
15

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Policy-Aware Provisioning and Management of Cloud Applications

Uwe Breitenbücher1, Tobias Binz1, Christoph Fehling1, Oliver Kopp2, Frank Leymann1, and Matthias Wieland2

1Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany
2Institute of Parallel and Distributed Systems, University of Stuttgart, Stuttgart, Germany

{breitenbuecher, lastname}@informatik.uni-stuttgart.de

Abstract—The automated provisioning and management of com-
posite Cloud applications is a major issue and of vital importance
in Cloud Computing. It is key to enable properties such as
elasticity and pay-per-use. The functional aspects of provisioning
and management such as instantiating virtual machines or updat-
ing software components are covered by various technologies on
different technical levels. However, currently available solutions
are tightly coupled to individual technologies without being
able to consider non-functional security requirements in a non-
proprietary and interoperable way. In addition, due to their
heterogeneity, the integration of these technologies in order to
benefit from their individual strengths is a major problem—
especially if non-functional aspects have to be considered and
integrated, too. In this article, we present a concept that enables
executing management tasks using different heterogeneous man-
agement technologies in compliance with non-functional security
requirements specified by policies. We extend the Management
Planlet Framework by a prototypical implementation of the
concept and evaluate the approach by several case studies.

Keywords–Cloud Computing; Application Management; Provi-
sioning; Security; Policies.

I. INTRODUCTION

The steadily increasing use of Information Technology (IT)
in enterprises leads to a higher management effort in terms
of application development, deployment, and operation. IT
management becomes a serious challenge when additional tech-
nologies increase the complexity of management—especially
if non-functional security requirements must be considered,
too [1]. Since manual operator errors account for the largest
fraction of failures, automating IT management becomes of vital
importance [2]. These issues have been tackled by outsourcing
IT to external providers and automating the management
of IT, which are both enabled by Cloud Computing [3].
Cloud Computing reuses well-known concepts and makes
them easily accessible. The modular architectures that are
the consequence of using Cloud services enable to benefit
from Cloud properties such as elasticity without the need to
have technical insight [4]. Unfortunately, the necessary balance
between functional possibilities and non-functional security
issues has been often skewed toward the first: Cloud services
are typically easy to use on their own but hard to configure
and extend in terms of non-functional aspects that are not
covered natively by the offering. Creating applications that
integrate different heterogeneous components that are hosted
on or interact with Cloud services while fulfilling non-functional
security requirements can quickly degenerate to a serious
problem, especially if the technical insight is missing. Even the
initial provisioning of applications can be a difficult challenge
if non-functional security requirements of different domains
with focus on heterogeneous technologies have to be fulfilled.
Application management additionally increases the complexity.

At the International Conference on Emerging Security
Information, Systems and Technologies (SECURWARE 2013),
we presented a first step to tackle these issues by introducing a
policy-aware provisioning concept [1] that enables defining
non-functional security requirements on the execution of
provisioning tasks using policies. We realized the concept by
extending the Management Planlet Framework [5][6][7][8]. In
this article, we continue this work and show how the presented
policy-concept can be used to specify non-functional security
requirements also on the management of applications. We, there-
fore, illustrate how the concept of Policy-Aware Management
Planlets [1] can be used to enforce non-functional requirements
on management tasks in a reusable way independently from
individual applications and how they are enforced during exe-
cution. The article shows how policy-aware management tasks
can be specified either (i) manually or (ii) automatically using
the concept of Automated Management Patterns [5][8] and
how the automated application of management patterns deals
with declared policies. We show (i) that attaching Management
Annotation Policies on components and relations of application
topologies provides a fine grained means to specify non-
functional security requirements to be fulfilled directly by the
affected management tasks and (ii) how policies implemented
in different policy languages can be processed in a uniform
manner. In addition, we show how heterogeneous management
technologies can be integrated using the presented approach
in consideration of security policies. We realize the presented
concepts by a policy-aware Management Planlet Framework
extension that enables application developers, administrators,
and Cloud providers to specify security requirements on the
provisioning and management of applications without the need
to have the deep technical management knowledge required in
other approaches. In addition, the framework enables security
experts of different domains to work together in a collaborative
way. We evaluate the management approach through several
case studies that are conducted throughout the paper and
in terms of performance, complexity, economics, feasibility,
extensibility, and a prototypical implementation. To provide
an overview, we first explain the concepts of policy-aware
provisioning we have presented in Breitenbücher et al. [1] at
the SECURWARE 2013 conference and show in Section VII
how they are used to enable policy-aware management.

In Section II, we explain fundamentals and motivate our
approach in Section III. Section IV describes the framework that
is extended by our approach. In Section V, we present Policy-
Aware Management Planlets that are used in Section VI for
policy-aware provisioning and in Section VII for policy-ware
management of applications. In Section VIII, we present the
architecture of the extended framework. Section IX evaluates
the approach and Section X reviews related work. We conclude
this paper and give an outlook on future work in Section XI.



16

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. FUNDAMENTALS

In this section, we explain four fundamental concepts
that are required to understand the policy-aware provisioning
and management approach presented in this paper. These are
(i) Application Topologies, (ii) Enterprise Topology Graphs,
(iii) Management Plans, and (iv) Management Policies.

A. Application Topology

An application topology is a directed, possibly cyclic graph
describing the structure of an application. It defines nodes,
which represent the different components of an application
such as Web Servers, virtual machines, or Java applications,
and the relations among them, which are the edges between the
nodes. Nodes and relations of a topology are called topology
elements. Each topology element has a certain type that defines
its semantics and defines a set of static properties that describe
details about the element, e. g., the configuration of a Web
Server. Application topologies can be used to describe the
provisioning of applications declaratively: they define the nodes
and relations to be provisioned including all configuration
properties, but not how to actually execute the provisioning.

Figure 1 shows an example that describes a LAMP-
based (Linux, Apache, MySQL, PHP) application topology.
To render application topologies graphically, we use the visual
notation Vino4TOSCA [9] in this paper to depict all kinds of
topology models. Following this notation, nodes are depicted
as rounded rectangles, relations as arrows, and the type of a
topology element is enclosed by parentheses. The application’s
infrastructure is provided by Amazon’s public Cloud [10] in the
form of two virtual machines of type “Ubuntu12.04VM” that
are hosted on nodes of type “AmazonEC2”. Both AmazonEC2
nodes provide login information in the form of properties, both
virtual machines specify the desired configuration in terms of
CPU and RAM. Such information are used to provision the
corresponding elements. On the left virtual machine, a PHP
runtime of type “ApachePHPServer2.2” is installed that hosts
the business logic implemented as “PHP” application. The
Web Server node defines its desired configuration in terms of
login credentials and the HTTP port, under which the PHP
application shall be reachable. The PHP node specifies the
files to be deployed in the form of a referenced ZIP file that
contains the business logic. This application connects to a
database of type “MySQLDB” which is hosted on the MySQL
Database Management System node of type “MySQLDBMS”
that runs on the Ubuntu12.04VM node of the right stack.
Similarly to the Web Server, the MySQLDBMS node defines
the port under which the database shall be accessible. To ease
accessing the application from the outside, an internet domain
points to the application’s PHP frontend. Therefore, a node of
type “Domain” is connected via a “refersTo” relation to the
application’s PHP node. Of course, this topology is simplified:
especially on the middleware layer (i. e., Apache Web Server
and MySQL Database Management System), typically more
properties are used to configure the respective component in
more detail. Also in the following figures, we omitted most of
these properties to simplify the diagrams. Our approach employs
application topologies to describe the structure of applications
to be managed and to attach policies to the affected elements.

(hostedOn) 

Provider: uniteddomains 
Name: companyX.org 
Account: gfs3fdda 
Password: fds!fhwofdsehoad 

(Domain) 

File: Website.zip 
[…] 

(PHP) 

HTTPPort: 80 
Username: ApacheAdmin 
Password: jfwf?jowwßj 
[…] 

(ApachePHPServer2.2) 

RAM: 8GB 
CPU: 2.8GHz 
SSHCredentials:  […] 
[…] 

(Ubuntu12.04VM) 

Account:  MyAccount  
Password:  fw9aa2fr 
[…] 

(AmazonEC2) 

(hostedOn) 

(hostedOn) 

(refersTo) 

(hostedOn) 

Name: ProductsDatabase 
[…] 

(MySQLDB) 

MySQLPort: 3306 
Username: MySQLAdmin 
Password: jgafh2wr234sdf 
[…] 

(MySQLDBMS) 

RAM: 8GB 
CPU: 2.8GHz 
SSHCredentials: […] 
[…] 

(Ubuntu12.04VM) 

Account:  MyAccount  
Password:  fw9aa2fr 
[…] 

(AmazonEC2) 

(hostedOn) 

(hostedOn) 

(SQLConnection) 

Figure 1. Example of a LAMP-based application topology.

B. Enterprise Topology Graph

Enterprise Topology Graphs (ETG) [11] are a special kind
of application topology. They extend the static properties of
application topologies by dynamic properties that provide
runtime information about application components and relations
such as current CPU load or IP-addresses. Thus, Enterprise
Topology Graphs can be used to capture the current state
of a running application as a fine-grained technical snapshot
that formally describes all components and relations including
their types, configurations, and runtime information. Enterprise
Topology Graphs also capture runtime information in the form
of the lifecycle state of components and relations, e. g., that a
component is currently starting, running, or terminating.

ETGs are used in various domains to adapt [12], analyze [13],
manage [5], and optimize application structures, e. g., to
improve the ecological sustainability of business processes [14]
and to consolidate duplicate components [11]. Enterprise
Topology Graphs of running applications can be discovered
fully automatically using the ETG Discovery Framework [15].
This framework requires only an entry point of the application,
e. g., the URL of the application’s Web frontend, to discover
the whole ETG fully automatically including all software,
middleware, and infrastructure components of the application.
To render ETGs graphically, we also use Vino4TOSCA.



17

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Provision  
Ubuntu12.04VM 

Provision  
Ubuntu12.04VM 

Install Apache 
PHPServer2.2 

Install 
MySQLDBMS 

Deploy PHP 
Application 

Create 
MySQL DB 

Connect to 
Database 

Update 
Domain 

Figure 2. BPMN Management Plan that provisions the LAMP-based application described in Section II-A.

C. Management Plan

Management Plans are executable workflows [16] used to
automate the management of applications, e. g., application
provisioning, scaling an application, or updating components.
They enable a more robust and reliable way to manage
applications than manual or script-based management [6] due to
features such as recoverability, compensation, and fault handling
mechanisms [16]. Typical workflow languages to implement
plans are the Business Process Execution Language (BPEL) [17]
and the Business Process Model and Notation (BPMN) [18].
For example, BPEL can be used for application provisioning as
presented by Keller et al. [19], BPMN to manage applications
based on the TOSCA [20] standard [21].

Figure 2 shows a BPMN Management Plan that provisions
the LAMP-based application shown in Figure 1. It consists
of service tasks that provision the individual components
and gateways that enable processing tasks in parallel: after
receiving a start message, the shown plan provisions the two
virtual machines on Amazon EC2 in parallel, installs the
middleware components, and deploys the PHP application on
the installed Web Server. After both parallel paths finished, the
PHP application is connected to the MySQL database and the
last activity updates the domain to the application’s URL. This
plan can be executed automatically to provision the application.

Management Plans are often created manually by the
application developers [22]. However, this is a difficult and time-
consuming task and, as plans are typically coupled tightly to
single applications, of limited value: plans are mostly sensitive
to structural differences and, therefore, hardly reusable for
the management of other applications [6]. In addition, if
non-functional security requirements must be considered, the
complexity of creating Management Plans increases additionally
when plans are authored manually. In this paper, we present
an approach to generate Management Plans that consider non-
functional security requirements expressed by policies.

D. Management Policy

In this section, we introduce Management Policies, which
are used by our approach to express non-functional security
requirements on the provisioning and management of appli-
cations. Management Policies are a well-known concept and
common in research as well as in industry [23]. They are derived
from management goals and employed in systems and network
management to influence the management of applications, re-
sources, and IT in general based on non-functional aspects such

as security, performance, or cost requirements. They provide a
(semi-) formal concept used to capture, structure, and enforce
the objectives [24]. A lot of work on policies exists dealing with
classifications, methodologies, and applications. To classify and
identify the policies covered by our approach, we follow the
hierarchy of Wies [24] that classifies policies based on the level
on which they influence the management. The hierarchy was
developed based on criteria such as policy life-time, how they
are triggered and performed, and the type of its targets. Wies
differentiates between four classes: (i) Corporate/High-Level
Policies, (ii) Task Oriented Policies, (iii) Functional Policies,
and (iv) Low-Level Policies. Corporate Policies are directly
derived from corporate goals and embody strategic business
management rather than technical management aspects. The
other three classes embody technology oriented management
in terms of applying management tools, using management
functions, and direct operation on the managed objects. Our
approach focuses on the technology oriented management.

Considering policies that define security requirements, it is
of vital importance to ensure their strict adherence: management
systems must prevent that the security requirements defined by
a policy get violated because many types of security policies
cause actions that cannot be undone if once violated. For
example, if a Data Location Policy defines that the application
data must not leave a certain region due to legal rights, i. e.,
also the physical servers storing the data must be located in
that region, and the data gets distributed over the world through
decentralized Cloud servers located in other regions, the policy
is violated and it is impossible to undo this violation. Depending
on the agreements, such violations often result in high penalties.

In Breitenbücher et al. [1], we employed three kinds of
Provisioning Policies to specify non-functional requirements
on the provisioning of applications: (i) Configuring Policy,
(ii) Guarding Policy, and (iii) Extending Policy. In this paper,
we employ these policy types also for the management of
applications. Therefore, we call these policy types Management
Policies in the following. We explain these three kinds briefly to
provide the basis for the motivating scenario introduced in the
next section. A Configuring Policy configures the management
of components or relations. For example, a Data Location
Policy attached to a virtual machine with “region” value “EU”
configures the deployment in a way that the virtual machine is
hosted on a server located in the European Union. A Guarding
Policy guards the management, i. e., it supervises management
tasks in terms of specified values or thresholds. For example,
a Secure Password Policy ensures that the strength of login



18

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

credentials, i. e., username and password, is strong enough. An
Extending Policy extends the management in terms of structure,
i. e., it may add new components or relations which are not
contained in the original application topology. For example,
defining a Frequent Data Backup Policy for a database may
cause the installation of an additional software component on
the underlying operating system that backups specified database
tables in a certain time interval to a certain location.

III. MOTIVATING SCENARIO

In this section, we describe a motivating scenario that is
used throughout the paper to explain the presented approach.
The basis for the scenario provides the LAMP-based application
shown in Figure 1, which was explained in Section II-A. In
our scenario, this application is a customer facing Website of
a company for which we consider three different management
tasks: (i) the initial provisioning of the application, (ii) making
a backup of the database, and (iii) updating the employed
Apache Web Server to a new version. All management tasks
shall be executed in compliance with different non-functional
security requirements, which are expressed by Management
Policies that are attached to the affected components.

Depending on the importance of an application for a
company, there are typically different non-functional security
requirements of various types. In our scenario, six Management
Policies are attached to components that define non-functional
security requirements that must be complied with by the
management tasks that are performed on these components
during provisioning and further management of this application.
Figure 3 shows the enriched application topology model: Data
Location Policies are attached to both virtual machines and to
the MySQL database, Secure Password Policies are attached to
the middleware components, i. e., the Apache Web Server and
the MySQL DBMS, as well as to the MySQL database itself.
The two Data Location Policies attached to the virtual machines
restrict the allowed geographic locations of the virtual machines
and define that both must be hosted in the European Union
(EU). Thus, the virtual machines must be hosted on a physical
server located in one of the EU’s states. In contrast to these
policies that define requirements on the physical location of
components, the Data Location Policy attached to the MySQL
database defines that also the data itself must never leave the
EU, e. g., if data is exported for backup, also this data copy must
remain in the EU. The reason for these requirements may be
legal aspects on the location of data that have to be considered
by the company when outsourcing this application to the Cloud,
e. g., if personal data is stored in the database. The second kind
of policies used in this motivating example are the three Secure
Password Policies attached to the middleware components and
the database, which define that the employed passwords must
have a certain strength. This security requirement results from
the fact that there are many cases in which unsafe passwords
are used by administrators or even the default passwords of
middleware components are used. The Secure Password Policy
ensures that the chosen passwords are strong enough to resist
common attacks. Of course, this is not a complete list of security
requirements a company may have on such an application
and the scenario provides only a simplified description. The
intention is to give a general overview on the kind of non-
functional security issues that are tackled in this article.

(hostedOn) 

(Domain) 

(PHP) 

(ApachePHPServer2.2) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(refersTo) 

(hostedOn) 

(MySQLDB) 

(MySQLDBMS) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(SQLConnection) 

(hostedOn) (hostedOn) 

Data Location Policy Secure Password Policy 

Figure 3. Motivating scenario: LAMP-based application topology with attached
Management Policies.

The three management tasks that have to be performed on
this application are the (i) initial provisioning of this application
in the Amazon Cloud, (ii) making a database backup, and (iii)
updating the Apache Web Server from version 2.2 to version
2.4. We now discuss how the attached policies may influence
these management tasks. First, during provisioning, all policies
attached to middleware components including the MySQL
database must be considered. Only the Data Location Policy
attached to the MySQL database node, which focuses on data
handling, defines a requirement that must be considered only
during management, i. e., after the application is provisioned
and data shall be exported. The second management task of
making a backup of the whole database is such a task that must
consider this policy: the location to which the database backup
is exported must comply with this policy. In this case, the target
location must be a storage located in the European Union. The
third management task to be performed is a typical use case
that considers security problems of middleware components.
In our scenario, the employed Apache Web Server in version
2.2 must be updated to a new version due to critical security
issues found in the old version. In addition, due to the vital
importance of this application for the company, the application’s
availability must be ensured, i. e., the update must be executed
without application downtime. The challenge of executing
this management task is that the Web Server component gets
physically replaced by a new version of this component but
the attached Management Policies must be fulfilled also by
the new installation of the Web Server. Thus, policies that
primarily affect the provisioning of components must be ensured
also during the execution of such management tasks. This
additionally increases the difficulty of complying with security
policies when executing management tasks on the application.



19

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Management  
Plan 

Planlet Library 

Plan Generator 

Desired Application 
State Model 

x 

Figure 4. Architecture and concept of the Management Planlet Framework
used to generate Provisioning and Management Plans (adapted from [5][7][8]).

IV. MANAGEMENT PLANLET FRAMEWORK

In this section, we explain the Management Planlet
Framework that gets extended in this article to support the
provisioning and management of applications in compliance
with non-functional security requirements defined by Man-
agement Policies. The framework was presented in former
papers [1][5][6][7][8], which describe all conceptual and
technical details about the provided management functionalities.
We describe the framework briefly in this section to provide
all information required to understand the presented approach.
We first give a high-level overview on the general concept and
explain the details in the following subsections.

A. Conceptual Overview

The main functionality of the Management Planlet Frame-
work is managing applications by generating Management
Plans that can be executed fully automatically to perform the
desired management tasks on applications. The general concept
is shown in Figure 4. The framework provides a language to
specify the management tasks to be performed on applications
in an abstract and declarative manner using Desired Application
State Models (DASM). These models can be transformed fully
automatically to executable Management Plans by a Plan
Generator that orchestrates so-called Management Planlets,
which implement management logic as executable workflows.
The Management Planlet Framework supports the initial provi-
sioning of applications as well as application management. We
extended the Management Planlet Framework in Breitenbücher
et al. [1] to support security policies on the provisioning of
applications. In this article, we show how the approach can be
used for policy-aware management of applications, too.

B. Desired Application State Model

A Desired Application State Model (DASM) is a formal
model specifying the desired state in which an application shall
be transferred and all management tasks that have to be executed
to reach this state. It consists of (i) the application’s ETG,
which describes the current structure and runtime information
of the application, and (ii) so-called Management Annotations,
which are attached to nodes and relations of the ETG to
specify the management tasks to be executed on the respective
running node or relation. Management Annotations express
low-level management tasks such as creating components,

D
ir

ec
ti

o
n

 o
f 

P
ro

vi
si

o
n

in
g 

(hostedOn) 

(Domain) 

(PHP) 

(ApachePHPServer2.2) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(refersTo) 

(hostedOn) 

(MySQLDB) 

(MySQLDBMS) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(SQLConnection) 

(hostedOn) (hostedOn) 

<Source ref=“dump.sql“/> 

Figure 5. Desired Application State Model that describes the provisioning of
the LAMP-based application described in the motivating scenario.

establishing relations, updating components, or importing data.
They can be combined to model higher-level management
task such as scaling an application, which typically requires
executing multiple low-level tasks on different components. A
Management Annotation specifies only the abstract semantics
of a certain management task, e. g., that the corresponding node
or relation shall be created, but not the technical realization of
its execution. Therefore, each Management Annotation has a
certain type that defines the represented task’s semantics.

Management Annotations are subdivided into two disjoint
classes: (i) Structural Management Annotations and (ii) Domain-
Specific Management Annotations. The first class consists of
two annotations that structurally change the application in
terms of creating or destroying nodes or relations. Thus, there
is a (i.a) Create-Management Annotation and a (i.b) Destroy-
Management Annotation. Figure 5 shows a DASM that describes
the provisioning of the motivating scenario. We depict all
Management Annotations in DASMs as coloured circles, e. g.,
the green circle represents the Create-Annotation. Therefore,
the topology elements to be provisioned are annotated with
Create-Annotations. These annotations tell the system that the
corresponding nodes and relations shall be created. The sec-
ond class contains Domain-Specific Management Annotations,
which express special management tasks for particular elements.
For example, Figure 5 shows an ImportData-Management
Annotation (purple circle with paper inside) attached to the
MySQLDB node that defines that data shall be imported into the
database. Domain-Specific Management Annotations typically
provide additional annotation-specific information. For example,
the ImportData-Annotation also specifies the data to be imported
by a reference to the corresponding SQL dump. Both kinds of
annotations may additionally declare that they must be executed
before, after, or concurrently with another annotation.



20

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In contrast to Management Plans that define all technical
details required for their automatic execution, a DASM describes
the tasks to be performed only declaratively, i. e., only what
has to be done is described, but not how—all technical details
about the execution of the specified management tasks are
missing. Only the task’s abstract semantics are defined by the
declared Management Annotations. As a result, DASMs are not
executable. Therefore, they are transformed by the framework’s
Plan Generator into executable Management Plans by orches-
trating so-called Management Planlets, which implement the
management logic required to execute the abstract management
tasks specified by the Management Annotations in DASMs. In
the next section, we explain Management Planlets in detail.

C. Management Planlets

Based on non-executable DASMs that declare the manage-
ment tasks to be executed only declaratively, the framework’s
Plan Generator transforms DASMs automatically into executable
Management Plans. These generated plans execute the Man-
agement Annotations declared in the DASM and bring the
application from the current state into the desired state. To
generate Management Plans out of DASMs, the Plan Generator
orchestrates so-called Management Planlets. Planlets are small,
executable workflows that provide the management logic
required to execute particular Management Annotations on
a certain combination of nodes and relations. They are used
as reusable management building blocks implementing low-
level management tasks such as creating a virtual machine on
Amazon EC2, installing an Apache Web Server on an Ubuntu
operating system, or exporting data from a MySQL database.
Management Planlets are developed by technology experts of
different domains and can be orchestrated to higher-level Man-
agement Plans, which implement more complex management
tasks such as the provisioning of a whole application, scaling
an application, or updating application components.

Management Planlets consist of two parts: (i) Annotated
Topology Fragment and (ii) executable workflow. The Annotated
Topology Fragment formally describes the planlet’s functionality
by a small application topology that is annotated with the Man-
agement Annotations the planlet executes on the combination of
nodes and relations defined by this topology. It defines (a) the
planlet’s effects in the form of Management Annotations that
are declared on nodes or relations and (b) preconditions in the
form of nodes, relations, and properties that must be fulfilled
to execute the planlet. The workflow implements the execution
of the annotations declared on the respective elements.

Figure 6 shows a planlet that executes a Create-Annotation
on a node of type “Ubuntu12.04VM” and a Create-Annotation
on the associated relation of type “hostedOn”, which con-
nects to an existing node of type “AmazonEC2”. Thus, this
planlet creates a new Ubuntu virtual machine on Amazon’s
public Cloud offering EC2. Planlets often need to express
preconditions that must be fulfilled to execute the planlet.
Preconditions are defined by (i) all elements in a planlet’s
topology fragment and (ii) all properties of these elements that
have no Create-Annotation attached. For example, the shown
planlet requires a node of type “AmazonEC2” that provides
the properties “Account” and “Password”. The property value
“?” denotes wildcard: the corresponding property must be set
to any value. In this case, the planlet reads these properties

Install MySQL on Linux Planlet 

(UbuntuLinux) 

State: Instantiated 

State: Instantiated 

(MySQL) 

(hostedOn) 

TopologyFragment 

P Create Ubuntu 12.04 VM on Amazon EC2 Planlet 

Annotated Topology Fragment Workflow 

P 

      State: Instantiated 
      IP-Address: * 
RAM: * 
CPU: * 

(Ubuntu12.04VM) 

Account:  * 
Password:  * 

(AmazonEC2) 

(hostedOn) 

Figure 6. Planlet that creates an Ubuntu virtual machine on Amazon EC2.

to retrieve the information needed to use the corresponding
Amazon account for creating the virtual machine. The planlet’s
effects are expressed by the attached Create-Annotations: the
“Ubuntu12.04VM” node as well as the “hostedOn” relation to
the “AmazonEC2” node will be created. In addition, the Create-
Annotation attached to the Ubuntu12.04VM node’s “State”
and “IP-Address” properties define that the planlet sets these
properties to the specified values: “State” to “Instantiated”,
“IP-Address” to a value that is not known before, which is
expressed by the ?, as the actual IP-address can be determined
not until the real provisioning of the virtual machine.

Figure 7 shows a planlet that imports data into a MySQL
database. This is expressed by the domain-specific ImportData-
Annotation attached to the MySQLDB node (depicted as purple
cycle). This planlet must not be executed before the database
is instantiated because of the state-property precondition. Thus,
another planlet that creates this node, i. e., that creates a new
MySQL database on a MySQL DBMS, sets this property that
is used by the shown planlet as precondition. Based on this
property, the order of the two planlets is determined: the
planlet creating the database must be executed before the
shown planlet that imports data. In addition, the shown planlet
defines preconditions to execute this task by declaring required
properties: endpoint information, i. e., IP-address and port, user,
password, and database name. All these properties must be
provided by the DASM itself or planlets that are executed before.

Import Data into MySQLDB Planlet 

Annotated Topology Fragment Workflow 

P 

State:   Instantiated 
DBName: * 
User:   * 
Password: * 
Endpoint: * 

(MySQLDB) 

Figure 7. Planlet that executes the ImportData-Annotation on a MySQLDB.



21

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To execute multiple Management Annotations declared in a
DASM, typically multiple planlets have to be orchestrated into an
overall Management Plan. All available planlets are stored in a
library, which is used by the Plan Generator to find appropriate
planlets for generating the desired Management Plan. The Plan
Generator uses the planlet’s fragment for selecting suitable
planlets to process all Management Annotations in the DASM
and to order planlets based on preconditions and effects. During
the plan generation, a virtual representation of the current state
of the application gets transferred towards the desired goal state
defined by the DASM. In each intermediate state, all planlets
whose preconditions match the current virtual state are called
candidate planlets. These planlets are eligible to be applied. The
Plan Generator decides which planlet transfers the application
into the next state. The order of planlets is determined based
on their preconditions and effects: all preconditions of a planlet
must be fulfilled by the DASM itself or by another planlet that
is executed before. This enables administrators to specify static
information directly in the DASM, e. g., the desired RAM of
the virtual machine created by the planlet shown in Figure 6 or
the database name for the planlet shown in Figure 7. Dynamic
information such as the IP-Address of a VM are directly written
by planlets to the application’s instance model, i. e., to its
ETG. Thus, planlets communicate with each other via element
properties in the application’s ETG.

The framework enables distributing logic across several
planlets that do not need to know each other. Each planlet
implements a small functionality and can be used in combi-
nation with other planlets. This enables integrating different
management technologies seamlessly into one holistic and
collaborative management framework: all technology specific
details are implemented by the planlet’s workflow but not
exposed to the Plan Generator. Thus, the framework provides
a uniform manner to integrate heterogeneous technologies.

D. Provisioning of Applications

Besides management, the Management Planlet Framework
supports also the initial provisioning of applications through
generating executable Provisioning Plans, which are a subclass
of Management Plans. The Provisioning Plan generation is
based on the same concept as the Management Plan gener-
ation: a DASM that describes the management tasks to be
performed to provision the application is transformed into the
corresponding plan by the Plan Generator. Therefore, the DASM
contains the application’s topology and a Create-Annotation
attached to each topology element in the model that shall
be created. Figure 5 shows the DASM that describes the
provisioning of the LAMP-based motivating scenario: each
topology element that has to be created is annotated with
a Create-Annotation, nodes as well as relations. This DASM
can be used to generate the corresponding Provisioning Plan
fully automatically. How these management tasks are finally
executed depends on the orchestrated planlets that implement
the corresponding Management Annotations. To configure
the provisioning, additional Management Annotations may be
declared on topology elements to define additional management
tasks. For example, in the shown DASM, an ImportData-
Annotation is declared on the MySQL database node to define
that a certain dataset shall be imported after the database is
installed. This Management Annotation can be, for example,
executed by the planlet described in the previous section.

Desired Application 
State Model 

Pattern Library 

Pattern 
Applier 

Enterprise 
Topology Graph 

x 

Figure 8. Automated Management Pattern approach.

E. Management of Applications

The framework supports the creation of DASMs for manage-
ment tasks by two different methods: (i) manual creation and
(ii) automated pattern-based creation. To support the manual
DASM creation, the ETG Discovery Framework [15] is used to
automatically discover the current application snapshot in the
form of an XML-based ETG. The discovered ETG provides the
basis for manually creating a DASM afterwards that specifies
the management tasks to be executed by attaching Manage-
ment Annotations to the corresponding elements. As Desired
Application State Models are described in XML, they can be
created easily by hand using XML tools. The frameworks Plan
Generator is then used to generate an executable Management
Plan, which may be customized by the administrator afterwards.
In the final step, the generated plan is executed. This manual
creation method is suitable when only few management tasks
have to be specified, e. g., to export data from a database.

However, if more complex, high-level tasks have to be
executed, e. g., scaling an application or updating a Web Server,
the manual creation of DASMs quickly degenerates to a serious
challenge: these tasks require an overall understanding about
which low-level Management Annotations have to be declared
to achieve the desired goal. Therefore, the framework employs
Automated Management Patterns (AMPs) to automatically
generate DASMs for this kind of tasks based on discovered
ETGs [5]. In IT, patterns are a well-established means to
document reusable solution expertise for frequently recurring
problems [25]. The automation of this concept eases the creation
of DASMs to specify complex high-level management tasks.
Automated Management Patterns consist of three parts: (i)
Topology Fragment, (ii) a Topology Transformation, and (iii) a
textual description of the pattern. The Topology Fragment is a
small application topology that defines to which combinations
of nodes and relations the pattern is applicable. Thus, it is
used for matchmaking of AMPs and ETGs: if the elements
in the fragment match elements in the ETG, the pattern can
be applied to these matching elements. The second part is a
Topology Transformation that automatically applies the pattern
by transforming an input ETG into a DASM that describes the
tasks to be performed by attaching Management Annotations to
the corresponding ETG elements. AMPs are stored in a Pattern
Library and executed by a Pattern Applier, as shown in Figure 8.
The third part is a textual description of the pattern in natural
language to provide human-readable information about the
pattern, i. e., the solved problem and the corresponding solution.



22

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Manual Refinement of 
Management Plan 

6 

Manual Management 
Pattern Selection 

2 

System 

Automatic Management 
Pattern 

Application 

3 

System 

Automatic  
Management Plan 

Generation 

5 

System 

Automatic ETG 
Discovery 

1 

Manual Refinement of 
Desired Application State 

Model 

4 

System 

Automatic  
Management Plan 

Execution 

7 

Manual Step 

System 

Automated Step 

Optional 
Manual Step 

Legend: 

System 

Optional 
Automated Step 

Figure 9. Pattern-based Application Management Automation Method (adapted from [8]).

F. Pattern-based Application Management Automation Method

To ease understanding the policy-aware management ap-
proach that gets introduced in this article, we explain the
Management Planlet Framework’s pattern-based management
automation concept in more detail to provide a clear overview
on the steps that are performed to apply a management pattern
automatically to individual running applications. Based on
Breitenbücher et al. [8], we describe the concept as method
that automates management based on applying Automated
Management Patterns to discovered ETGs. The method’s overall
process is shown in Figure 9 and consist of seven steps that
are either automated by the framework or executed manually
by an administrator. As explained by the legend on the bottom
left of Figure 9, manual steps are depicted as orange rectangles
having an icon attached that depicts an administrator whereas
automated steps are rendered as blue rectangles having a
“System”-caption attached. Some of the steps are optional,
which is expressed by a dotted line surrounding the shape.

In the method’s first step, a runtime snapshot of the
application to be managed is discovered automatically using
the ETG Discovery Framework [15]. The result is an ETG that
describes (i) the current application structure and (ii) all runtime
information in the form of properties. This step is optional:
if the Management Planlet Framework was used to initially
provision the application, its ETG was already created by the
Management Planlets that executed the provisioning tasks and
can, therefore, be used directly for the next step.

In the second step, the management task to be executed
is specified by manually selecting an Automated Management
Pattern. For example, in Breitenbücher et al. [8], we presented
how the “Stateless Component Swapping Pattern” [26] can be
implemented as Automated Management Pattern. This pattern
captures the required management knowledge to migrate a state-
less application component without downtime from a source
environment into a target environment. Thus, sophisticated tasks
can be applied fully automatically by a simple AMP selection.

The third step is automated by the framework: the Topology
Transformation of the selected AMP is executed fully automati-
cally on the ETG of Step 1. The transformation declares the
management tasks to be executed in the form of Management
Annotations and may modify the topology structure to add
new nodes or relations. The result of this step is a DASM that
describes the tasks to be executed for applying the pattern.

In Step 4, the resulting DASM may be refined manually for
customization purposes or to additionally refine the declared
tasks. For example, if an AMP declares how to migrate an
application component to the Cloud, in this step the desired
target Cloud provider may be changed manually by replacing
the corresponding node. As AMPs can implement fully refined
patterns, this step is optional (cf. Breitenbücher et al. [8]).

As DASMs are not executable, they must be transformed into
executable processes. In Step 5, this is done fully automatically
by the framework based on orchestrating Management Planlets
into Management Plans, as explained in Section IV-C.

In Step 6, the generated Management Plan may be refined
manually. For example, additional activities can be inserted for
which there are no Management Annotations. However, since
there are often no refinements needed, this step is optional.

In the last Step 7, the generated Management Plan is
deployed on a workflow engine and executed to apply the
management pattern to the real running application. As Man-
agement Planlets update the application’s ETG automatically
to reflect their changes, further AMPs can be applied directly
afterwards. Therefore, the method continues in Step 2.

In Breitenbücher et al. [8], we classified two kinds of AMPs:
(i) Semi-Automated Management Patterns and (ii) Automated
Management Idioms. The semi-automated class represents
AMPs that implement only the abstract solution of a certain
management pattern, i. e., the DASMs resulting from Step 3
typically need to be refined manually in Step 4. For example,
a semi-automated migration AMP copies only the component
node, defines an abstract runtime environment, and attaches the
corresponding Management Annotations. Thus, information that
is required to select appropriate Management Planlets, e. g., a
concrete target environment, need to be refined manually in the
resulting DASM. In contrast, Automated Management Idioms
implement a refined solution of a management pattern for a
certain use case. For example, the aforementioned migration
management pattern can be implemented as idiom refined for
the concrete use case of migrating Java-based Web applications
hosted on a Tomcat Servlet Container to the Amazon Cloud.
Thus, all required refinement information is implemented di-
rectly in the idiom’s transformation and a manual refinement is
not required. The policy-aware management approach presented
in this paper is agnostic to this distinction. Therefore, we do
not distinguish in this paper and simply refer to AMPs.



23

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Desired Application State Model Policy-Aware Management Planlet 

( Z ) 

(hostedOn) 

( Y ) 

(hostedOn) 

( X ) 

R 

Planlet P 

( Z ) 

(hostedOn) 

( Y ) 

C 

Annotated Topology Fragment Workflow R 

Figure 10. General concept of the approach: policies attached to a topology element are bound to the Management Annotations that must comply with the policy.

V. POLICY-AWARE MANAGEMENT PLANLETS

In this section, we present the first part of the approach
that enables the policy-aware execution of management tasks
based on the Management Planlet Framework. We introduce
(i) Policy-Aware Management Planlets, which are able to
enforce policies during the execution of management tasks,
(ii) Management Annotation Policies, which provide a format
for defining and processing Management Policies, and (iii)
show how the Management Planlet Framework is extended to
support the policy-aware execution of management tasks.

The general concept is based on attaching Management
Policies to elements in DASMs and elements in Management
Planlet fragments that are bound directly to the management
tasks the policies apply to. These policies are then analyzed
during the plan generation to determine if a candidate planlet
fulfills the non-functional requirements on management tasks
defined by the policies in the DASM. To enable this, we
introduce the concept of Management Annotation Policies,
which provides a formal policy format that enables binding a
policy directly to the Management Annotations it applies to.
As these policies can be attached to elements in DASMs as well
as elements in planlet fragments, we distinguish between two
semantics: (i) a Management Annotation Policy attached to an
element in a DASM defines the Management Annotations that
must comply with the policy (called “topology policy”) whereas
(ii) a policy attached to an element in a planlet fragment defines
the Management Annotations for which the planlet guarantees
fulfilling the policy (called “planlet policy”). Thus, a candidate
planlet that executes a Management Annotation in a DASM must
consider all policies the DASM specifies on this annotation. This
enables creating Policy-Aware Management Planlets, which
specify the non-functional capabilities they ensure for the
Management Annotations they execute on the respective nodes
and relations modelled in their fragments. During the plan
generation, each Management Annotation Policy bound to a
Management Annotation in the DASM must be fulfilled by the
Management Planlet that executes the respective annotation.
This ensures that all policies specified in a DASM are enforced
when the associated annotations they apply to are executed.

Figure 10 explains the presented concept visually: on the
left, it depicts a DASM consisting of three components connected
by hostedOn-relations that have to be provisioned, which is
expressed by the attached Create-Annotations. The nodes of
type X and Z have Management Annotation Policies attached
defining the non-functional security requirements that have
to be fulfilled during the execution of the associated Create-
Annotations they apply to. On the right, there is a Policy-aware
Management Planlet that provisions nodes of type Z and Y
connected by a hostedOn-relation. The policy attached to the
node of type Z expresses the non-functional capabilities that are
provided by the planlet for executing the Create-Annotation.
During the plan generation, the policies are compared and
checked for compatibility. If a candidate Management Planlet
fulfills all Management Annotation Policies attached to elements
in the DASM that are applied to Management Annotations it
executes on these elements, the planlet is applicable.

In contrast to many existing bidirectional policy approaches,
we define a strict one-way requirement-driven perspective:
policies attached to elements in a DASM define requirements
on the tasks whereas policies attached to the fragment of a
planlet define the planlet’s capabilities. Planlets cannot express
non-functional requirements and topologies cannot express
capabilities. Thus, the planlet’s policies are ignored if they are
not required to fulfill the requirements defined by the DASM.

A. Management Annotation Policies

In this section, we introduce the format of Management
Annotation Policies, which enables specifying non-functional
security requirements and capabilities directly on the Man-
agement Annotations they apply to. Management Annotation
Policies can be attached to elements, i. e., nodes and relations,
contained in DASMs and to elements in the Annotated Topology
Fragments of planlets. Policies attached to DASM elements
express non-functional requirements whereas policies attached
to fragment elements of planlets express the non-functional
capabilities on tasks represented by annotations. A Management
Annotation Policy consists of eight different parts, which define
its semantics and how the policy must be processed. In the
following subsections, we explain these parts in detail.



24

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data Location Policy 1 

Type:  security.datalocation 

Language: TOSCA-Policy 

ProcessingMode:  TypeSpecific 

Optional: False 

 

<DataLocation> 

   <Region>EU</Region> 

</DataLocation> 

AppliesTo: 

(hostedOn) 

(Domain) 

(PHP) 

(ApachePHPServer2.2) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(refersTo) 

(hostedOn) 

(MySQLDB) 

(MySQLDBMS) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(SQLConnection) 

(hostedOn) (hostedOn) 

Data Location Policy 2 

Type:  security.datalocation 

Language: TOSCA-Policy 

ProcessingMode:  TypeSpecific 

Optional: False 

 

<DataLocation> 

   <Region>EU</Region> 

</DataLocation> 

AppliesTo: 

Figure 11. Management Annotation Policies attached to nodes in the DASM that describes the provisioning of the motivating scenario.

1) Identifier and Type: Each Management Annotation Policy
has a unique id within the model it is contained and an optional
type defining the semantics of the policy. For example, a
policy of type “Secure Password Policy” ensures that the login
password of a component is strong enough to resist attacks.
The semantics of a policy type have to be well-defined and
documented, i. e., DASM modellers and planlet developers must
be aware of its meaning and how to use and enforce it.

2) Content Field and Language Attribute: As there are a
lot of existing policy languages, such as WS-Policy, Ponder, or
KAOS [27], our approach supports their integration through an
optional content field and an optional language attribute: the
content field enables to fill in any policy-specific information
whereas the language attribute defines the used policy language.

3) Processing Mode: The processing mode attribute defines
how the policy has to be fulfilled, e. g., whether it is sufficient
to compare only the types of topology and planlet policy or
if the content of the policy needs to be analyzed. That is the
reason why the type and language attributes are optional: if
only the types need to be compared, the language attribute is
unnecessary. This is explained in detail in Section V-C.

4) Optional Attribute: Each Management Annotation Policy
has an attribute optional that defines if the processing of the
policy is mandatory. In DASMs, this attribute can be used
to define optional policies that express security requirements
that are “nice to have” but not necessarily required. Planlets
can declare optional policies to vary their execution: optional
policies are fulfilled only if explicitly required by the DASM.

5) AppliesTo-List: To specify the Management Annotations
that must consider the policy, each Management Annotation
Policy explicitly defines an AppliesTo-list that contains the
affected Management Annotations. We distinguish here between
two sides: (i) a topology policy attached to an element in a

DASM specifies in this list the Management Annotations that
must comply with the policy, i. e., all planlets that execute one
of the annotations in this list must consider the policy. If this
list is empty, all planlets executing annotations on the element
must consider the policy. (ii) A policy attached to a planlet
fragment defines in this list the Management Annotations for
which the planlet ensures the policy. If this list is empty, the
planlet guarantees the policy for all Management Annotations
it executes on the corresponding element. This concept allows
binding Management Policies directly to the affected tasks.

6) Ignore-List: If a policy must be processed by all tasks
except a few exceptions, using the AppliesTo-List would
require to specify all these annotations. Therefore, to add
exceptions easily, a Management Annotation Policy may specify
annotations the policy does not apply to in the so-called
Ignore-list. For policies in DASMs, all Management Annotations
specified in this list do not have to consider the policy. For
policies on elements in Annotated Topology Fragments of
planlets, the list specifies the annotations for which the planlet
does not guarantee enforcing the policy. Thus, if the AppliesTo-
List of a policy is empty, i. e., the policy applies to all
Management Annotations, adding Management Annotations to
the Ignore-List enables defining exceptions on both sides.

Figure 11 shows two Data Location Policies attached to
the virtual machine and database of the motivating scenario
in detail. Both are defined in the same language and must be
processed by a type specific plugin. The difference lies in the
AppliesTo-lists: the Management Annotation Policy attached
to the virtual machine must be considered only for its creation,
which is depicted by the Create-Annotation in the AppliesTo-
list whereas the Management Annotation Policy attached to
the database must be considered only by planlets that handle
data, e. g., by planlets that execute ImportData- or ExportData-
Management Annotations. This is expressed by the domain-



25

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Install MySQL on Linux Planlet 

(UbuntuLinux) 

State: Instantiated 

State: Instantiated 

(MySQL) 

(hostedOn) 

TopologyFragment 

P Create Ubuntu 12.04 VM on Amazon EC2 Planlet 

Annotated Topology Fragment Workflow 

P 

      State: Instantiated 
      IP-Address: * 
RAM: * 
CPU: * 

(Ubuntu12.04VM) 

Account:  * 
Password:  * 

(AmazonEC2) 

(hostedOn) 

Data Location Policy 

Type:  security.datalocation 

Language: TOSCA-Policy 

ProcessingMode:  TypeSpecific 

Optional: True 

 

<DataLocation> 

   <Region>EU</Region> 

</DataLocation> 

AppliesTo: 

Figure 12. Policy-Aware Management Planlet that creates a virtual machine
on Amazon EC2 ensuring a Data Location Policy on the Create-Annotation.

specific DataHandling-Annotation depicted as blue circle. This
differentiation makes sense as the policies express requirements
on different tasks: as the location of the physical servers the
virtual machine is hosted on determines also the geographic
location of the database and, thus, of the data itself, the VM
has to be located in the region the data has to remain. Thus,
the planlet instantiating the VM must enforce this policy, e. g.,
as shown by the planlet depicted in Figure 12. In contrast, the
location of the database needs not to be considered by the
planlet that installs it on the operating system as the physical
location of the underlying virtual machine is essential, not
the installation of the database on this machine. Therefore, a
normal planlet without any policy can be used that does not
define any non-functional location information at all. However,
handling data, e. g., export data, needs special considerations
on the database layer because also the data itself has to remain
in the EU. Thus, this concept allows a fine-grained definition
of requirements on different levels for different kinds of tasks.

On the other side, Management Annotation Policies attached
to elements in planlet fragments define in the AppliesTo-list for
which tasks the planlet ensures the Management Annotation
Policy. For example, the planlet shown in Figure 12 that
instantiates a new Ubuntu virtual machine on Amazon EC2
provides an optional policy that ensures that this task (executing
the Create-Annotation on the VM node) can be executed
in consideration of the attached policy. Thus, the planlet is
able to fulfill this policy for the instantiation of the VM if

ImportData ExportData 

DataHandling 

Figure 13. Management Annotation inheritance for data handling.

required by the DASM. As a result, the AppliesTo-list enables
binding non-functional capabilities to the tasks executed by the
planlet through attaching policies and linking them with the
corresponding Management Annotations. This enables a direct
binding of non-functional capabilities to management tasks.

B. Management Annotation Inheritance

Management Annotations are atomic entities that define
either structural or domain-specific management tasks as
explained in Section IV-B. However, this is not sufficient for
working with policies as it allows no abstract classification of
tasks. For example, the Data Location Policy attached to the
MySQL database as shown in Figure 11 needs to be processed
by all planlets having Management Annotations that deal with
data, e. g., planlets exporting data must ensure that they do
not store the backup at locations violating the policy. As the
complete set of annotations may be unknown in advance, we
need a mechanism to classify annotations of certain kinds of
tasks. In particular, there are Management Annotations of type
“ImportData” or “ExportData” as shown in Figure 7 that need
to fulfill the Data Location Policy, e. g., data to be imported or
exported must not be stored on servers outside the European
Union. Listing all these annotations in the AppliesTo-list of
the policy is not efficient. Thus, we extend the concept by
introducing inheritance as depicted in Figure 13: the ImportData-
and ExportData-Management Annotations inherit all properties
from the superclass annotation of type “DataHandling”. For
example, the Data Location Policy in Figure 11 specifies
that all Management Annotations having this superclass must
process the policy. This extension allows defining abstract tasks,
which can be bound to policies in a generic way. Thus, if the
framework processes a policy having this annotation, it ensures
that all planlets handling data take this Data Location Policy into
account. To achieve flexibility, we also allow multi-inheritance.

C. Policy Processing Modes and Matchmaking

Management Annotation Policies specify a processing mode
that defines how the topology policy has to be checked
during the matchmaking of DASM and the Annotated Topology
Fragments of candidate planlets. We introduce three processing
modes: (i) Type Equality, (ii) Language Specific, and (iii)
Type Specific. The processing mode defines the minimum
criterion that must be met to fulfill the topology policy. Thus,
the modes are ordered: from weak (Type Equality) to strong
(Type Specific). Every stronger criterion outvotes the weaker
criteria, i. e., if a topology policy defines processing mode Type
Equality, which cannot be fulfilled by any planlet but there is a
planlet fulfilling the policy for the Language Specific processing
mode, the topology policy is fulfilled by this planlet. Thus, if
a criterion of a topology policy cannot be met, the system tries
the next stronger criterion for this policy automatically.



26

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Type Equality: This processing mode defines that only
the types of topology policy and candidate planlet policy must
be equal. Thus, for each policy attached to an element in the
DASM there must be a policy of the same type attached to
the corresponding element in the candidate planlet’s Annotated
Topology Fragment. If the framework finds a planlet providing
a policy with compatible type, AppliesTo-Lists and Ignore-Lists
of both topology and planlet policy must be also compatible,
i. e., each Management Annotation contained in the AppliesTo-
List of the topology policy must be either (i) contained in the
AppliesTo-List of the planlet policy or (ii) the AppliesTo-List of
the planlet policy is empty and its Ignore-List does not contain
the corresponding annotation. This is required to ensure that
the planlet fulfills the policy for the desired tasks. Using this
processing mode is sufficient for policies that can express all
their requirements by a well-defined term that is used as type,
e. g., a No Connection To Internet Policy attached to a virtual
machine node is expressive enough to define the requirement.

2) Language Specific: Language specific processing means
that the topology policy must be processed by a dedicated plugin
that is responsible for the used language. For example, if a
policy is written in WS-Policy, there must be a corresponding
WS-Policy plugin that implements all the language-specific
logic. The language plugin gets a reference to the policy to be
checked, the whole DASM, the candidate planlet, and a mapping
of elements as input. The mapping defines which elements in
the topology correspond to elements in the candidate planlet’s
Annotated Topology Fragment if the policy can be fulfilled
by the planlet. The plugins are free to interpret their policy
language in any way. For example, if a certain language defines
a key-value format for defining policy requirements, the plugin
is allowed to compare these requirements with properties of the
corresponding fragment node. If requirements and properties are
compatible, the policy is fulfilled. Thus, there is no explicit need
that a policy exists in the Annotated Topology Fragment of the
candidate planlet at all. However, plugins must analyze to which
Management Annotations a topology policy is bound and have
to consider this information when they execute their language-
specific matchmaking logic to evaluate candidate planlets.

3) Type Specific: This processing mode is the most specific
one and bound to both policy language and policy type, i. e., if
there is a policy of type “Data Location Policy” written in “WS-
Policy” having this mode, there must be a plugin registered
for exactly that combination to process the policy in terms
of evaluating candidate planlets. Otherwise, the policy cannot
be fulfilled. If such a plugin exists, the processing is equal
to language specific: the plugin gets the same information as
input and decides if the candidate planlet fulfills the policy’s
requirements. This processing mode enables a very specific
processing of policies as the mode is bound to the policy type
directly. For example, if a Data Location Policy with region
EU is attached to a MySQLDB node that shall be created,
the policy applies to the Create-Annotation, and there are no
Policy-Aware Management Planlets available in the system that
have a compatible policy attached, the plugin may analyze the
stack the MySQL database shall be hosted on and recognizes
that the virtual machine below runs on Amazon’s EC2 with
region-property set to EU. In this case, the policy would be
fulfilled by a simple MySQLDB-Creation planlet that provides
no policy at all. This kind of processing enables complex logic
that can be only known by a specific type plugin.

VI. POLICY-AWARE PROVISIONING OF APPLICATIONS

In this section, we describe how the concept of Policy-Aware
Management Planlets is used to automate the provisioning
of applications in compliance with non-functional security
requirements specified on the execution of provisioning tasks.
The developer of the application manually creates an application
topology that models the application to be provisioned and
declares the desired security Management Annotation Policies.
Based on this model, the framework is able to automatically
generate a DASM that describes the application’s provisioning:
it employs a generic Automated Management Pattern that
annotates Create-Management Annotations to all elements in
the application topology that have to be provisioned without
changing the declared policies. Thus, the application topology
becomes a DASM by applying this generic Provisioning AMP
automatically, which can be executed on any application
topology as its Topology Transformation is independent from
individual structures. The resulting DASM is typically adapted
manually to configure the provisioning by adding additional
Management Annotations. For example, additional management
tasks such as importing data into a database are added. The
Provisioning AMP does not change the Management Annotation
Policies that are attached in the application topology. It neither
adds, nor changes, nor removes policies and attaches only
Create-Annotations. Therefore, the non-functional requirements
specified by the attached policies are not changed and originally
contained in the resulting DASM. Thus, the first management
task that considers the initial provisioning of the motivating
scenario is specified by the DASM shown in Figure 11, which
was created automatically by applying the Provisioning AMP.
As the AmazonEC2 nodes represent the lowest layer, these
nodes are not annotated by the AMP as this layer describes
infrastructure or platform services or physical hardware and,
therefore, already exists. The policy-aware provisioning of
this application is ensured by the Management Annotation
Policies attached to the elements in the DASM that must
be considered by the Management Planlets that execute the
Management Annotations they apply to. In addition, the planlets
directly create the corresponding instance model in the form
of the application’s ETG and copy all Management Annotation
Policies to the corresponding elements to ensure that further
management tasks also consider these policies.

VII. POLICY-AWARE MANAGEMENT OF APPLICATIONS

The Management Planlet Framework supports managing
applications by two different methods: (i) manual creation of
Desired Application State Models and (ii) applying Automated
Management Patterns to create DASMs automatically following
the pattern-based method described in Section IV-F [5]. Each
management task described in the motivating scenario is suited
for one of these approaches. To backup the database, the
DASM can be created manually as only a simple attachment
of an ExportData-Annotation is required to specify the task.
In contrast to this, updating the Apache Web Server is more
complex if downtime must be avoided. Therefore, we employ
the concept of Automated Management Patterns to specify
the annotations to be executed. In this section, we show how
both management tasks can be executed automatically using
the Management Planlet Framework while the non-functional
security requirements specified by the attached Management
Annotation Policies are considered by both approaches.



27

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(hostedOn) 

(Domain) 

(PHP) 

(ApachePHPServer2.2) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(refersTo) 

(hostedOn) 

(MySQLDB) 

(MySQLDBMS) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(SQLConnection) 

(hostedOn) (hostedOn) 

<Storage provider=“S3“/> 

 <Account>[…]</Account> 

 <Password>[…]</Password> 

 <Tables>[…]</Tables> 

 […] 

</Storage> 

Figure 14. DASM that describes the second management task of the motivating
scenario with manually attached ExportData-Management Annotation.

A. Manual Specification of Policy-Aware Management Tasks

The Management Planlet Framework supports creating De-
sired Application State Models manually, i. e., the administrator
attaches the management tasks to be performed in the form
of Management Annotations to the corresponding topology
elements in the DASM by hand (cf. Section IV-E). In the
motivating scenario, a backup of the application’s database
shall be made, which is a typical management task that can
be specified manually: only a simple ExportData-Management
Annotation has to be attached to the MySQLDB node and
configured in terms of the target storage. The resulting DASM
is shown in Figure 14. In our scenario, we specify in the
annotation that the data backup shall be stored in Amazon’s
Simple Storage Service “Amazon S3” [28], which is defined by
the annotation-specific content of the ExportData-Annotation.
Additional information for configuring the export task are also
provided, e. g., the tables that have to be exported and the
Amazon account that shall be used. All these information are
used by the planlet that executes the Management Annotation.
The corresponding Management Planlet must, in addition, fulfill
the Data Location Policy attached to the MySQL database
node that defines that all data handling tasks must consider
this policy (the details of the Data Location Policy were shown
in Figure 11). As the ExportData-Management Annotation
inherits from the DataHandling-Management Annotation, the
Management Planlet exporting the data must comply with this
policy. Therefore, the Management Planlet exporting the data
must also specify a Data Location Policy on the MySQLDB
node ensuring that the planlet is aware of storing the data not
outside the declared region—in this case, the European Union.

Export Data from MySQLDB Planlet 

Annotated Topology Fragment Workflow 

P 

State:   Instantiated 
DBName: * 
User:   * 
Password: * 
Endpoint: * 

(MySQLDB) 

Data Location Policy 

Type:  security.datalocation 

Language: TOSCA-Policy 

ProcessingMode:  TypeSpecific 

Optional: True 

 

<DataLocation> 

   <Region>EU</Region> 

</DataLocation> 

BoundTo: 

<Storage provider=“S3“/> 

Figure 15. Policy-Aware Management Planlet that exports data from a
MySQLDB node to an Amazon S3 storage located in the European Union.

The planlet shown in Figure 15 fulfills all these requirements.
It executes the ExportData-Management Annotation on the
MySQLDB node and ensures by the attached Data Location
Policy that the exported data remains in the European Union.
The shown planlet is able to export data to Amazon S3, which is
declared by the Export-Data Management Annotation. Thus, as
the annotation in the Desired Application State Model defines
the same storage service, the planlet is applicable and selects a
storage on Amazon S3 that is hosted on a physical server located
in the EU, which is defined by the policy. The matchmaking
of the Management Annotation’s specific content, here the S3
description, is based only on the main element’s name (here
“Storage”) and all attributes of this element (here “provider”).
Therefore, the annotation defined by the planlet matches the
annotation declared in the DASM shown in Figure 14.

Based on the manual creation of DASMs, administrators
are able to define the management tasks to be executed on a
very high level of abstraction. They only have to declare the
abstract Management Annotations on topology elements without
the need for detailed technical expertise of the underlying
management technologies. For example, the presented export
data task requires the administrator only to attach and configure
the annotation by defining the storage information and the tables
to be exported. All technical execution details are inferred
automatically by the framework through invoking the corre-
sponding Management Planlet. In addition, the Management
Planlet Framework automatically ensures that the execution
of Management Annotations complies with the non-functional
requirements. Thus, the administrator only defines Management
Annotations and does not have to care about the defined policies.



28

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Admin Update Transition Process Provisioning 

Provision component 
instance of new version 

Add new 
component instance 

to load balancer 

new 
component 

address 
Remove old 

component instance 
from load balancer 

old 
component 

address 

Decommission old 
component instance 

component 
identifier 

component 
configuration 

Access through 
load balancer 

Access through 
queue 

Load  
Balancer 

Figure 16. Abstract Update Transition Process modelled in BPMN [29].

B. Automated Specification of Policy-Aware Management Tasks

The Management Planlet Framework supports the pattern-
based method described in Section IV-F to automatically create
DASMs through applying Automated Management Patterns to
ETGs. The administrator only selects the pattern to be applied
and the pattern’s Topology Transformation attaches all manage-
ment tasks that have to be performed automatically in the form
of Management Annotations to the corresponding topology
elements in the DASM. To execute the third management task
of the motivating scenario—updating the Apache Web Server
to a new version without downtime—we employ this concept.
Therefore, we first (i) describe the pattern that is able to do
this update, (ii) show how this pattern can be implemented as
Automated Management Pattern, and (iii) show that all policies
are considered during the Management Plan generation.

Patterns are a well-established concept to document proven
solution expertise for problems that frequently occur in a certain
context in a generic and abstract manner. This enables capturing
the core of problem and solution expertise in an abstract
fashion that can be refined for individual use cases. In the
domain of Cloud Computing, patterns are of vital importance
to build, manage, and optimize IT. In this paper, we focus
on management patterns that describe abstract management
processes for typical problems in Cloud environments [30]. For
example, how to manage resiliency, elasticity, or the migration
of application components [26][29]. According to Christopher

Update Apache Web Server to Version 2.4 AMP 

Transformation Topology Fragment 

(ApachePHPServer2.2) 

     Textual Description 
ABC 

Figure 17. Automated Management Pattern that updates the Apache Web
Server from version 2.2 to version 2.4 without downtime.

Alexander, a pattern is a three-part rule that captures the
relation between (i) a certain context, (ii) a problem, and (iii)
a solution [31]. Following this definition, patterns provide a
suitable means to describe the execution of management tasks,
such as updating a Web Server without application downtime,
in consideration of a certain context that is constrained by
non-functional security requirements. Therefore, we automate
a management pattern to update the Apache Web Server from
version 2.2 to version 2.4 without downtime and make the
corresponding pattern implementation aware of policies.

The corresponding pattern is called Update Transition
Process Pattern [29] and originates from the Cloud Computing
pattern language developed by Fehling et al. [26][29][30]. The
question answered by this pattern is “How can application com-
ponents of a distributed application be updated seamlessly?”.
The context observed by the pattern is that during the lifetime
of an application, new versions of used middleware, operating
systems, or application components may become available. If
the application has to ensure high availability, the transition
time of updating a component from an old to a new version
shall be minimized to avoid downtime of individual application
components or the overall application. Thus, its intent is
updating an application component to a new version seamlessly
without downtime, i. e., the overall application’s functionality
is still available during and after the updating process. A
component shall, therefore, be updated transparently to the
overall system. Thus, the pattern fits exactly to our management
task of updating the Web Server while ensuring the application’s
availability. The pattern’s solution is depicted as BPMN [18]
process in Figure 16: an administrator triggers the update
transition process that first provisions a component instance of
the new version. The new component runs simultaneously with
the old application component. Afterwards, the load balancing
is switched to the new component instance of the new version.
This avoids downtime of the updated component. Finally, the
old application component is decommissioned.

To apply this abstract management pattern to our concrete
use case of updating an Apache Web Server, we automate its
abstract process by an Automated Management Pattern. The
corresponding AMP is shown in Figure 17. The pattern defines
by its topology fragment that it is only applicable to elements
of type “ApachePHPServer2.2”. The Topology Transformation
implements the management logic that is refined explicitly for
this individual use case, i. e., for migrating the Web Server from
version 2.2 to version 2.4. Thus, the transformation is capable
of transforming an input ETG that contains a node of type



29

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(Domain) 
(refersTo) 

(hostedOn) 

(MySQLDB) 

(MySQLDBMS) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(hostedOn) 

(hostedOn) 

(PHP) 

(ApachePHPServer2.2) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(SQLConnection) 

(hostedOn) 

(hostedOn) 

(PHP) 

(ApachePHPServer2.4) 

(Ubuntu12.04VM) 

(AmazonEC2) 

(hostedOn) 

(SQLConnection) 

(hostedOn) 

(refersTo) 

Figure 18. Desired Application State Model describing the Management Annotations to be executed for updating the Apache Web Server without downtime.

“ApachePHPServer2.2” to an output DASM that describes all
Management Annotations that have to be executed for replacing
this Web Server by the new version 2.4 without downtime.

The refined process is described in the following. To
update the Web Server without downtime, the old deployment
must remain active until the new deployment is completely
provisioned. Otherwise, during replacing the old installation,
the system would go down. As it is not possible to install two
Apache Web Servers on a single virtual machine that listen both
to the same port—in this case, the HTTP standard port 80—a
new virtual machine has to be created to install the new Web
Server on a different operating system. This is important as the
new installation must have exactly the configuration of the old
server. As the pattern is specialized for exactly that replacement
of Apache Web Servers, it is able to extract the configuration
of the old Web Server and to specify the configuration of the
new Web Server accordingly. Thus, the functional behaviour is
identical. As soon as the new installation is running, updating
the internet domain can be triggered. However, to prevent
downtime reliably in this step, the old installation must not
be decommissioned until the Domain Name System (DNS)
servers were updated with the new URL. Therefore, we employ
a DNS Propagation Checker that checks when all servers are
updated and the old installation can be terminated. All these
considerations are important to ensure correct operation.

The Topology Transformation of the corresponding Auto-
mated Management Pattern is implemented as follows. The
resulting DASM after applying the pattern is shown in Figure 18.
The pattern copies the whole stack hosting the Web Server
including all attached policies and replaces the Web Server
node by the new version. The new stack is annotated with
Create-Annotations to specify the nodes and relations that must
be created. All incoming and outgoing relations of the old
stack have to be destroyed and added to the nodes of the new
stack to redirect the relations, i. e., “refersTo” relations of the

domain and “SQLConnection” to the database. The old stack is
partially annotated with Destroy-Annotations: all nodes that are
hosted on the Web Server and the Web Server node itself must
be destroyed. Therefore, the PHP node and the Web Server
node are annotated with Destroy-Annotations. In addition, the
pattern analyzes the underlying stack of the Apache Web Server
to be updated and recognizes that the virtual machine has no
incoming or outgoing relations except its hostedOn relation to
AmazonEC2, i. e., the virtual machine is only used to host the
Web Server. Therefore, the pattern annotates also this node to be
destroyed as it creates a new virtual machine for the new Web
Server. If the node has any incoming relations, e. g., another
component is also hosted on this VM, the pattern would only
create a new virtual machine but not annotating the old VM to
be destroyed. To ensure that downtime is avoided during this
update, both stacks must be active until the domain is switched
completely to the new deployment. To achieve this, the Destroy-
Annotation and the Create-Annotation that are attached to the
“refersTo” relations must be processed concurrently. It is not
appropriate to employ one planlet that destroys the old “refersTo”
relation and another to create the new one as between these two
executions, the application would be not available. Therefore,
the transformation declares that these two annotations must be
executed concurrently, which is only possible using a single
planlet that executes both annotations. This planlet finishes
not until all DNS servers are updated with the new URL
and has the precondition that the old target node as well as
the new target node of the domain are running. As only this
planlet can be used for generating a complete plan (due to the
concurrency requirement specified on the two annotations), its
precondition avoids that the old stack is decommissioned before
the new stack is ready. Thus, the domain-switching Management
Planlet is executed before the planlets that decommission the
old stack. Similarly, the transformation declares that the Create-
Annotation on the new SQL connection must be executed before
the Create-Annotation of the new refersTo-relation, the Destroy-



30

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Annotation on the old SQL connection thereafter. The execution
of this DASM is completely policy-aware as the policies of the
old stack are copied completely to the new stack. Thus, each
provisioning task has to consider the respective policies. This
ensures that the non-functional security requirements are not
violated and that the new stack complies with all policies that
were ensured during the initial provisioning of the application.

By having a fine-grained description of the running ap-
plication and the management tasks to be performed in one
formal model, complex processing can be implemented using
Automated Management Patterns through traversing the graph.
Thus, every rule that would be considered by a manual execution
can be implemented in such Topology Transformations. We
showed how complex transformations can be implemented to
analyze the context in which the Management Annotations
are executed in Breitenbücher et al. [7]. However, some
management tasks may be too complex to be automatically
specified by an Automated Management Pattern completely.
For example, if the internal state of the application needs
to be considered, too. Therefore, a manual adaptation of the
resulting DASM may be required to ensure a complete and
correct execution of complex tasks. This is possible in Step 4 of
the framework’s pattern-based management method described in
Section IV-F. Following this method, Management Annotation
Policies can be declared at three points in time. Either (i)
the developer of the application defined the policies when
creating the initial application topology that was used by the
Provisioning AMP to provision the application (cf. Section VI),
(ii) policies are added by the AMP in step 3, or (iii) they are
declared manually on the DASM resulting from applying an
AMP in Step 4. The next section discusses this in detail.

C. Policy-Preserving versus Policy-Changing AMPs

In this section, we generally classify two basic kinds
of Automated Management Patterns in terms of handling
declared Management Annotation Policies: (i) Policy-Preserving
Automated Management Patterns and (ii) Policy-Changing
Automated Management Patterns. We explain both classes in
this section and provide examples to illustrate their differences.

The first class of Policy-Preserving Automated Management
Patterns does not change policies attached in the ETG at all
when generating DASMs, i. e., they neither add, nor modify,
nor remove attached policies. They only define tasks to be
executed by attaching Management Annotations and may
add new components or relations. As a result, they are not
aware of any policy at all: as they only add the management
tasks to be executed, all policies are ensured by the Policy-
Aware Management Planlets that execute the corresponding
Management Annotations to which the policies are applied. For
example, if there is a ”KeepAlive-Policy” attached to a topology
element that defines that the element never must be destroyed,
the policy applies to all Management Annotations that stop the
element in any form, i. e., the Stop-Management Annotation and
the Destroy-Management Annotation. This policy is ensured
automatically by the system through the executing planlets,
independently from the Management Annotations that are
added: even if a Destroy-Annotation is attached to the topology
element, the policy is never violated as there cannot exist a
Management Planlet that fulfills that policy for the Destroy-
Management Annotation. The reason lies, obviously, in the se-

mantics of policy and Destroy-Management Annotation, which
are contradicting: the policy forbids stopping or destroying
the element while the Destroy-Management Annotation defines
exactly that task. Thus, the Plan Generator cannot generate
the corresponding Management Plan. This indicates that at
least one policy is violated. As a result, if an AMP does not
change policies at all, it implicitly considers each policy through
the decoupling of specifying management tasks and executing
management tasks. Only the execution must be aware of the
policies, not the patterns that only specify tasks. Thus, as long
as Automated Management Patterns do not change policies,
the sole specification of Management Annotations and their
execution by planlets does not violate policies.

In contrast to this class, Policy-Changing Automated Man-
agement Patterns may change Management Annotation Policies
attached in the ETG, i. e., they may add, adapt, or remove
policies. For example, the Update Transition Process AMP
introduced in the previous section changes the policies in the
ETG as it copies the application stack including the attached
Management Annotation Policies. Thus, it adds not only
Management Annotations to be executed and new topology
elements to the DASM but also new policies. As a result,
applying this class of AMPs to an ETG changes the defined non-
functional requirements in Step 3 of the framework’s pattern-
based method described in Section IV-F. Therefore, depending
on the use case and the pattern to be applied, a manual check
and adaptation of the resulting DASM may be required in the
method’s following Step 4 to ensure a correct specification
of the management tasks to be executed and the changed
policies before the Management Plan gets generated in Step 5.
In addition, the administrator may even analyze the resulting
generated Management Plan in Step 6 for correcting problems
manually afterwards. However, to detect possible problems,
analyzing the DASM is more appropriate as this model describes
also the context in which the management tasks are executed [7].
In our motivating scenario, there is no problem to apply the
Update Transition Process Pattern as it does not modify the
policies attached to the original model. Thus, the non-functional
requirements defined in the original ETG are not changed as it
only attaches Destroy-Annotations to the original stack. Even
if those annotations violate a policy attached to this stack, e. g.,
a KeepAlive-Policy that is attached to the PHP application, this
policy is ensured as the plan generation will fail (similar as
described for Policy-Preserving AMPs). Attaching new policies
to the newly created stack containing the new Web Server node
does not change the previous non-functional semantics as the
same kind of policies are attached to a semantically equal stack
having the same functionality.

VIII. POLICY-AWARE MANAGEMENT FRAMEWORK

In this section, we describe how the presented approach
is realized in the used Management Planlet Framework [5].
Figure 19 shows the extended architecture of the framework
with the new integrated policy extension (gray background).

A. Architecture

The basic architecture of the Management Planlet Frame-
work consists of a Plan Generator that uses a Planlet Manager
to retrieve the planlets and their descriptions stored in a
Planlet Library. The Plan Generator has a planlet orchestrator



31

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application Management API 

Plan Generator 

Planlet Library 

Policy Manager Planlet Manager 

Type 
Plugin 1 

Type 
Plugin n 

… 
Type 

Plugin x 
Type 

Plugin y 
… 

Language Plugin 1 Language Plugin n 
… 

Pattern Manager 

Pattern Library 

Pattern Applier Workflow Engine 
ETG Discovery 

Framework 

Figure 19. Policy-Aware Management Framework architecture.

inside, which is responsible for scheduling planlets in the
right order. We extend this orchestrator by the integration of a
new component called Policy Manager that is responsible for
policy matchmaking and invoking the corresponding Language
Plugins or Type Plugins, respectively. Each planlet that is
analyzed by the orchestrator gets additionally checked if it
fulfills the attached policies by a simple call to this new API.
The integration is straight forward as the basic architecture of
the Management Planlet Framework was built in a modular
way. To execute the generated plans, a workflow engine is
employed. All generated workflows are deployed on this engine
to execute the implemented tasks fully automatically. To create
DASMs automatically for provisioning and management tasks,
the framework provides a pattern layer that consists of a Pattern
Library that is managed by a Pattern Manager component,
which is responsible for retrieving Automated Management
Patterns. Thereon, a component called Pattern Applier is
responsible to find the AMPs that are applicable to a certain
ETG and to invoke the pattern’s Topology Transformation to
generate the corresponding DASM.

B. Plan Generator Extension

The Plan Generator of the framework tries to find appropri-
ate Management Planlets that can be orchestrated to execute the
Management Annotations defined in the Desired Application
State Model. During this generation, a set of candidate planlets
is calculated for each state and the planner decides which of the
candidate planlets is applied next—as explained in Section IV-C.
This calculation is based on compatibility: a planlet is applicable
if each element in the planlet’s fragment can be mapped to a
compatible element in the Desired Application State Model.
This means, that all preconditions of the planlet are fulfilled and
that the management tasks that are implemented by the planlet
and expressed in the form of Management Annotations are also
specified in the topology. Details about this compatibility check
can be found in [5]. The calculation of potential candidate
planlets is extended by policy processing: if a Management
Planlet executes a Management Annotation in the DASM that
is bound to a Management Annotation Policy, i. e., that is
contained in the policy’s AppliesTo-list, the policy needs to be
processed as defined by the processing mode attribute and the
Management Annotations specified in its AppliesTo-list. This

is required to analyze if the candidate planlet fulfills all defined
requirements. How to deal with this processing mode attribute
during matchmaking is explained in the next section.

C. Language and Type plugins

The processing mode attribute of a Management Annotation
Policy decides if a language or type specific plugin has to assess
whether the policy can be fulfilled by a candidate planlet or not.
Plugins may need to pass information about the matchmaking
to the candidate planlet if it fulfills the policy’s requirement,
e. g., to configure it. Therefore, each plugin may return an
XML-document and a list containing the policy IDs that have
to be fulfilled. These are passed to the planlet via its input
message from the calling plan. This enables configuration if
optional policies provided by the planlet have to be fulfilled,
for example. This document is also linked with the id of the
fragment’s policy. Thus, the planlet is able to retrieve the policy
language- or type-specific information.

D. Lessons learned

In this section, we describe our experiences from the
implementation of Policy-Aware Management Planlets and Man-
agement Annotation Policies. A planlet providing additional
non-functional capabilities expressed in the form of attached
policies on elements contained in its fragment has to ensure
that the semantics of the policies are only fulfilled if explicitly
needed. This is important as the policy matchmaking is directed:
only policies of the application topology are considered by
the Plan Generator, not the policies of the planlet. Thus, if
a planlet provides an extending policy, e. g., a Frequent Data
Backup Policy, which exports data frequently from a database,
this additional functionality should be installed only if needed.
If the planlet is able to offer both modes, with and without
fulfilling the policy, the planlet should declare this policy as
optional. Therefore, the planlets get the mapping of elements in
the topology to the elements in its fragment as input. Based on
this mapping, the Policy-Aware Management Planlet is capable
of recognizing if a Management Annotation Policy is optional.

In many cases, extending planlets to Policy-Aware Manage-
ment Planlets is possible by only adding additional activities to
the original planlet workflow—especially for Guarding and



32

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Extending Policies: the Frequent Data Backup Policy and
the Secure Password Policy can be implemented by adding
activities that install the additional software or check the chosen
credentials. The actual process needs not to be modified. In
contrast to this, Configuring Policies often need to adapt the
original process. For example, the Data Location Policy may
influence the provisioning of a virtual machine. Thus, the
activity that creates this VM must be modified.

IX. EVALUATION

In this section, we evaluate the presented approach. We
prove the (i) feasibility, (ii) economics, (iii) analyze perfor-
mance and complexity, (iv) describe our prototypical imple-
mentation, and describe (v) how the approach can be extended.

A. Feasibility

To prove the feasibility of the approach, we evaluated the
framework in terms of the three kinds of Management Policies
discussed in Section II-D. We implemented planlets fulfilling
the policy examples that were used throughout the paper. To
prove the feasibility of Configuring Policies, we implemented
the planlet described in Figure 12 that creates a virtual machine
with an Ubuntu Linux operating system on Amazon EC2
complying with a Data Location Policy that defines that all data
must remain in the European Union. The planlet creates the
VM using the Amazon Web Services API and specifies that the
virtual machine shall be provisioned in the EU. This configures
the provisioning in a way that the VM is hosted on physical
servers located in states of the European Union. To prove the
feasibility of Guarding Policies, we defined a Secure Password
Policy attached to an Apache PHP Web Server to ensure that
username and password are strong enough. We implemented a
planlet that provisions this Web Server on Ubuntu complying
with this policy. Such a policy can be implemented by a planlet
in two different ways: (i) either the planlet requires username
and password as input data (which may be taken from properties
in the DASM or exposed to the input message of the generated
plan), then the planlet checks if the strength is strong enough
or (ii) the planlet sets the credentials with a high strength itself.
Both implementations guard the provisioning in a way, that the
password is strong enough. To prove the feasibility of Extending
Policies, we implemented a Frequent Data Backup Policy that
is attached to a MySQLDB node. The corresponding planlet
executes an additional bash script as cron job that frequently
backups the data as MySQL dump to an external storage. This
script execution may be seen as additional node hosted on the
operating system. Thus, it extends the application structurally
in order to fulfill a non-functional requirement. For all policy
definitions, we used the properties-based policy language shown
in the TOSCA specification [20].

The approach also enables defining complex non-functional
security requirements that occur in real enterprise systems.
This is enabled by the individual content field of Management
Policies. The field allows specifying any information about the
policy language- or type, e. g., complex system configuration
options and tuning parameters. As planlets that match such
a policy are built to process exactly the information stored
in the content field, the tight coupling of policies to the
planlets processing them enables the implementation of any
policy language and type. Thus, the corresponding planlets may

deal with any individual policy-specific semantics or syntax.
For example, if a security policy specifies a set of complex
system configuration files that must be taken into account
during the provisioning of a certain component, the planlets
complying with this policy expect these files and know how
to process them. This enables to integrate expert knowledge
about individual domains through defining own policy types
and the corresponding planlets that deal with them.

B. Economics

The economic goal of our approach is to lower operating
cost of provisioning and management. It is obvious that
automating IT operations in order to reduce manual effort
leads to a cost reduction in many cases. However, Brown
and Hellerstein [32] analyzed the automation of operational
processes and how this influences costs. They found that three
issues must be considered that counteract this reduction by
causing additional effort: (i) deploying and maintaining the
automation environment, (ii) structured inputs must be created
to use automation infrastructures, and (iii) potential errors in
automated processes must be detected and recovered, which
is considerably more complicated than for manual processes.
The presented approach tackles these issues. Planlets are
reusable building blocks for the generation of Management
Plans. They are developed by expert users of various domains
and provided to communities. Therefore, free accessible planlet
libraries enable continuous maintenance without the need for
individual effort. Of course, maintaining local management
infrastructure and the development of custom planlets for
special tasks causes additional effort, but this is a general
problem that cannot be solved generically. The second issue
of upfront-costs for creating structured input is reduced to a
minimum as there are tools for the modeling of application
topologies and policies and the discovery of ETGs: the TOSCA
modelling tool Winery [33] supports modelling of TOSCA-
based application topologies that can be used as import
format for our framework. Winery also supports modelling
and attaching policies to elements in the topology. As TOSCA
policies provide a content field to fill in any policy-related
information, Management Annotation Policies can be specified
using this field. Thus, to define declarative provisionings in the
form of application topologies, this tool eases the creation of
the corresponding models. To discover ETGs, we presented a
ETG Discovery Framework in Binz et al. [15]. This framework
enables discovering ETGs fully automatically. Therefore, only an
entry point of the application has to be specified, e. g., the URL
of the application. The framework discovers the corresponding
topology including all runtime information fully automatically.
The third issue of occurring errors is tackled implicitly by the
workflow technology: every planlet defines its own error and
compensation handling. Thus, errors are handled either locally
by planlets themselves or by the generated Management Plan,
which triggers the compensation of all executed planlets to
undo all operations for errors that cannot be handled.

C. Performance and Complexity

The performance of the approach is of vital importance as
the generation of Management Plans must be possible within
a few seconds to obtain Cloud properties such as scalability
or on-demand self-service. The employed Management Planlet



33

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Framework presented in Section IV uses a partial order planning
algorithm [34] for the generation of Management Plans [5].
As described by Bylander [35], the complexity of planning
varies from polynomial to PSPACE-complete, depending on the
preconditions, effects, and goals. The Management Framework
tackles this issue by introducing restrictions on the design of
planlets: it is forbidden to have multiple planlets providing the
same or overlapping functionality in the planlet library. For
example, it is forbidden to have two planlets installing a MySQL
database on an Ubuntu operating system that differ only in
the properties they set. This eliminates the non-deterministic
choices that have to be made during the plan generation in
terms of selecting planlets: each Management Annotation can be
processed by exactly one planlet. This decreases the complexity
to polynomial time [34]. Extending the framework by policies
must follow this restriction: if a Policy-Aware Management
Planlet implements a functionality that is provided already by an
existing planlet, the existing planlet has to be merged with the
new Policy-Aware Management Planlet. The new planlet must
also support the original functionality, which is trivial in most
cases as policies only deal with non-functional requirements but
do not change the original functionality (cf. Section VIII-D).
The added policies should be implemented and declared as
optional. The only difference is additional effort as calling
plugins might be necessary. In worst case, each Management
Annotation Policy in a DASM must be processed by one plugin.
As the number n of policies attached to elements in a DASM
is constant, the extension has no influence on the complexity.

D. Prototype

To validate the concept technically, we implemented the
approach on the basis of the Policy-Aware Management Frame-
work architecture presented in Section VIII. The prototype is
based on former implementations of the Management Planlet
Framework and, therefore, implemented in Java and uses OSGi
in order to provide a flexible and dynamic plugin system.
Management Planlets are implemented in the Business Process
Execution Language (BPEL) [17] whereas DASMs and Anno-
tated Topology Fragments of planlets are implemented using
an internal data model similar to the structure of TOSCA [20].
In our prototype extension, we extended this meta-model with
the possibility to attach Management Annotation Policies to
nodes and relations of topologies. The policies are provided
as XML files following the simple properties-based policy
language used in this paper. We use declarative OSGi services
to build the plugin system for language- and type-plugins, as
described in Section VIII-C. To prove the technical feasibility
of the conceptually evaluated policies described in Section V,
we implemented several policies by extending already existing
planlets to Policy-Aware Management Planlets. In addition,
we modified existing Automated Management Patterns to
consider attached policies. The successful implementation of
this prototype proves the technical feasibility.

E. Extensibility

As there are many different existing policy types and
languages, the presented approach must support extensibility.
The Management Planlet Framework (cf. Section IV) supports
creating own custom planlets that implement Management
Annotations for any conceivable management task. As the

approach presented in this paper relies on this concept, it
is possible to implement new policy types the same way.
The plugin-based architecture for language and type plugins
complements the planlet-based policy extension: if a new policy
type needs a dedicated type plugin for advanced processing,
the architecture allows installing new plugins that handle these
types. In addition, the architecture enables the integration of
any existing policy language as well as the development of
own languages. We successfully validated this criterion based
on the integration of WS-Policy. As WS-Policy has its own
type system in the form of assertions, the type attribute of the
Management Annotation Policy is not needed. In addition, the
created plugin retrieves the information about domain-specific
processing of assertions by extracting the policy-specific content
field, which defines this kind of information.

F. Limitations

The presented approach has some limitations that are
discussed in this section. First, the kinds of Management
Policies that are currently supported by the presented ap-
proach are limited to policies that can be considered by a
single Policy-Aware Management Planlet. For example, a
“MustExistOnlyOnce-Policy” is not possible using the presented
approach as this policy currently cannot be enforced by one
Management Planlet: planlets are only able to consider the
policies, elements, and properties in the DASM that directly
match their Annotated Topology Fragments. Thus, if there are
two MustExistOnlyOnce-Policies attached to elements in the
DASM, a Policy-Aware Management Planlet that creates one
element cannot be aware of these kinds of conflicting policies.
We plan to solve that issue be extending the matchmaking rules
of Policy-Aware Management Planlets that can be currently
defined only by the Annotated Topology Fragment, which is
sufficient for most policy types but not for all.

Second, the approach currently allows modelling conflicting
policies in DASMs: administrators as well as Automated Man-
agement Patterns may specify policies that are in conflict with
each other, i. e., they apply to the same Management Annotation
but specify conflicting requirements on the execution of this
annotation. Because the framework is of generic nature, it is
not able to detect these conflicts in DASMs at design time
as it is not aware of the semantics of the policies. If the
conflicting policies specify the processing mode Type Equality,
this is only a modelling issue and does not lead to policy
violations as a Policy-aware Management Planlet would need
to be found that executes this Management Annotation while
complying with both policies. However, as the policies are
in conflict, such a planlet cannot exist if it is implemented
correctly. Thus, the plan generation fails as no Policy-aware
Management Planlet can be found to execute the Management
Annotation while enforcing both conflicting policies. As a
result, the application’s policies are not violated as nothing
will be executed on the real running application. To ensure
this, a Policy-aware Management Planlet is not allowed to
specify conflicting policies on the Management Annotations
it executes—even not if they are declared as optional. If a
Management Annotation Policy is checked by a language or
type plugin, i. e., possibly a normal planlet that does not specify
policies at all is evaluated if it fulfills the topology policies for
a certain Management Annotation, the plugin is responsible
for analyzing also the other policies that are bound to the



34

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

corresponding Management Annotation. If the plugin cannot
guarantee that the policy it is responsible for is not in conflict
with the other declared policies for a certain candidate planlet,
it has to reject the planlet. Thus, plugins must be implemented
carefully. Especially the implementation of language plugins,
which typically do not understand the defined requirements and
only execute generic matchmaking operations on the language-
specific content of policies, must be very defensive: if there are
other policies associated with the same Management Annotation
that are not implemented in the same policy language, they
have to reject each candidate planlet as they cannot ensure
that the other policies are not in conflict with the policy it is
responsible for. Only if other policies are specified in the same
language, language plugins may be able to analyze them. But
this mainly depends on the policy language and its semantics.

Third, the presented approach currently provides a basic
framework that supports defining security policies on the
execution of provisioning as well as management tasks. This
requires an explicit specification of the (i) tasks to be per-
formed and the (ii) Management Annotation Policies that
must be considered by the corresponding tasks. Although
the Management Planlet Framework, in particular the concept
of Automated Management Patterns, enables specifying low-
level management tasks automatically, security issues must
be specified manually by developers and administrators by
declaring appropriate Management Annotation Policies on the
affected components, relations, and Management Annotations.
This requires security expertise and causes effort to apply well-
known security concepts and methodologies, e. g., for applying
security patterns [36], to individual applications using our
framework. In addition, Management Annotation Policies may
be specified that cannot be processed by the framework, i. e., no
capable planlet is available in the library. This leads to DASMs
that cannot be transformed into the corresponding, executable
Management Plan. We plan to tackle these issues in the future
by (i) supporting developers and administrators in expressing
security requirements as Management Annotation Policies
and (ii) employing the concept of Automated Management
Patterns to automatically attach policies and management tasks
to individual applications. Especially the latter one may be
a powerful way to enable secure management automation.
For example, automated migration patterns could directly
attach additional security policies to the components to be
migrated that specify possible geographic regions. This enables
capturing and automating (i) management expertise as well
as (ii) security expertise, e. g., by implementing Automated
Management Patterns that execute a sophisticated management
functionality while complying with certain laws.

X. RELATED WORK

There are several works focusing on the automated provi-
sioning and management of Cloud applications. In this section,
we describe the most related ones and compare them to our ap-
proach. The work of Eilam et al. [37] focuses on deployment of
applications by orchestrating low-level operation logic similarly
to planlets by so-called automation signatures. El Maghraoui et
al. [38] present a similar approach that orchestrates provisioning
operations provided by existing provisioning platforms and is,
thus, much more restricted than using planlets, which are able
to integrate any technology and system. Both works do not
consider non-functional requirements—especially not in the

form of explicitly attached policies, which are able to define
the tasks that must consider the policy. In contrast to both
works, Management Annotation Policies enable application
developers to bind policies directly to the abstract tasks that
must comply with the policy. Thus, Policy-aware Management
Planlets introduce an additional layer of abstraction in terms of
defining and processing non-functional security requirements.

Mietzner and Leymann [39] present an architecture for
a generic provisioning infrastructure based on Web Services
and workflow technology that can be used by application
providers to define provisioning flows for applications. These
flows invoke so-called Provisioning Services that provision
a certain component or resource. Policies can be used by
the provisioning flow to select the specified provisioning
services based on non-functional properties of the resource
to be provisioned, e. g., availability of the provisioned resource.
The general idea of implementing Provisioning Services is
similar to planlets. However, planlets allow a much more fine
grained differentiation between provisioning tasks, e. g., the
provisioning of a database and the following initial data import
are done by different planlets. Thus, policies can be bound
more specifically to tasks and allow, therefore, a more precise
definition of non-functional security requirements. In addition,
our approach supports also management of applications.

The Composite Application Framework (Cafe) [40] is an
approach to describe configurable composite service-oriented
Cloud applications that can be automatically provisioned
across different providers. It allows expressing non-functional
requirements in WS-Policy that can be matched to properties
of resources in an environment. However, these policies are
restricted to the selection of services and lack mechanisms
to configure, guard, or extend application provisioning and
management as enabled by our approach.

Mietzner et al. [41] present ProBus, a standards-based
extended enterprise service bus that is capable of policy-based
service and resource selection to optimize service selection
in dynamic environments. ProBus enables clients to submit
service invocation requests that include policies, to which
service providers need to comply with, in one message. They
show how these policies can be evaluated by ProBus and, in
addition, how policies can be used to define non-functional
requirements on stateful resources.

The CHAMPS System [42] focuses on Change Management
to modify IT systems and resources by processing so-called
Requests For Change (RFC) such as installation, upgrade, or
configuration requests. After receiving an RFC, the system
assesses the impact of the RFC on components and generates
a so-called Task Graph that is afterwards used to generate an
executable plan. The system can be used for initial provisioning
of composite applications, too. Although the system’s Plan
Generator considers policies and SLAs, the work does not
describe how the executed tasks have to process these artifacts.

Kirschnick et al. [43] present a system architecture and
framework that enables the provisioning of Cloud applica-
tions based on virtual infrastructure whereon the application
components get deployed. However, the framework does not
support non-functional requirements, is tightly coupled to
virtual machines, and lacks integrating various kinds of different
XaaS offerings. Thus, the system is not able to provision Cloud



35

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applications that consist of several XaaS offerings in compliance
with non-functional security requirements defined as policies.
In addition, the framework currently supports no management.

The DevOps community provides tooling to automate
configuration management of Cloud applications. To mention
the most important, Chef [44] and Puppet [45] are script-
based frameworks used to automate the installation and
configuration of software artifacts in distributed systems. The
DevOps community also provides additional tooling such as
Marionette Collective, ControlTier, and Capistrano used to
improve the orchestration capabilities on a higher level. The
frameworks are extensible in terms of adding new installation,
configuration, and—in general—management functionalities.
This enables to integrate management logic that considers
non-functional requirements. However, all these frameworks
focus on a deep technical level of management and do not
provide a means to express and integrate non-functional security
requirements on such a high level as enabled by Management
Annotation Policies and Policy-Aware Management Planlets.
The reusability in terms of managing different applications,
the interoperability between script-based and non-script-based
technologies as needed to provision and manage complex
composite Cloud applications, and the holistic integration of
different policy languages is not supported yet. Of course,
script-based frameworks can support the policies presented in
this paper directly implemented in the affected scripts.

The Topology and Orchestration Specification for Cloud
Applications (TOSCA) is a standard to describe composite
Cloud applications and their management [20]. It tackles
current challenges in Cloud Computing such as portability and
interoperability of Cloud applications, prevention of vendor
lock-in, and the automated provisioning and management of
applications [46][47]. TOSCA specifies an XML-based format
for describing Cloud applications as application topologies and
enables the management of applications through Management
Plans, which capture management knowledge in an executable
way. TOSCA provides a similar mechanism to attach policies
to nodes and relations in topologies but, however, only provides
a means to attach policies to the topology but lacks a detailed
description of their processing. To tackle this issue, we demon-
strate how non-functional requirements on the provisioning and
management of applications can be defined in TOSCA using
policies and propose a mechanism for automatic processing of
formal policy definitions in Waizenegger et al. [48]. However,
this approach is based on manually authoring Management
Plans which is time-consuming, complex, and error prone [7].

In Waizenegger et al. [49], we presented a framework
architecture for the provisioning and management of Cloud
services and applications based on Management Plans that
support processing non-functional security requirements in
the form of policies. However, the framework employs only
the concept of plans without stating how these plans have
to be created. This issue is tackled by the presented Policy-
Aware Management Planlets approach presented in this article
that enables a fully automated generation of policy-aware
Provisioning as well as Management Plans. We additionally
defined in Waizenegger et al. [49] different stages in the
lifecycle of applications where policies may be defined, the
layer of the topology to which the policy applies, and classified
fundamental effects of policies. Similarly to this article, policies

are attached to elements in topology models if they are targeted
to the corresponding element directly. In Waizenegger et al. [49],
we showed also how policies may be attached to the topology
itself to specify non-functional requirements that do not affect
only one single element. We plan to extend the Management
Planlet Framework to support these global policies, too.

In Breitenbücher et al. [22], we present an approach to
combine declarative and imperative provisioning of Cloud
applications based on a plan generator for Provisioning Plans,
which is based on a similar concept as planlets. The plan
generator is implemented in the open source TOSCA runtime
environment OpenTOSCA [50]. However, the plan generator cur-
rently supports only provisioning of TOSCA-based applications,
neither the management of applications nor non-functional
requirements in the form of Management Policies.

XI. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that enables to
automate the provisioning and management of composite
Cloud applications in compliance with non-functional security
requirements defined by policies. We extended the Management
Planlet Framework to support policy-aware provisioning and
management based on a certain kind of Management Policies
that enables binding non-functional security requirements
directly to the management tasks that must enforce them.
We introduced a new format for Management Policies that
are considered by Policy-aware Management Planlets during
the execution of management tasks. In addition, the extended
framework allows Cloud providers as well as application
developers to implement their own policy-aware management
logic in a flexible and reusable manner independently from
individual applications. The paper evaluates the presented
approach in terms of performance, feasibility, economics,
limitations, and extensibility. In addition, we implemented a
prototype that serves as a proof of concept of the presented
conceptual work. In future work, we will extend this concept by
a policy-aware preprocessing of topologies in order to increase
the reusability of planlets. This extension shall enable to define
global policies that are attached to the topology itself.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
CloudCycle (01MD11023) and by the Co.M.B. project of the
Deutsche Forschungsgemeinschaft (DFG) under the promo-
tional reference SP 448/27-1.

REFERENCES

[1] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in SECURWARE.
Xpert Publishing Services, August 2013, pp. 86–95.

[2] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in USITS, June 2003.

[3] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in Proc.
52th Photogrammetric Week, September 2009, pp. 3–12.

[4] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” University of California, Berkeley, Tech. Rep., 2009.

[5] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
Runtime Management of Composite Cloud Applications,” in CLOSER.
SciTePress, May 2013, pp. 475–482.



36

International Journal on Advances in Security, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated Cloud Application Provisioning: Interconnecting Service-
Centric and Script-Centric Management Technologies,” in CoopIS.
Springer, September 2013, pp. 130–148.

[7] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Context-Aware Cloud Application Management,” in CLOSER 2014.
SciTePress, April 2014, pp. 499–509.

[8] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Automating Cloud
Application Management Using Management Idioms,” in PATTERNS.
Xpert Publishing Services, May 2014, pp. 60–69.

[9] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and D. Schumm,
“Vino4TOSCA: A Visual Notation for Application Topologies based on
TOSCA,” in CoopIS. Springer, September 2012, pp. 416–424.

[10] Amazon Elastic Compute Cloud (Amazon EC2). [Online]. Available:
http;//www.aws.amazon.com/ec2

[11] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm, “For-
malizing the Cloud through Enterprise Topology Graphs,” in CLOUD.
IEEE, June 2012, pp. 742–749.

[12] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How to Adapt
Applications for the Cloud Environment,” Computing, vol. 95, pp. 493–
535, 2013.

[13] T. Binz, F. Leymann, A. Nowak, and D. Schumm, “Improving the
Manageability of Enterprise Topologies Through Segmentation, Graph
Transformation, and Analysis Strategies,” in EDOC, September 2012,
pp. 61–70.

[14] A. Nowak, T. Binz, F. Leymann, and N. Urbach, “Determining Power
Consumption of Business Processes and Their Activities to Enable Green
Business Process Reengineering,” in EDOC. IEEE, September 2013,
pp. 259–266.

[15] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “Automated
Discovery and Maintenance of Enterprise Topology Graphs,” in SOCA.
IEEE, December 2013, pp. 126–134.

[16] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Prentice Hall PTR, 2000.

[17] OASIS, Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, OASIS Std., April 2007.

[18] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011.

[19] A. Keller and R. Badonnel, “Automating the Provisioning of Application
Services with the BPEL4WS Workflow Language ,” in DSOM. Springer,
November 2004, pp. 15–27.

[20] OASIS, Topology and Orchestration Specification for Cloud Applications
Version 1.0, May 2013. [Online]. Available: http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

[21] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “BPMN4TOSCA:
A Domain-Specific Language to Model Management Plans for Compos-
ite Applications,” in Business Process Model and Notation. Springer,
September 2012, pp. 38–52.

[22] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and
J. Wettinger, “Combining Declarative and Imperative Cloud Application
Provisioning based on TOSCA,” in IC2E. IEEE, March 2014, pp.
87–96.

[23] R. Boutaba and I. Aib, “Policy-based Management: A Historical
Perspective,” Journal of Network and Systems Management, vol. 15,
no. 4, pp. 447–480, December 2007.

[24] R. Wies, “Using a Classification of Management Policies for Policy
Specification and Policy Transformation,” in IFIP/IEEE IM, June 1995,
pp. 44–56.

[25] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Wiley, 1996.

[26] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Verclas,
“Service Migration Patterns - Decision Support and Best Practices
for the Migration of Existing Service-based Applications to Cloud
Environments,” in SOCA. IEEE, December 2013, pp. 9–16.

[27] W. Han and C. Lei, “Survey Paper: A survey on policy languages in
network and security management,” Comput. Netw., vol. 56, no. 1, pp.
477–489, January 2012.

[28] Amazon Simple Storage Service (Amazon S3). [Online]. Available:
http;//www.aws.amazon.com/s3

[29] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, January 2014.

[30] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm, “Pattern-Based
Development and Management of Cloud Applications.” Future Internet,
vol. 4, no. 1, pp. 110–141, 2012.

[31] C. Alexander, The Timeless Way of Building. Oxford University Press,
1979.

[32] A. B. Brown and J. L. Hellerstein, “Reducing the cost of IT operations:
is automation always the answer?” in HOTOS. USENIX Association,
June 2005, pp. 12–12.

[33] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in ICSOC.
Springer, December 2013, pp. 700–704.

[34] D. S. Weld, “An Introduction to Least Commitment Planning,” AI
Magazine, vol. 15, no. 4, pp. 27–61, Winter 1994.

[35] T. Bylander, “Complexity Results for Planning,” in IJCAI. Morgan
Kaufmann, August 1991, pp. 274–279.

[36] A. V. Uzunov, E. B. Fernandez, and K. Falkner, “Securing distributed
systems using patterns: A survey,” Computers & Security, vol. 31, no. 5,
pp. 681–703, May 2012.

[37] T. Eilam, M. Elder, A. Konstantinou, and E. Snible, “Pattern-based
Composite Application Deployment,” in IM. IEEE, May 2011, pp.
217–224.

[38] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and A. V.
Konstantinou, “Model Driven Provisioning: Bridging The Gap Between
Declarative Object Models and Procedural Provisioning Tools,” in
Middleware. Springer, November 2006, pp. 404–423.

[39] R. Mietzner and F. Leymann, “Towards Provisioning the Cloud: On the
Usage of Multi-Granularity Flows and Services to Realize a Unified
Provisioning Infrastructure for SaaS Applications,” in SERVICES. IEEE,
July 2008, pp. 3–10.

[40] R. Mietzner, T. Unger, and F. Leymann, “Cafe: A Generic Configurable
Customizable Composite Cloud Application Framework,” in CoopIS.
Springer, November 2009, pp. 357–364.

[41] R. Mietzner, T. van Lessen, A. Wiese, M. Wieland, D. Karastoyanova,
and F. Leymann, “Virtualizing Services and Resources with ProBus:
The WS-Policy-Aware Service and Resource Bus,” in ICWS. IEEE,
July 2009, pp. 617–624.

[42] A. Keller, J. L. Hellerstein, J. L. Wolf, K. L. Wu, and V. Krishnan, “The
CHAMPS System: Change Management with Planning and Scheduling,”
in NOMS. IEEE, April 2004, pp. 395–408.

[43] J. Kirschnick, J. M. A. Calero, L. Wilcock, and N. Edwards, “Toward an
Architecture for the Automated Provisioning of Cloud Services,” Comm.
Mag., vol. 48, no. 12, pp. 124–131, December 2010.

[44] Opscode, Inc., “Chef Official Site,” 2012. [Online]. Available:
http://www.opscode.com/chef

[45] Puppet Labs, Inc., “Puppet Official Site,” 2012. [Online]. Available:
http://puppetlabs.com/puppet/what-is-puppet

[46] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable Cloud
Services Using TOSCA,” IEEE Internet Computing, vol. 16, no. 03, pp.
80–85, May 2012.

[47] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, TOSCA: Portable
Automated Deployment and Management of Cloud Applications, ser.
Advanced Web Services. Springer, January 2014, pp. 527–549.

[48] T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing,” in On the
Move to Meaningful Internet Systems: OTM 2013 Conferences. Springer,
September 2013, pp. 360–376.

[49] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, and F. Leymann,
“Towards a Policy-Framework for the Deployment and Management of
Cloud Services,” in SECURWARE. Xpert Publishing Services, August
2013, pp. 14–18.

[50] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications,” in ICSOC. Springer, December 2013, pp. 692–695.

All links were last followed on May 30, 2014.


