
A Secure Logging Framework with Focus on
Compliance

Felix von Eye, David Schmitz, and Wolfgang Hommel
Leibniz Supercomputing Centre, Munich Network Management Team, Garching n. Munich, Germany

Email:{voneye,schmitz,hommel}@lrz.de

Abstract—Handling log messages securely, for example, on
servers or embedded devices, has often relied on cryptographic
messages authentication codes (MACs) to ensure log file integrity:
Any modification or deletion of a log entry will invalidate the
MAC, making the tampering evident. However, organizational se-
curity requirements regarding log files have changed significantly
over the decades. For example, European privacy and personal
data protection laws mandate that certain information, such as
IP (internet protocol) addresses, must only be stored for a certain
retention period, typically seven days. Traditional log file security
measures, however, do not support the delayed deletion of partial
log message information for such compliance reasons. This article
presents SLOPPI (secure logging with privacy protection and
integrity), a three-tiered log management framework with focus
on integrity management and compliance as well as optional
support for encryption-based confidentiality of log messages.

Keywords-log file management; secure logging; compliance; log
message encryption; privacy by design.

I. INTRODUCTION

For the secure logging, von Eye et al. presented SLOPPI
[1] – a framework for secure logging with privacy protection
and integrity, which is extended in this article. This framework
helps to ensure that the log files, independent of the storage
format, fulfill the well-known goals of information technology
security:
• The log’s integrity must be ensured: Neither a malicious

administrator nor an attacker, who successfully has com-
promised a system, shall be able to delete or modify
existing, or insert bogus log entries.

• The log shall not violate compliance criteria. For exam-
ple, European data protection laws regulate the retention
of personal data, which includes, among many others,
user names and IP addresses. These restrictions also
apply to log entries according to several German courts’
verdicts that motivate the presented approach; details are
part of previous work [2].

• The confidentiality of log entries shall be safeguarded;
i. e., read access to log entries shall be confined to an
arbitrary set of users.

• The availability of log entries shall be made sure of.
The security of log files is a very important aspect in

the overall security concept of a service or device. Many
attacks or resource abuse cases can be detected by analyzing
log files as part of a forensics process, just like system or
service breakdowns. With the knowledge embedded in log
data, administrators and forensics experts are often able to

reconstruct the way an attacker was intruding the system or
the root cause of the system disaster.

Because of the concentrated information, the log data is
often a primary target of attackers once they have compro-
mised the system. On the one hand, an attacker could erase the
whole log file to cover up the traces. This a very efficient way
but it also provides a clear information that something went
wrong on the system, which most likely will arouse the system
administrator’s suspicion or trigger an automated alert. When
this happens, the administrator is able to detect the attack very
fast, even if not every detail can be reconstructed. On the other
hand, an attacker could change some of the log entries in a way
that the manipulation is not obvious. The approach presented
in this article focuses on the second scenario. In any way it
would be possible for an attacker to fully delete the log files,
which cannot be circumvented as long as the log file resides on
a fully compromised machine. Even if there is the possibility
to store the log files on an external system, such as a log server,
the attacker can be able to disturb the connection between the
system and the log server, e. g., by firewalling the connection,
once the system has been hacked and the attacker managed
to get administrator privileges. But beside this, there are also
a lot of systems, which cannot be connected to a central log
server, e. g., because of the mobility of the systems or when
the organization is too small to operate a dedicated central log
server.

This motivates the SLOPPI approach [1], which allows ad-
ministrators to protect their log files against unwanted changes,
while the deletion of log files, e. g., a regular log rotation, is
still possible. The SLOPPI architecture allows administrators
to have long time logs, while privacy related parts of the
log file can be deleted after a well-defined period of time.
In this article, the SLOPPI approach, which has substantially
been improved since its introduction in [1], is presented. The
primary limitation of the previous SLOPPI approach was, that
the deletion of log entries also deletes any other information
inside this log entry. So, it was not possible to keep parts of
the information, e. g., for statistical or diagnostic reasons. In
this paper we deal with this drawback and present an improved
and more detailed approach, which is now able to keep some
predefined parts of the information.

This work is motivated by the large-scale distributed envi-
ronment of the SASER-SIEGFRIED project (Safe and Secure
European Routing) [3], in which more than 50 project partners
design and implement network architectures and technologies

37

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for secure future networks. The project’s goal is to remedy
security vulnerabilities of today’s IP layer networks in the
2020 timeframe. Thereby, security mechanisms for future
networks are designed based on an analysis of the currently
predominant security problems on the IP layer, as well as
upcoming issues such as vendor-created loopholes and SDN-
based (software defined network) traffic anomaly detection.
The project focuses on inter-domain routing, and routing
decisions are based on security metrics that are part of log
entries sent by active network components to central network
management systems; therefore, the integrity of this data must
be protected, providing a use case that is similar to traditional
intra-organizational log file management applications.

The remainder of this article is structured as follows:
Section II introduces the terminology and notation that is used
throughout the article. In Section III, the related work and state
of the art as well as its influence on the design of SLOPPI are
discussed. SLOPPI’s architecture and workflows are presented
in-depth in Section IV. The process for verifying the integrity
of SLOPPI log files is specified in Section V. Before the ar-
ticle’s conclusion, Section VI analyzes the security properties
of SLOPPI.

II. TERMINOLOGY

In this article, a few terms and symbols are used to avoid
ambiguity. These symbols and terms have the following mean-
ing:
• In the special focus of this work is the untrusted device
U , which could be for example a web server or a Linux
system. As a matter of its regular operations, U produces
log data, which is saved in one or more log files. As
U is a system, which is not necessarily hardened in any
matter, it can be assumed that U may be compromised by
an attacker and therefore, the log data is not guaranteed
to be trustworthy, i. e., the security goals confidentiality,
integrity, and availability cannot reliably be achieved.
However, the SLOPPI approach can be used to ensure
the integrity and compliance of log data produced by U ,
making it reliable under this specific aspect.

• A trusted machine T . In any related work there is a need
for a separate machine T 6= U . The working assumption
in the related work is that T is secure, trustworthy, and
not under the control of an attacker at any point in time.
In the presented approach, T is not needed any more
as a fully-fledged computer system. To ensure a uniform
notation, T is also used in the following sections in the
meaning of a trusted storage for a security key, e. g., a
piece of paper that is written on with a pencil. As long as
this written paper cannot be read by an outside attacker,
it can be assumed as trusted enough. Certainly there are
also other solutions, for example, saving the key on a
USB memory device (universal serial bus), but in this
article the focus is not on the hardening of T because
offline and analogous solutions are sufficient.

• The verifier V . Related work often differentiates T and
V; V then is only responsible for verifying the integrity

and compliance of a log file or log stream. In this case,
T is only used to store the needed keys and V does not
have to be as trustworthy as T . Also in this case, T is
able to modify any log entry, while V is not.

These symbols are used for cryptographic operations:
• A strong cryptographic hash function H , which has to

be a one way function, i. e., a function, which is easy to
compute but hard to reverse, e. g., SHA-256(m) (Secure
Hash Algorithm) or Keccak.

• HMACk(m) (hash-based message authentication code).
The message authentication code of the message m using
the key k.

SLOPPI does not anticipate, which particular function
should be used for cryptographic functions; instead, they
should be chosen specifically based on each implementation’s
security requirements and constraints, such as available pro-
cessing power, system and data sensitivity, and induced storage
overhead.

Furthermore, without loss of generality, the terms log files,
log entries, and log messages are discerned as follows:
• A log file is an ordered set of log entries. The order is

implied by the order, in which log messages are received
by SLOPPI.

• In line-based logs, a log entry normally corresponds
to one line of the log file. Otherwise, a log entry
consists of all information, which is related to one
event. For example, on a typical Linux system, the
file /var/log/messages is a text-based log file and
each line therein is a log entry; log entries are written
in chronological order to this log file. For massively
parallel operations, the resulting order is determined by
the implementation of a syslog-style system service at
run-time based on criteria outside the scope of this article.
Log entries cannot be re-ordered once they have been
written to a log file in the SLOPPI architecture, which is
consistent with related work. Other log file formats, such
as the proprietary binary Microsoft Windows event log
format, can also be used with SLOPPI; for simplicity,
however, all the examples given in this article refer to
text-based log files with one log entry per line of text.

• Log messages are the payload of log entries; typically,
log messages are human-readable character strings that
are created by applications or system/device processes.
Besides a log message, a log entry includes metadata,
such as a timestamp and information about the log mes-
sage source. Log messages typically have an application-
specific structure of their own, which SLOPPI exploits
for its slicing technique as detailed below.

As shown in Figure 4, the SLOPPI approach uses several log
files, which are related to each other in the following way: The
master log Lm is the root of the SLOPPI data structure and
only used twice a day to first generate and to then close a new
integrity stream for the so-called daily log Ld. This log file Ld

is basically used to minimize the storage needs for the master
log Lm, which must never be deleted and therefore shall not

38

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

contain any personal data or otherwise potentially compliance-
offending content; otherwise, no complete verification of the
integrity of all log messages could be performed. Ld is kept
as long as necessary and contains a new integrity stream for
the application logs La. These logs, e. g., the access.log
or the error.log generated by an Apache web server
or the firewall.log created by a local firewall, are re-
started from scratch once per day and yield all information
generated by the related processes; they are extended by
integrity check data. Please note that other intervals than 24
hours are arbitrarily possible, but daily log file rotation are
most commonly used and the term is used here for its clarity.

After an arbitrarily specified retention time – seven days in
the SASER scenario – these logs, which contain privacy-law
protected data, have to be cleaned up or purged completely
because of legal constraints in Germany and various other
countries. It is important to mention that a simple deletion of
whole log files or log entries would also remove any informa-
tion about attempted intrusions and other attack sources. This
would cover an intruder, who could be detected by analyzing
the log files, so the log file should be analyzed periodically
before this automated deletion. Other time periods than full
days or a rotation that is based, e. g., on a maximum number
of log entries per log file, as well as other deletion periods
may be applied – but for the sake of simplicity daily logs
and a seven day deletion period are used for the remainder of
this article. This setup is also used in the SASER project and
currently recommended for IT services operated by European
providers.

Extending [1], this article presents details about how the
application logs can be handled with a fine-grained policy
that allows to keep as much information as needed arbi-
trarily longer than the mentioned seven days, while still
being compliant. We also discuss log message encryption to
ensure confidentiality and how SLOPPI can be used to secure
structured log messages, for example, in order to remove sub-
strings from log messages for privacy reasons, to serve as a
data source for business intelligence tools, and to facilitate the
visualization of security-related log entries.

III. RELATED WORK

With the exception of Section III-A, none of related work
offers a possibility to fulfill compliance as it is not possible to
delete log entries or parts thereof a posteriori. Complementary,
the approach summarized in Section III-A does not address the
integrity issues.

A. Privacy-enhancing log rotation

Metzger et al. presented an organization-wide concept for
privacy-enhancing log rotation in [4]. In this work, log entries
are deleted by log file rotation after a period of seven days,
which is a common retention period in Germany based on
several privacy-related verdicts. Based on surveys, Metzger
et al. identified more than 200 different types of log entry
sources that contain personal information in a typical higher
education data center. Although deleting log entries after

l0

s0

s1=H(s0)

s2=H(s1)

s3=H(s2)

s4=H(s3)

s5=H(s4)

l1

l2

l3

l4

HMACs (l0)
 0

HMACs (l1)
 0

HMACs (l2)
 0

HMACs (l3)
 0

HMACs (l4)
 0

Fig. 1. The basic idea behind Forward Integrity as suggested in [5].

seven days seems to be a simple solution, the authors discuss
the challenges of implementing and enforcing a strict data
retention policy in large-scale distributed environments.

B. Forward integrity

Bellare and Yee introduced the term Forward Integrity in
[5]. This approach is based on the combination of log entries
with message authentication codes (MACs). Once a new log
file is started, a secret s0 is generated on U , which has to be
sent in a secure way to a trusted T . This secret is necessary
to verify the integrity of a log file.

Once the first log entry l0 is written to the log file, the
HMAC of l0 based on the key s0 is calculated and also
written to the log file. To protect the secret s0, there is another
calculation of s1 = H(s0), which is the new secret for the
next log entry l1. To prevent that an attacker can easily create
or modify log entries, the old and already used secret key
for the MAC function is erased after the calculation securely.
Because of the characteristics of one-way functions, it is not
possible for an attacker to derive the previous key backwards
in maintainable time. Figure 1 shows the underlying idea.

In their approach, in order to verify the integrity of the
log file, V has to know the initial key to verify all entries
in sequential order. If the log entry and the MAC do not
correspond, the log file has been corrupted from this moment
on, and any subsequent entry is no longer trustworthy.

However, the strict use of forward integrity also prohibits
authorized changes to log entries; for example, if personal
data shall be removed from log entries after seven days, the
old MAC must be thrown away and a new MAC has to be
calculated. While this is not a big issue from a computational
complexity perspective, it means that the integrity of old log
entries may be violated during this rollover if U has meanwhile
been compromised.

C. Encrypted log files

Schneier and Kelsey developed a cryptographic scheme to
secure encrypted log files in [6]. They motivated the approach
for encrypting each log entry with the need of confidential
logging, e. g., in financial applications. Figure 2 shows the
process to save a new log entry. Any log entry Dj on U is
encrypted with the key Kj , which in turn is built from the
secret Aj (in this article sj) and an entry type Wj . This entry
type allows V to only verify predefined log entries. There is
also some more information stored in a log entry, namely Yj

39

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. The Schneier and Kelsey approach taken from [6].

Figure 4: Forward security with public verifiability.

entry could create arbitrary alternative entries which
would also appear correct.

Public key cryptography provides the ability to
separate signing from verification and encryption
from decryption. This section describes how the sign-
ing/verification separation can be used to create logs
which can be verified by anyone. We omit discussion
of creative applications of the encryption/decryption
separation, although several such applications are
possible, particularly when using identity based en-
cryption.

Bellare and Miner proposed a public key counter-
part to hash chains in [2] which could be used with
our simple system. Here we propose a system which
is perhaps less elegant, but which can be used with
any signature scheme, avoiding the uncertainty asso-
ciated with less established public key constructions.
Then we present an optimization which works with
any identity-based signature scheme.

Figure 4 shows the public key variant of Logcrypt.
A signature replaces the MAC, and we add a special
log meta-entry listing the next n public keys which
will be used for signing. Then the next n− 1 entries
can be described as follows (i ∈ (1..n− 1)):

Li = 〈logi, Sign(privatei, logi)〉
The last private key, privaten, is used to sign the

meta-entry listing the next n public keys.
More formally, the Logcrypt algorithm for

signature-based integrity protection is as follows:
Given

A public-key signature function
Sign(private,message)

A value n describing how many public/private
keypairs will be stored in memory.

Begin
Generate an initial random public/private key-

pair, (pub0, private0)
Store pub0 securely (generally, by sending it to

a separate machine)
Loop

Figure 5: Verifying entries in the public key scheme.

Create random keypairs
〈(pub1, private1)..(pubn, privaten)〉

Create the meta-entry listing the public
keys: meta = 〈pub1..pubn〉

Generate the signature on the meta-entry:
sig0 = Sign(private0,meta)

Securely delete private0. (pub0 may also be
removed).

Output 〈meta, sig0〉
Set i = 0
Loop

Increment i
If i == n, exit the inner loop
Wait for the next log entry: logi
Calculate sigi = Sign(privatei, logi)
Securely delete privatei. (pubi may also

be removed).
Output 〈logi, sigi〉

Set pub0 = pubn
Set private0 = privaten

Recall that the second principle listed as founda-
tional to Logcrypt’s security in section 4 is the ability
to validate a later log state using the state at an ear-
lier entry. Hash chains actually derive later secrets
from earlier secrets, even though all we need is val-
idation. Consequently, it suffices to sign the public
key that will be used at a later time using an ear-
lier key, then throw away the signing key to fulfill the
requirement that secrets be erased after they’re used.

Verification proceeds as follows:
Given

The initial public key pub0
A public-key signature verification function

V erify(pub, sig,message) which returns
true iff sig is a signature for message made
with pub

A list of log entries such that Li = 〈logi, sigi〉
Begin

Set i = 0
Loop

Set meta = logi
Abort unless V erify(pub0, sig0,meta) re-

turns true

Fig. 3. The Holt approach taken from [7].

and Zj , which are used to allow the verification of a log entry
without the need of decryption of Dj . Therefore, only T is
able to modify the log files.

However, this approach does not allow for the deletion
method of log entries or parts thereof because then the
verification would inevitably break.

D. Public key encryption

Holt used a public/private-key-based verification process
in his approach to allow a complete disjunction of T and
V in [7]. Therefore, a limited amount of public/private-key
pairs are generated. The public keys are stored in a meta-log
entry, which is signed with the first public key, which should
be erased afterwards securely. All other log entries are also
signed with the precomputed private keys. If there are no more
keys left, a new limited amount of public/private-key pairs are
generated.

The main benefit of this approach is that the verifier V
cannot modify any log entry because it only knows the public
keys, which can be used for verifying the signature but does
not allow any inference on the used private key.

E. Aggregated Signatures

In scenarios where disk space is the limiting factor it is
necessary that the signature, which protects each single log
entry, does not take much space. In all of the approaches
sketched above, the disk usage by signatures is within O(n),
where n is the total amount of log entries. To deal with a
more space-constrained scenario, Ma and Tsudik presented a
new signature scheme, which aggregates all signatures of the
log entries in [8]. This approach uses archiving so that the
necessary disk space amount is reduced to only O(1).

The main drawback of this approach is that a manipulation
of a single log entry would break the verification process,
yet the verifier is not able to determine, which (presumably
modified) entry causes the verification process to fail. As a
consequence, it is also not possible to delete or to modify
log entries, e. g., to remove personal data after reaching the
maximum retention time.

F. BAF

Yavuz and Ning specified how log entries can be secured
by using blind signatures in [9]. Their approach uses the log
entry combined with the actual number of the log entry. For
example, if the log entry Dn is the nth entry in the log file,
Dn is combined with the number n to prevent an attacker
from reordering the log entries. This result is hashed and
modified with the secret key (a, b) by using a simple addition
and multiplication modulo a large prime p. As in all other
approaches, the secret key is updated and the previous version
securely deleted.

The most interesting result of this approach is that a
verification is possible for a verifier V , while it is not possible
for V to modify any entry in the log file. This property is
normally only satisfied by public/private key schemes, which
are typically very expensive to compute.

IV. THE SLOPPI ARCHITECTURE AND WORKFLOWS

SLOPPI, as presented in [1], follows the classic client-
server architecture of well-known POSIX (Portable Operat-
ing System Interface) logging mechanisms, such as syslog-
ng and rsyslog. Any SLOPPI implementation therefore is a
continuously running process, which offers interfaces, such
as an application programming interface (API) and IPC (IP
code), TCP (Transmission Control Protocol) or UDP (User
Datagram Protocol) sockets, to receive new log messages from
various system services, applications, or remote servers. After
internal processing, log entries are stored in plain-text files
in the local file system, where they can be processed with
whichever log file viewing mechanism the local users are
familiar with; alternatively, log entries can be forwarded to
remote SLOPPI servers where they are treated in the same
manner. If the application log files make use of the optional
encryption, SLOPPI tools can be used to decrypt the log
entries using standard input and output channels, typically in
combination with POSIX pipes. Similar tools can be used to
strip any SLOPPI-specific information from log entries so any
other log file processing tools can be used for parsing and

40

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processing the application log files even if they are not aware
of the extensions brought by the SLOPPI data format.

As SLOPPI has been designed with compliance regulations
as its primary motivation, ensuring integrity and allowing
for log-file rotation without cryptographic re-keying are its
core functionality. In the following sections, first described
is how the master log, the daily log, and the application
log are intertwined to achieve these properties. Afterwards
follows a discussion of the various optional functionalities for
the application logs, e. g., the encryption of application log
messages.

A. The SLOPPI log file hierarchy

The analysis of the related work shows that there is no
solution yet that fulfills both necessary minimum requirements
for log files: integrity and compliance, where the latter requires
making changes to integrity-checked log entries once they
have reached a certain age. The SLOPPI approach combines
key operations from previous approaches in a new innovative
way to achieve both characteristics. As introduced in Sec-
tion II, a couple of types of log files, which are all handled
a bit differently, are used for the framework. They form the
following hierarchy as shown in Figure 4:
• The master log file is the root of the SLOPPI data format.

It is created only once and must not be deleted. If it
is deleted, e. g., by an attacker, integrity checking is no
longer possible.

• The daily log files are, as implied by their name, created
in a daily manner. Although other rollover periods could
be used, such as hourly or weekly, we refer to them as
daily logs for the sake of simplicity and because they
are a de-facto industry standard. Daily log files can be
deleted after a retention period, for which 7 days is the
standard setting; it is, however, recommended to delete
the affected application log files first.

• Application log files are the only log files, in which actual
payload log messages are stored – both the master log
and the daily logs only contain SLOPPI-specific meta-
information. There can be an arbitrary number of appli-
cation log files depending on how many files all the log
information should be scattered across. SLOPPI supports
the typical syslog-like distribution of log messages to log
files based on the originating host, application, log level,
and log message content in an administrator-configured
manner. While storing a log message in exactly one log
file is the usual mode of operation, the same log message
can be logged to multiple log files if desired, or thrown
away without being written to a file, and therefore without
influencing the integrity mechanism. As an alternative to
local log files, log entries can also be forwarded to remote
SLOPPI services, which treat them similarly to locally
logged messages; communication is secured using TLS
(Transport Layer Security) connections.

At the very core of SLOPPI, the master log file Lm has
to be secured. As it has only a few entries per day, it
can be protected using a public key scheme, e. g., RSA, to

protect the log entries, which is described in detail in the
upcoming Section IV-B. In the subsequent sections, the two
keys of a public key scheme are called signing key (ksign) and
authentication key (kauth).

Then the daily log file Ld is considered in Section IV-C.
Similar to the master log file, it only has very few entries
per day, but they already must be considered too many entries
for using public key schemes, so a symmetric key scheme is
certainly the best choice. Finally, application log file details
and options are presented in Section IV-D.

B. The SLOPPI Master Log File

As stated above, the master log file Lm contains important
data of the SLOPPI approach to protect the integrity of the
log files. To protect Lm, the following steps are necessary:

1) Log Initialization: Whenever a new master log is initial-
ized, U generates an authentication key (k1auth) and a signing
key (k1sign). These two keys are important to protect (using
k1sign) now and to verify (using k1auth) the log file later. As
the verification key should not be stored on U , it is sent
to T over a secure connection, e. g., a TLS connection. As
mentioned above, it is not necessary that T is a computer
system as k1auth could also written on a piece of paper by
the administrator. But mostly it could be assumed that T is
a specially secured and encrypted database. After sending the
authentication key, U deletes (k1auth) securely.
U can now initialize the master log file by saving the first

message STARTING LOG FILE in the log file as described
next. For this step, k1sign is the actually used secret. Important
is that the master log is normally generated only once per
SLOPPI instance.

2) Saving New Log Entries: Let m be the log message of
the log entry to be stored in the log file. As the master log
file has only one entry per day, it can be assumed that there is
enough time between saving the last entry and the actual one to
generate a new authentication/signing key pair (kn+1

auth, k
n+1
sign),

while knsign is the actual secret.
U now generates

m∗ = (timestamp,m, kn+1
auth)

and computes
e = Enckn

sign
(m∗).

The result e is the new log entry, which is written to the
log file. Immediately after calculating the encrypted result,
the keys knsign, kn+1

auth, which are not needed anymore, are
erased securely from the system. Now the master log file only
contains fully encrypted data and kn+1

sign is the secret for the
next log entry. The motivation for the data format used for m∗

is the following:
• The timestamp is used to verify the time, at which a new

event is logged in the master log. An abnormal high or
low rate of entries in a specific time interval can indicate
a system failure or an attack. To prevent any changes of
the timestamp, this is also part of the encrypted data. item

41

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

init init

init

Start day 1

START

Master Log

Stop day 1

Start day 2

Stop day 2

Start day 3

Stop day 3

..
.

..
.

Start app 1

START

Start app 2

Stop app 2

Stop app 1

END

Start app 1

START

Daily Log (day 2)

Start app 2

Stop app 1

Stop app 2

END

..
.

Log entry

START

Application 1 (day 1)

Log entry

...

END

Log entry

START

...

END

Log entry

START

...

END

init

init

init

close

close

close

close

Daily Log (day 1)

Application 2 (day 1)

Application 1 (day 2)

Fig. 4. Overview of all relevant log files.

The log message m has to be encrypted, to protect the
main content of the log entry.

• kn+1
auth is the verification key for the next log entry. This is

the application of the forward integrity approach, because
the necessary information to decrypt and to verify the
next step are all available if the previous verification and
decryption step is completed. As this is data very worthy
of protection, it is naturally part of the encrypted data.

For example, let the first log message be

m = STARTING LOG FILE

and the actual secret k1sign. After generating (k2auth, k
2
sign), U

now composes

m∗ = (1408096800,STARTING LOG FILE, k2auth)

and computes
e = Enck1

sign
(m∗)

= Enck1
sign

(1408096800,STARTING LOG FILE, k2auth),

which is written to the log file. Now, k1sign and k2auth are
deleted securely.

3) Closing the Log File: During regular SLOPPI operation,
there should not be the need to close the master log file. But
in case of a system restart, a serious failure, or in the case
where the storage requirement of the master log is too much
increasing, there can be the desire to restart the master log.

If the master log file has to be closed gracefully, the last
message CLOSING LOG FILE is saved into the log file. It
is important that in this case it is not necessary to generate
a new key pair and therefore, the next authentication key is
also irrelevant. To fulfill the data format defined above, it is
needed that the log entry consists the next authentication key,
which is set to an empty string.

4) Content of Log Messages: As Lm is used as a meta log,
which does not contain any application or system messages,
the content of the log messages m are now specified. As
mentioned before, the daily log is encrypted with a symmetric
crypto scheme. Every day a new daily log is initialized by the
system. The name and location of the created daily log is the
variable p1. Furthermore, the variable p2 is the first entry in Ld

and finally the variable p3 appoints the necessary key for the
log initialization step. m is then the concatenation of p1, p2,
and p3, e. g., /var/log/2014-08-15.log;STARTING
LOG FILE;VerySecretKey together with H(p1, p2, p3).

Because of the need to detect manipulations of Lm, it is
necessary that m also contains a hash value of p1, p2, and p3.
With the knowledge of H(p1, p2, p3) it is possible to detect
where the decryption process failed exactly.

C. The SLOPPI Daily Log File

The main reason to use the daily log is to reduce the storage
space requirements of the main log. It is quite unusual that
the main log is initialized for a second time if the system is
running normally. There are round about two entries per day,
which have to be stored over a long time. The daily log could
be deleted after all application logs mentioned in this specific
daily log are deleted. Depending on the amount of running
applications on a server it is not unusual that there is much
more than one application log used on a system.

1) Log Initialization: Every day a new daily log has to
be initialized if a daily log rotation is configured on the
system. Otherwise, another initialization interval is used for
starting a new daily log. At the beginning, U generates a
symmetric key ksym which is necessary for both, encryption
and verification. This key is the initial secret and has to stored
in a trusted space, e. g., on T . As the SLOPPI approach does
not need a separate T , the already existing Lm is used as a
trusted third party. As described above, it is unlikely that an

42

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attacker can get information out of Lm because this log file is
fully encrypted. If the attacker has already compromised the
system, no new log message can be trusted any longer and the
attacker is able to modify any computation step. Therefore,
it is secure to store the key inside of Lm. The key ksym is
now written together with the name and the path of the actual
log file. This information is combined with the first message
STARTING LOG FILE.

The actually used secret is now ksym. U can then
initialize the daily log file by saving the first message
STARTING LOG FILE in the log file as described next.

2) Saving New Log Entries: To encrypt the important
information of the daily log, a symmetric key scheme is used,
e. g., AES (Advanced Encryption Standard). In difference to
the master log, not all of the information stored in Ld can be
encrypted, because parts are needed in plain text during later
steps as detailed below.

Let (m,m′) be the message that has to be stored in the
log entry and kold

sym the actually used secret key. The precise
meaning of (m,m′) is defined below along with the log
message content.
U now randomly chooses a new secret key knew

sym. Because
of the use of symmetric key schemes, this step is not compu-
tationally expensive. Analogous to the master log processing,
an expended message is now generated by U , which has the
structure

m∗ = (timestamp,m, knew
sym, H(m′, (timestamp,m, knew

sym)))

. With this, the log entry

e = (m′,Enckold
sym

(m∗))

can be computed, which is written to the log file. The hash
value is stored for verification purposes, so it is possible to
detect the exact log entry where a manipulation took place.

Immediately after calculating the encrypted result, the key
kold
sym, which is not needed anymore, is erased securely from

the system. Now knew
sym is the secret for the next log entry. The

motivation for the data format used for m∗ is the following:

• The timestamp is used to verify the time when a new
event is logged in the daily log. An abnormal high or
low rate of entries in a specific time interval can indicate
a system failure or an attack. To prevent any changes of
the timestamp, this is also part of the encrypted data.

• The log message m has to be trivially encrypted, to
protect the main content of the log entry. Besides m, there
is also a part of information, which has to remain in plain
text to use them in the typical usage of the SLOPPI tools.

• knew
sym is the verification key for the next log entry. This is

the application of the forward integrity approach, because
the necessary information to decrypt and to verify the
next step are all available if the previous verification and
decryption step is completed. As this is a data very worthy
of protection, it again is naturally part of the encrypted
data.

3) Closing the Log File: If the daily log file has to be
closed, the last message CLOSING LOG FILE is saved. It
is important that in this case it is not necessary to generate
a new key pair and therefore, the next authentication key is
also irrelevant. To fulfill the data format defined above, it is
required that the log entry consists the next authentication
key, which is set to an empty string. This message, the file
name and location, the MAC of the entire log file, and the
last generated key are committed to be stored in the master
log.

4) Content of Log Messages: In the daily log, there are
five types of messages. In difference to the master log, which
contains only meta information, which is only interesting for
verification purpose, the daily log also contains information,
which is used in the daily use of the system. Therefore, these
parts of the contained information of a message have to remain
unencrypted. In the following, ’ ’ means an empty string of
zero bytes size.
• STARTING LOG FILE. This message only consists of

the string, which should be encrypted.

(m,m′) = (STARTING LOG FILE,′ ′).

• CLOSING LOG FILE. This message only consists of
the string, which should be encrypted.

(m,m′) = (CLOSING LOG FILE,′ ′).

• START APPLICATION LOG. This message contains
the timestamp when the application log was initialized
(this is in most cases the same timestamp, which is used
above for saving the log file), the file name, and location
of the application log. This information is saved in plain
text inside the daily log because it is needed to identify
the application logs, which are connected to the specific
daily log.
Furthermore, the message consists of the initialization
key, the first message, and the file name and location
of the application log in encrypted form. The encryption
step happens when the log entry is being saved to the
daily log. The initialization key of the application log is
saved in the daily log because the daily log is the trusted
third party T for the application log.
This leads to m = (START APPLICATION LOG, ini-
tialization key, first message, file name, location) and
m′ = (START APPLICATION LOG, timestamp, file
name, location).

• STOP APPLICATION LOG. Similar to the start mes-
sage, this message contains in plain text a timestamp, the
file name, and the location of the application log. The
encrypted parts, which are also encrypted when saving
the log entry, are the last key, the last message, and the
file name as well as the location of the application log.
This leads to m = (STOP APPLICATION LOG, last
key, last message, file name, location) and m′ =
(STOP APPLICATION LOG, timestamp, file name, lo-
cation).

43

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• ROTATING APPLICATION LOG. In case of a log ro-
tation procedure, it is necessary that the SLOPPI tool is
able to know, which new log file was previously protected
by the SLOPPI approach and which daily log this new log
file is assigned to. For this reason, the message contains
a timestamp and both file names, i. e., before and after a
rotation, in plain text. As in the previous message type,
there are – also for security reasons – the file names and
locations as parts of the cipher text.
This leads to m = (ROTATING APPLICATION LOG,
file name before, file name after) and m′ =
(ROTATING APPLICATION LOG, timestamp, file
name before, file name after).

It is important that all application logs, which have their
starting message in a daily log, have to write their stopping
message also to the same daily log. This is the reason why
some contents in the log file are still in plain text. Otherwise,
the logging engine would have to remember, which application
log is connected to which daily log. This also means that it is
possible that a daily log is still open when the next daily log
is initialized. The ROTATING APPLICATION LOG message
could be in later daily logs because the specifics of the log
rotation algorithm are not known and it could be that a log
rotation is performed only once a week.

D. The SLOPPI Application Log Files

In general, the application log files La can be protected by
any approach presented in Section III and are not a mandatory
part of the SLOPPI architecture. These log files can also be
deleted for compliance reasons. It is also possible to use log
rotation techniques to fulfill local data protection policies.
It is necessary to mention that any information about an
attacker, which is not detected during this period, will be lost
and cannot be recovered. But this is not a drawback of the
presented framework because this is necessary to fulfill the
data protection legislation especially in Europe or in Germany,
which mandates to erase any privacy protected data after seven
days. In scenarios where the log files can only be read after a
longer offline period, e. g., low power sensor-networks devices,
the period to delete log files should be set individually so an
administrator is able to analyze any log data before they are
deleted.

SLOPPI’s core components ensure that the essential require-
ments of secure logging are fulfilled: integrity and compliance.
However, in high-security environments, additional character-
istics are required, such as the confidentiality of application log
entries with selective deletion of personal data. In this section,
we present modular extensions to the SLOPPI architecture and
workflows to provide such additional functionality. Due to the
openness of SLOPPI’s architecture, arbitrary other modules
can also be implemented.

1) Application Log Message Encryption: In many cases
application log files should be in plain text to allow other
applications or human administrators to take a look into the
log files. However, in other cases it is appropriate to protect
the content of the log files from prying eyes.

In the basic SLOPPI approach, it is not required to encrypt
the log entries in the application log files explicitly. But
sometimes it becomes necessary that the application logs get
encrypted. For this, SLOPPI provides an extension, which
supports different encryption methods for the most common
scenarios as discussed below.

In general, any existing encryption algorithm may be used
for securing particular application logs. So, here the encryption
extension for SLOPPI is specified in an abstract way assuming
an encryption method using particular, respective secrets ksign
(encryption) and kauth (decryption) to secure a particular
application log La. For sure, ksign = kauth if symmetric
encryption scheme is used, which is generally recommended
due to the amount of data that is typically logged to application
logs.

Based on this assumption, there are still several different
options how to actually encrypt the respective application log
messages. These options must be bases upon the underlying
scenario; the most common ones are discussed in the follow-
ing:
• Sometimes different persons or groups are responsible for

the administration of a system or service. As this sharing
of responsibility mostly leads to more than one applica-
tion logs, in which the different groups are divided, it
is important to define, whether all application log files
using the same key pair for encryption or different ones
for each log file are chosen.

• Log messages in application logs can be very critical. For
example, in a bank it is possible that each money transfer
is also logged into the application log to prove that the
transfer succeeded or failed. Assume that in this case it
is insufficient if the log message is readable even for a
short period of time. So here is the requirement that each
log message is encrypted with a key, which is different
from the previous message as well as from the following
message.

• As SLOPPI should be runnable on nearly every system, it
is sometimes difficult to generate a new randomly chosen
key every time (especially in the case “one message, one
key”). For this scenario, SLOPPI also supports an auto-
derivation of the encryption key by using an appropriate
key derivation function. This function can, for example,
be based on Keccak or other algorithms that also support
the generation of arbitrary-length key material.

• In general, log file analysis should be done nearly in real
time to detect unusual events. For this it is not necessary
to take a look into the log file after a predefined period of
time, e. g., after the daily log rotation. If this is the case, it
is sufficient to analyze the log files, while the verification
process is running and so the log file encryption can
start, for example, with a randomly chosen key pair.
Otherwise, the verification and the log file analysis, i. e.,
the log file decryption, are different processes. In that
case, the decryption key has to be deduced by applying an
appropriate key derivation function. It is obvious that in
this case the initial secret has to be stored on T otherwise,

44

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

decryption would also possible for any attacker.

The encryption extension for SLOPPI supports any com-
bination of the described options above. Which options are
chosen in a specific scenario depends on the characteristics
of the application log file and environment used, e. g., the
number of log lines per day, the speed of adding of log lines in
maximum and in average, the computing power and memory
resources of the system versus the confidentiality in the face
of potential attackers for a day-period.

Even if the single key-pair option, i. e., for one or more log
files one key per day, is chosen, a potential attacker will not be
able to read any application log files of prior days, but he may
be able to read the log file of the current day, as the single
key pair is still accessible.

In any case, all necessary information about the choices
made has to be stored initially in the respective start applica-
tion log message in the daily log file. Therefore, the content
of the startup application log message has to be extended in
comparison to basic SLOPPI:

• m = (START APPLICATION LOG, initialization key,
first message, file name, location) has to be changed to
m = (START APPLICATION LOG, initialization key,
encryption method, initial key or derivation info, iteration
used?, chaining used?, first message, file name, location),
where encryption method gives some information about
the used encryption algorithm and also, which of the ex-
tensions above is used. initial key or derivation info is the
place, where the used (initial) decryption key is stored. If
this key is computable from previous information, the key
information is replaced by information about the used key
derivation function. The last two optional parts iteration
used and chaining used define information about parts of
the extensions described above.

• m′ = (START APPLICATION LOG, timestamp, file
name, location) does not require any changes.

All application log messages of the respective application
log file have to be encrypted according to the choices made.
Additionally, if the chaining mode was chosen, each newly
selected decryption key for the next application log entry has
to be concatenated with the proper message of the current
application log entry before this concatenation is encrypted
using the current encryption key. This leads to the following:

• applogentryi = Ei(decryptkeyi+1;msgi) if chaining is
used

• applogentryi = Ei(msgi) otherwise

2) Application Log Message Enrichment: Log messages
sent to SLOPPI can be parsed and enriched before being stored
in an application log file. This brings the following benefits:

• The application-specific structure of log messages can
be made explicit, for example, by marking data fields
containing personal data or specific error codes. This
simplifies processing SLOPPI application log files in log
management tools or business intelligence software, such
as Splunk.

• Recommendations on how the content of the log message
should be visualized can be added.

Given log message m of length n, c1, . . . , cn denotes the
individual characters that m is composed of. A slice is defined
as tuple 〈ci, cj〉 with i ≤ j and denotes the boundaries of
an arbitrary non-empty sub-string of m. Unique names are
assigned to slices and can be used to describe their semantics.
For example, if a network service’s log message contains the
IP address of a client, the resulting slice could be named
ipaddress. The exact boundaries for each slice in any log
message are determined by parsing rules. Typically, regular
expressions will be used to parse a log message in order
to determine the slice boundaries. If a parsing rule matches
the given log message, the slice name and boundaries are
appended to the log entry. For example, if the IPv4 address
10.31.33.7 is detected in a log message starting at ci with
i = 27, then the string @ipaddress:27-36 is appended to
the log entry.

In general, slices can be overlapping. For example, a whole
log message may be slice-tagged as service x’s error message,
while a sub-string may be tagged ipaddress. However, for
the personal data anonymization procedure discussed below,
care must be taken that the two types of used slices do
not overlap to ensure that one slice’s hash value does not
change when another slice is being modified. Otherwise,
the a-posteriori anonymization of log files would break the
verification procedure.

Slices are useful for two slightly different use cases: On
the one hand, the SLOPPI tools can be instructed to verify
and decrypt only selected slices; this allows for a fine-grained
access model where system administrators can be restricted to
which parts of single log file entries they are allowed to read
– this allows for a more detailed access management than the
traditional per-file or per-log-entry model found in most of
today’s implementations. On the other hand, slice names and
ranges can be fed to other log entry processing tools, such as
business intelligence software and log file visualization tools.
This not only saves the overhead of parsing the same log
message multiple times in different processing tools, but its
true power lies in that the slicing can be integrity-checked.
For example, it becomes obvious whether an IPv4 address
has been recognized as such by looking at the slice names;
compliance violations, such as not checking which parts of
log messages contain personal data that must be removed
after the maximum retention time become easy to spot for
an auditor. Also, administrators do not need to wait until the
maximum retention time has been reached to verify whether
an anonymization batch run will modify the correct parts of
the log messages.

E. Generalized Privacy Protection for the Application Logs

As introduced in the previous section, SLOPPI also provides
a semantic tagging of log entries. This can be used to identify
privacy-relevant data. With this knowledge it is possible to
anonymize these relevant parts of the log file, while the
remainder of the information can be stored untouched.

45

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In general a log message is only a string without any
semantics for the normal logging process. Because of that
the normal logging process is not able to differentiate privacy
relevant data. With SLOPPI and the application log message
enrichment extension, it is possible to give the logging process
the needed information to separate compliance sensitive data
from other text. As the goal is to enable the a-posteriori
anonymization of log files, the content of each log message is
split into two categories:
• The part of the log, which has to be anonymized later on.
• Everything else.
To perform the seperation between anonymized and non-

anonymized data, there has to defined a priori the exact log
format. For example, in the SSH (Secure Shell) log files,
the log entries are always in a uniformed format, e. g., on
a standard Debian web server there is always at the beginning
a timestamp, followed by the host name, the process name
and number and finally the log message, which contains the
authentication method, the user name and finally the source
IP address and the port. In this example, only the username
and the IP address is necessary to anonymize for fulfilling the
legislation boundaries. With the help of regular expressions,
the positions of this information can be found. In other
examples, this might be more complicated, but in general each
logging source has its own specified output format. If there
are to many mixed entries in a log file, there is always the
possibility to split this log file into more than one others.

As written above, for the protection of the application log
any approach of Section III can be used. In the following the
forward integrity approach is described; any other approach
can be handled analogous.

For the integrity protection, a MAC of each log entries
is used. This MAC would change if an anonymization is
performed afterwards and a verification would be impossible.
But with the knowledge of the relevant parts, it is possible to
calculate two MACs. The first is the original MAC with all
information, while the other MAC is calculated with already
anonymized parts of the log message.

These two MACs are appended accordingly to the log entry.
The verification process can now check both MAC values. If
no anonymization has been performed yet, the original MAC
can be used. Otherwise, the verification step uses the new
MAC. For this it is important that the SLOPPI anonymization
uses the same anonymization string every time. To ensure
human readability, i. e., administrators should know, which
parts of a log message have already been anonymized, a
placeholder replacement string, such as XXX or *** should
be used. For simple implementation, it needs to be of constant
length; this also avoids issues regarding the de-anonymization
success probability when using variable-length strings.

In general it is important to know, which log entry has been
anonymized at what time. Because an attacker could otherwise,
anonymize any log entry himself to cover up the traces. To
prevent this, SLOPPI generates a new log entry in the daily
log, which contains the message LOG ANONYMIZATION and
also the information, about which log file and which log

entries are being anonymized, e. g., all log entries between
the timestamps 1408010400 and 1408096800. To avoid race
conditions, this log entry is created after an anonymization
batch run has successfully finished.

F. Generalized Privacy Protection for the Application Logs
with Partial Encryption

Both extensions of sections IV-D1 and IV-E can be com-
bined to allow for on the one hand the partial deletion of log
entries, e. g., to support privacy for relevant data, and on the
other hand for partial encryption of log entries, simultaneously.
Assumed is an partial application log file La and its application
log messages being partitioned into different slices (i. e.,
tagged parts):
• Different slices of application log messages are – either

iteratively or in chained mode – to be hashed separately
as described in Section IV-E; this is done using multiple
initial hash secrets, which are being stored in the respec-
tive start application log message for the application log
file in the daily log file.

• Particular slices of application log messages can in addi-
tion be iteratively encrypted similar to IV-D1, but only for
the particular slice. Each slice is treated separately with
different encryption methods and secrets. Therefore, the
method identifier needs to be stored along with the initial
description key for each slice in the respective application
log message for the application log file in the daily log
file.

In sum, this requires the slicing of log messages along
with partial encryption of each slice and therefore adds some
overhead to the application and daily log files.

V. SLOPPI LOG ENTRY VERIFICATION PROCEDURE

To verify log entries, the initial master key is needed. Each
log entry in the master log is encrypted as Enckn

sign
(m∗) with

m∗ = (timestamp,m, kn+1
auth). To decrypt the message only

the authentication key is needed, which is stored during the log
file initialization step. After the first log entry is decrypted, the
authentication key to decrypt the second log entry is obtained
implicitly, and so on. The first occurrance of a log entry, which
cannot be decrypted gives proof that a manipulation of the
log files, which has been caused by an attacker or a malicious
administrator who has tried to blur his traces.

This verification step is to verify the master log and to
obtain the verification keys for the daily log. As the entries
in the daily log look like Encksym

(m∗) with the content
m∗ = (timestamp,m, knew

sym), the first entry could be de-
crypted by using the symmetric key stored in the master log.
The symmetric key for any other entries is in the message
payload of the previous log entry. As above in the master log,
it is not possible for an attacker to modify any log entry in
such a way that the encryption step works correctly.

A. Master Log: Verification of Log Messages

To verify an existing master log, it is necessary to use
the authentication key saved during the generation of the

46

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

log file. With this key it is possible to decrypt the first
entry, which leads to the next authentication key. This step
can be performed until the actual last message or the literal
CLOSING LOG FILE entry is reached. Because m consists
of the necessary information about the daily log files, it is
possible to verify any daily log that is still available. If a
daily log has already been deleted, then this daily log and
the connected application logs cannot be verified any more,
but it is still possible to use the subsequent log entries of
Lm. Regularly the master log file is not closed because it
is intended that the master log runs endlessly. Therefore, the
last timestamp has to be near the current timestamp, but the
derivation depends on the daily log scenario.

In the case of a failure, e. g., in the storage device, it
is possible that writing in the master log file is interrupted
suddenly. In this case, the last message of the master log is
not the CLOSING LOG FILE message and probably has a
somewhat out-dated timestamp, depending on the daily log
scenario. In this case, verification is only possible up until
the last timestamp just as if the master log had been closed
regularly and no new master log had been started.

B. Daily Log Verification of Log Messages

Because of the need to detect any manipulation of Lm, it
is necessary that e also contains a hash value of the message.
With the knowledge of this hash value it is possible to detect,
where the decryption process failed. To verify an existing daily
log, it is necessary to use the authentication key saved during
the generation of the log file. With this key it is possible
to decrypt the first entry, which in turn leads to the next
authentication key. This step can be performed until the actual
last message or the CLOSING LOG FILE entry is reached.
Because m consists of the necessary information about the
application log files, it is possible to verify any application
log that is still available. If an application log has already
been deleted, then this application log cannot be verified any
more, but it is still possible to use the subsequent log entries
of Ld.

In the case of a failure, e. g., in the storage device, it
is possible that writing in the daily log file is interrupted
suddenly. In this case, the last message of the daily log is
not the expected CLOSING LOG FILE message; it may also
have an out-dated timestamp. In this case, verification is only
possible until the last timestamp just as the daily log has been
closed regularly and no new daily log has been started.

Furthermore, the transfer of the data between the daily log
and the master log can fail. In this case the master log doesn’t
get the information that a daily log was initialized or was
closed. This leads to a point where the verification process
fails because the last secret keys are already deleted and so it
is impossible to recover them to verify the last log entry.

C. Application Log: Verification of Log Messages

The procedure for verifying application log entries heavily
depends on the options chosen for encryption. Basically, the

key material that is required for beginning with the verifi-
cation is part of the daily log. If the application log is not
encrypted, the verification is concerned only with checking the
application log’s integrity by calculating the hash values given
the current application log file line by line, and comparing
the result calculated during the verification process with the
values stored in the log file. Any mismatch is an indicator that
the system has been compromised after the timestamp of the
previous entry, i. e., the one before the offending line.

If the application log is additionally encrypted, there are
two verification methods. On the one hand, full verification
requires decrypting the application log file line by line as
the decryption key material required for the next line is
either based on the current line’s material (iterative mode) or
stored encrypted in the current log entry (chaining mode). An
application log file’s full verification is therefore O(n) with
n being the total number of lines in an application log file.
Full verification is successful when all hash values match and
the last line decrypts to yield the end application log line.
On the other hand, the partial, or basic, verification omits
any decryption steps. In other words, it just ensures that the
integrity-protecting hash values are correct. The advantage
of this approach is that basic verification can be performed
without supplying the decryption key. It therefore can be used
with automatisms not trusted enough to be provided with the
decryption password.

VI. SLOPPI SECURITY ANALYSIS

In the SLOPPI approach, the method authenticate-then-
encrypt is used to secure for example the daily log, as the the
message m is in a first step authenticated by a hash function
H and then both (m and H(m)) are encrypted. As Krawczyk
discovered, there are some problems by using authenticate-
then-encrypt, which makes them vulnerable against chosen
plaintext attacks [10]. But on the other side, by choosing the
right encryption methods (e. g., CBC (Cipher Block Chaining)
mode or stream ciphers) also the authenticate-then-encrypt
method is secure. This security consideration has to be taken
into account, if the SLOPPI framework is implemented.

Furthermore, it is possible to relinquish most of the calcu-
lated MACs by using authenticated encryption with associated
data cipher modes [11]. By using these cipher modes, only the
encryption step is necessary to perform to gain encryption and
also authentication of the messages. On the other side it has to
be evaluated, if the performance and memory needs of these
ciphers are comparable to traditional cryptographic schemes.

On the one hand it is not possible for an attacker to gain
information from the daily log or the master log as they are
both encrypted with well-known crypto schemes. On the other
hand it is not possible to delete any entry of the log files
because during the verification step, the decryption of the
entry would fail and the manipulation would become evident.
Furthermore, assuming proper implementation, any used key
is removed securely from memory immediately so no attacker
could restore it.

47

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The only possibility of an attacker is to be fast enough to
gain access to the system and to shut the logging mechanism
down before any log entry is written to the disk. This may
eventually happen, e. g., when the attacker performs a DoS
attack on the system before he is breaking in. However,
implementations of the logging service of the system are
able to prevent the system from this method of attack by
aggregating multiple identical events before writing them to
application log files; the same approach can be used for future
SLOPPI implementations.

The confidentiality of log messages is related to the feasi-
bility of unauthorized decryption. For SLOPPI, the following
aspects need to be considered:

• The master log file is strongly encrypted in any of the
operational modes described above, i. e., for the iterative
mode as well as the chaining mode, which is applied to
each individual application log file. The master log file
uses public/private key encryption and therefore secure
as long as either of both keys is kept out of an attacker’s
reach.

• The daily log file is also strongly encrypted in any of
the operational modes. However, it uses a symmetric
encryption scheme, which means its security relies on
generating high-quality random key material, which an
attacker must never see. Generating key material, e. g.,
by using pseudo-random number generators (PRNGs),
typically works well on systems with good entropy pools,
such as networked servers or interactively used machines.
However, especially embedded systems without entropy-
generating sensors may be bad at generating new key ma-
terial. In this case, manually planting an unique random
number seed that provides enough input for further key
derivation during the system’s estimated run-time before
system deployment is mandatory.

• In the basic SLOPPI operating mode, only iteratively se-
curely hashed key material is used. The initial hash secret
is saved in the respective opening daily log message in
the daily log. Therefore, the confidentiality of the daily
log file, which has been discussed above, is sufficient to
ensure the secrecy of this keying material.

• When SLOPPI is used to also encrypt log messages in
the application log files, these log files make use of the
same iterative or chained encryption:

– The initial decryption key km,d,1 is being stored
along with its initial hash secret in the respective
daily log message about opening the application log;
the confidentiality of the daily log protects this key
material.

– With each log entry i, i ≥ 1, in the application log,
the entry meta-data also contains the next iteration
of the decryption key km,d,i+1.

When using SLOPPI with application log file encryption,
using either iterative or chained key material generation de-
serves further discussion. The basis for both options is the
generation of new key material in the beginning; it depends

on the quality of the PRNG, similar to the daily log, which
has been discussed above. Furthermore, key material that
is no longer needed needs to be correctly and irrevocably
be erased from memory, i. e., after the first log message
iteration or after the application log file has been closed. The
confidentiality also depends on the strength and quality of the
used key derivation algorithm and its mode of operation, e. g.,
counter mode, feedback mode, or double-pipeline iteration
mode. Similar to encryption, many options are available and
SLOPPI does not prescribe, which one to use.

If SLOPPI is used without any iteration re-keying option,
then an attacker may be able to read plain text messages
that are already written to the application log file before
the attacker gained control of the system, but limited to the
particular application log file of the current day. For any other,
already closed application log files, i. e., those from earlier
days, the used key material should already have been erased
irrevocably from memory.

If the auto-iteration SLOPPI mode is used, which is based
on key-derivation functions to generate new key material
during re-keying, and the proper removal of no longer needed
key material from memory is ensured, then the attacker is
unable to access the plain text of the written application log
messages up until the current re-keying at the time of system
compromise.

Finally, if the chaining SLOPPI mode is used, i. e., new
key material is generated for each application log entry, the
quality of the achieved protection again is based on the quality
of the used PRNG and proper reliable removal of outdated
key material from memory. Attackers cannot gain access to
previously written log entries’ plain text either. Depending on
the cipher that is used, ideally both options only differ in the
amount of new key material that needs to be generated.

As the application log files can be deleted independent of
their encryption status – which is required to fulfill compliance
policies regarding retention time – without violating their
integrity status because the actual content of the application
log message is irrelevant for an integrity check, the mode of
encryption does not interfere with regular SLOPPI operations.

It must not be neglected that SLOPPI does not address the
availability issue of log files. Attackers can remove traces of
attacks by simply deleting log files. Although this leads to
an alarming situation, i. e., administrators can be informed
about missing, truncated, or integrity-violating files, SLOPPI
does not guarantee full traceability of all logged messages.
Other techniques, such as using write-only memory, would
be needed as this problem is all but impossible to fix in
software realistically, given today’s operating systems and their
potential vulnerabilities, i. e., even a write-once file system
could be accessed in a reading fashion, e. g., after system
reboot and re-parametrization by an attacker who gained
administrative privileges.

VII. CONCLUSION

SLOPPI is a log file management framework that supports
integrity-checking and confidentiality through encryption like

48

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

other approaches, but has a special focus on compliance.
Compliance with privacy and data protection acts can, at least
in Europe, only be achieved by limiting the retention time
of personal data, which may also be a part of log messages
written to log files. SLOPPI therefore supports the fine-grained
partial removal of log entries, while still ensuring the properly
working integrity-monitoring of the other logged data. For
example, German Internet service providers and any other
providers of Internet-based services are obliged to remove
personal data from log files after 7 days based on court verdicts
that have become effective. Using the SLOPPI approach, log
files older than the maximum personal data retention time can
be modified to have all personal data removed, while still
ensuring that the log file has not been tampered with otherwise.

In this article, we have presented the inner workings and
security analysis of SLOPPI in more detail than our previous
work [1] and specified two extensions to the original SLOPPI
architecture. First, we introduced the concept of slicing log
messages and use them for semantic tagging, which can also
be used in conjunction with external tools, such as business
intelligence applications, for a-posteriori removal of personal
data from log entries, and applying encryption for fine-grained
access management protecting read access to log file informa-
tion. Second, we presented the two options of iterations and
chaining to address re-keying for encryption application log
files, which were not part of the original SLOPPI specification.

To this extent, SLOPPI has several important functional
advantages over the previously state-of-the-art logging mecha-
nisms. However, they come with the inherent overhead of ad-
ditional cryptographic operations and, to a large extent, depend
on the quality of random numbers generated for constructing
key material, which can be a problem for low-interaction
systems without sufficient entropy-generating pools. As future
work on SLOPPI it is therefore planned to support adaptive
protection mechanisms that vary the strength of the used key
material depending on the sensitivity of the data it is applied
to. For example, stronger cryptography could be applied to
log message slices containing personal data, while trivial log
entries are only protected using weaker mechanisms.

ACKNOWLEDGMENT

Parts of this work has been funded by the German Ministry
of Education and Research (FKZ: 16BP12309). The authors

wish to thank the members of the Munich Network Man-
agement (MNM) Team for helpful comments on previous
versions of this article. The MNM-Team, directed by Prof.
Dr. Dieter Kranzlmüller and Prof. Dr. Heinz-Gerd Hegering,
is a group of researchers at Ludwig-Maximilians-Universität
München, Technische Universität München, the Universität
der Bundeswehr München, and the Leibniz Supercomputing
Centre of the Bavarian Academy of Sciences and Humanities.

REFERENCES

[1] F. von Eye, D. Schmitz, and W. Hommel, “SLOPPI – a framework
for secure logging with privacy protection and integrity,” in
ICIMP 2013, The Eighth International Conference on Internet
Monitoring and Protection, W. Dougherty and P. Dini, Eds. Roma,
Italia: IARIA, Jun. 2013, pp. 14–19. [Online]. Available: http://
www.thinkmind.org/download.php?articleid=icimp 2013 1 30 30021
[accessed: 2014-12-01]

[2] W. Hommel, S. Metzger, H. Reiser, and F. von Eye, “Log file man-
agement compliance and insider threat detection at higher education
institutions,” in Proceedings of the EUNIS’12 congress, Oct. 2012, pp.
33–42.

[3] M. Hoffmann, “The SASER-SIEGFRIED project website.” [Online].
Available: http://www.celtic-initiative.org/Projects/Celtic-Plus-Projects/
2011/SASER/SASER-b-Siegfried/saser-b-default.asp [accessed:
2014-12-01]

[4] S. Metzger, W. Hommel, and H. Reiser, “Migration gewachsener
Umgebungen auf ein zentrales, datenschutzorientiertes Log-
Management-System,” in Informatik 2011. Springer, 2011, pp.
1–6. [Online]. Available: http://www.user.tu-berlin.de/komm/CD/paper/
030322.pdf [accessed: 2014-12-01]

[5] M. Bellare and B. S. Yee, “Forward integrity for secure audit logs,” De-
partment of Computer Science and Engineering, University of California
at San Diego, Tech. Rep., Nov. 1997.

[6] B. Schneier and J. Kelsey, “Cryptographic support for secure logs on
untrusted machines,” in Proceedings of the 7th conference on USENIX
Security Symposium, vol. 7. Berkeley, CA, USA: USENIX Association,
Jan. 1998, pp. 53–62.

[7] J. E. Holt, “Logcrypt: forward security and public verification for secure
audit logs,” in ACSW Frontiers, ser. CRPIT, R. Buyya, T. Ma, R. Safavi-
Naini, C. Steketee, and W. Susilo, Eds., vol. 54. Australian Computer
Society, Jan. 2006.

[8] D. Ma and G. Tsudik, “A new approach to secure logging,” in ACM
Transactions on Storage, vol. 5, no. 1. New York, NY, USA: ACM,
Mar. 2009, pp. 2:1–2:21.

[9] A. A. Yavuz and P. Ning, “BAF: an efficient publicly verifiable secure
audit logging scheme for distributed systems,” in ACSAC, 2009, pp.
219–228.

[10] H. Krawczyk, “The order of encryption and authentication for protecting
communications (or: How secure is ssl?),” in Advances in Cryptology
CRYPTO 2001, ser. Lecture Notes in Computer Science, J. Kilian, Ed.
Springer Berlin Heidelberg, 2001, vol. 2139, pp. 310–331.

[11] C. S. Jutla, “Encryption modes with almost free message integrity,”
in Advances in Cryptology EUROCRYPT 2001, ser. Lecture Notes in
Computer Science, B. Pfitzmann, Ed. Springer Berlin Heidelberg, 2001,
vol. 2045, pp. 529–544.

49

International Journal on Advances in Security, vol 7 no 3 & 4, year 2014, http://www.iariajournals.org/security/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

