noted
that this is not true for the receiver of an email if the receiv-
er does not use the proposed email encryption system.

VII. CONCLUSION AND FUTURE WORK
This paper presented guidelines for software developers

to improve the usability of security-related mechanisms.
The analysis of security mechanisms in common applica-
tions showed weaknesses in the usability of security-related
mechanisms as well as good examples of security usability.
To demonstrate the application of the guidelines, the second
part of the paper improved the identified usability weak-
nesses of one common application: email encryption. The
approach for email encryption offers automated key and
trust management to improve the usability of email encryp-
tion. The evaluation showed that the proposed email encryp-
tion solution is compliant with the usability design guide
presented in this paper.

Future work will include the design of usable security
mechanisms for other common problems as well as a user
satisfaction study on the effectiveness of the guidelines. The
guidelines presented in this paper are focused on usability

87

International Journal on Advances in Security, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/security/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the end user. Future extensions of the design guides will
focus on better usability for other groups, e.g., system ad-
ministrators, testers, and developers.

REFERENCES

[1] H.-J. Hof, "User-centric IT security - how to design usable
security mechanisms", Proc. Fifth International Conference
on Advances in Human-oriented and Personalized
Mechanisms, Technologies, and Services (CENTRIC 2012),
International Academy, Research, and Industry Association
(IARIA), 2012, pp. 7-12.

[2] I. Arce, “The weakest link revisited”, in: Security & Privacy,
vol. 1, no. 2, IEEE, 2003, pp. 72-76.

[3] T. Caldwell, “Training – the weakest link”, Computer Fraud
& Security, vol. 2012, no. 9, Elsevier, 2012, pp. 8-14.

[4] A. Howe, I. Ray, M. Roberts, M. Urbanska, and Z. Byrne,
“The psychology of security for the home computer user”,
Proc. 2012 IEEE Symposium on Security and Privacy, IEEE,
2012, pp. 209-223.

[5] https://www.gpgtools.org/gpgmail/index.html, accessed
12.06.2013.

[6] ISO, “Ergonomie der Mensch-System-Interaktion”, EN ISO
9241, 2006.

[7] J. Sunshine, S. Egelmann, H. Almuhimedi, N. Atri, and L.
Cranor, “Crying wolf: an empirical study of SSL warning
effectiveness”, Proc. USENIX Security Symposium, 2009,
pp. 399-416.

[8] S. Adams and M. Sasse, “Users are not the enemy”, in:
Communications of the ACM, vol. 42 no. 12, 1999, pp. 40-
46.

[9] A. Whitten and J. Tygar, “Why Johnny can’t encrypt: a
usability evaluation of PGP 5.0”, Proc. 8th conference on
USENIX Security Symposium, Volume 8, Berkeley, CA,
USA, USENIX Association, 1999, pp. 169-183.

[10] M. Zurko and R. Simon, “User-centered security”, Proc.
NSPW96 - 1996 Workshop on New Security Paradigms”,
ACM, 1996, pp. 27-33.

[11] C. Birge, “Enhancing research into usable privacy and
security”, Proc. 27th ACM International Conference on
Design of Communications, ACM, 2009, pp. 221-225.

[12] S. Furnell, “Security usability challenges for end-users”, in
Social and Human Elements of Information Security:
Emerging Trends and Countermeasures, Information Science
Reference, 2009, pp. 196-219.

[13] J. R. C. Nurse, S. Creese, M. Goldsmith, and K. Lamberts,
“Guidelines for usable cybersecurity: past and present”, Proc.
Cyberspace Safety and Security (CSS), 2011 Third
International Workshop on, IEEE, 2011, pp. 21-26.

[14] D. G. T. Markotten, “User-centered security engineering”,
Proc. NordU2002 – The 4:rd Eur/Open/USENIX Conference,
Helsinki, Finland, USENIX Association, 2002.

[15] M. Conrad and H.-J. Hof, "A generic, self-organizing, and
distributed bootstrap service for peer-to-peer networks", Proc.
New Trends in Network Architectures and Services: 2nd
International Workshop on Self-Organizing Systems (IWSOS
2007), Springer, 2007, pp. 59-72.

[16] M. Bechler, H.-J. Hof, D. Kraft, F. Pählke, and L. Wolf, "A
cluster-based security architecture for ad hoc networks”, Proc.
INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, Hong
Kong, China, März 2004, IEEE, 2004, pp. 2393 - 2403,

[17] D. Kraft, M. Bechler, H.-J. Hof, F. Paehlke, and L. Wolf,
"Design and evaluation of a security architecture for ad hoc
networks", International Journal of Pervasive Computing and
Communication, Vol. 5, No. 4, 2009, pp. 448-475.

[18] H.-J. Hof, E. O. Blaß, and M. Zitterbart, "Secure overlay for
service centric wireless sensor networks", Proc. First
European Workshop on Security in Ad-Hoc and Sensor
Networks (ESAS 2004) , Springer, 2005, pp. 125-138.

[19] H.-J. Hof, E. O. Blaß, T. Fuhrmann, and M. Zitterbart,
"Design of a secure distributed service directory for wireless
sensor networks", Proc. First European Workshop on
Wireless Sensor Networks, Springer, 2004, pp. 276-290.

[20] H.-J. Hof and M. Zitterbart, “SCAN: a secure service
directory for service-centric wireless sensor networks",
Computer Communications, vol. 28 no. 13, Elsevier, 2005,
pp. 1517-1522.

[21] N. Kuntze and R. Carsten, “On the automatic establishment of
security relations for devices”, Proc. IFIP/IEEE International
Symposium On Integrated Network Management, 2013, pp.
1-4.

[22] H. K.-H. So, S. H. M. Kwok, E. Y. Lam, and K.-S. Lui,
“Zero-configuration identity-based signcryption scheme for
Smart Grid”, Proc. 1st SmartGridComm”, IEEE, 2010, p.
321-326.

[23] A. Back, “Hashcash – a denial of service couter-measure”,
Technical Report, 2002,
http://www.hashcash.org/papers/hashcash.pdf, accessed
12.06.2013.

[24] D. Florencio and C. Herley, “A large-scale study of web
password habits”, Proc. WWW '07: 16th international
conference on World Wide Web”, ACM, 2007, p. 657-666.

[25] R. Shay, S. Komanduri, P. G. Kelley, P. G. Leon, M. L.
Mazurek, L. Bauer, N. Christin, and L. F. Cranor,
“Encountering strong password requirements: user attitudes
and behaviors”, Proc. Sixth Symposium on Usable Privacy
and Security”, ACM, 2010, pp. 1-20.

[26] OpenID Foundation, “OpenID authentication 2.0 – final”,
http://openid.net/specs/openid-authentication-2_0.html,
accessed 12.06.2013.

