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Abstract—User-centricity subsumes new models of Internet con-
nectivity and resource sharing, which are based on collaborative
behaviors asking for cooperation strategies. On one hand, typical
incentives stimulating cooperation, based, e.g., on trust and
remuneration, require some level of information disclosure that
can be used to outline the user behavior. On the other hand,
disclosing such information can be considered as a privacy breach
keeping the users from being involved in certain interactions. In
this paper, we present a flexible privacy-preserving mechanism
trading privacy for trust-based and cost-based incentives. Firstly,
the proposed mechanism is validated theoretically through model
checking based analysis. Secondly, implementation issues are
discussed with respect to the design of ad-hoc solutions based on
a centralized reputation system and a distributed trust system.
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I. INTRODUCTION

Nowadays, user-driven services, like personal hotspot and
peer-to-peer, play a fundamental role in the reshaping of the
Internet value chain. The growing trend towards autonomic
user-centric architectures is moving the focus on the user expe-
rience, related needs, expectations, and attitude to cooperation.
One of the key factors behind the success of community-scale
user-centric initiatives is given by the user involvement as a
prosumer, i.e., an actor combining the roles of service producer
and consumer. Such an involvement can be guaranteed only by
taking into account several orthogonal aspects, including the
need for incentive mechanisms stimulating the willingness to
collaborate, the user perception of the trustworthiness of agents
and means supporting the community infrastructure, the major
issues related to information privacy and risk management
arising in a framework favoring the active participation of
unknown users.

In a recent work presented at SECURWARE 2014 [1],
a novel approach has been proposed to set up a flexible
and efficient cooperation infrastructure favoring collaborative
behaviors on the basis of specific user’s needs in terms of
social (e.g., personal sensibility to trust and privacy issues)
and economical (e.g., in terms of costs that can be afforded)
requirements. The objective of this work – which is a revised
and extended version of [1] partially based also on material
appeared in [2] – is to show that different dimensions of the
problem surveyed above, like trust, privacy, and cooperation
incentives, can be effectively balanced to fulfill all the user re-

quirements at the basis of an active involvement as a prosumer
in user-centric networks.

The first fundamental aspect governing any interaction in
user-centric networks is trust [3]. Establishing stable trust-
worthiness relations among unknown users is the objective of
trust and reputation systems [4]. Trust can be viewed as the
subjective belief by which an individual expects a given entity
to perform with success some activity on which individual’s
welfare depends. Reputation emerges implicitly or explicitly
in the community as an objective estimation about the level
of honesty, integrity, ability, and disposition of each user as
perceived by the other members of the community. It is quite
natural to rely on trust and reputation information to take
decisions about the opportunity to collaborate with certain
partners. To this aim, several explicit mechanisms providing
estimations of trust and reputation have been proposed in
the literature to stimulate and guide cooperation [5], [6],
among which we concentrate on those providing computa-
tional estimations of user’s trustworthiness. Basically, these
estimations work effectively as an incentive to collaborate if
they represent parameters influencing access to services at
favorable conditions, among which we include the service cost
as another important aspect affecting the perceived quality
of experience. In fact, remuneration is a widely used kind
of incentive stimulating cooperation [7], as very often sense
of community, synergy, and trust do not suffice to overcome
the limitations of obstacles like, e.g., selfishness and, even
worse, cheating, which represent threats keeping users from
being cooperative. Whenever combined with trust, remuner-
ation enables a virtuous circle for the proliferation of user-
centric services.

On the other hand, trust is a concept that may involve
and justify the disclosure of personally identifiable sensitive
information, which in general can be perceived as a dramatic
breach of privacy, thus playing a deterrent role when users
are getting involved in interactions. In practice, the lower
the attitude to expose sensitive information is, the higher the
probability of being untrusted when negotiating a service.
Trading privacy for trust is thus a way for balancing the
subjective value of what is revealed in exchange of what is
obtained [8].

These considerations motivate the need for a flexible coop-
eration model in the setting of user-centric networks. In the
following, we first comment on related work to emphasize
the kind of flexibility we would like to obtain with respect
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to classical models that integrate trust and privacy. Then, in
Section II we describe a novel cooperation model in which
privacy is managed and traded with trust. In Section III,
we analyze formally the proposed model, even through a
comparison with classical ones. This is done in the setting of
a real-world cooperation system for user-centric networks [9].
The aim is not only to show that a balanced tradeoff between
privacy and trust can be achieved, but also to emphasize
the impact of such a tradeoff upon other aspects – like the
service cost – that are in some relation with trust. Formal
modeling and analysis are based on automata theory and
model checking [10]. In Section IV, we discuss all the im-
plementation issues of the proposed approach. In particular,
the applicability of the cooperation model is shown under
two main practical scenarios. On one hand, we first discuss
a centralized reputation-based approach to the implementation
of the novel model of privacy management. This framework is
based on the presence of a trusted third party (TTP) collecting
information about every transaction completed. By combining
the subjective estimations on the trust towards each user, the
TTP makes them available to the community with the aim of
making explicit a collective notion of reputation, while keeping
the desired level of privacy for every user involved. On the
other hand, we show how to implement the same model in the
setting of distributed systems that cannot rely on TTP at run
time. In such a case, a trust system is implemented that is based
on user’s personal experience and, possibly, recommendations
provided by neighbors. Finally, some conclusions terminate the
paper in Section V.

A. Related Work

Trust and privacy represent two pillars for any social plat-
form aiming at offering resource and information sharing
among users [11]. Trading several different cooperation in-
centives stimulates honest behaviors while keeping users from
cheats and selfishness. For instance, it is well-known that
making trust and service cost mutual dependent is a winning
strategy in the setting of user-centric networks [9], [12], [13],
as also proved formally by means of formal methods, like
game theory and model checking [14]–[18]. Combining these
aspects also with user’s privacy is a challenging issue. As an
example, the unavoidable contrast between privacy and trust
is mitigated by the approach proposed in [19], where it is
shown that these two aspects can be traded by employing
a mechanism based on pseudonyms. In practice, users create
freely pseudonyms identified by the so-called crypto-id, i.e.,
the hash of the public key of a locally generated asymmetric
cryptography key pair. Then, in different environments, a user
can use different pseudonyms to carry out actions logged as
events signed with the private key of the chosen pseudonym.
If needed to acquire more reputation, several pseudonyms can
be linked together in order to augment the number of known
actions and potentially increase the trust in the linked entity.
However, in approaches such as this one the link is irrevocable.

Developing trust based schemes to enforce trustworthy
relations in anonymity networks is another active research
field (see, e.g., [20] and the references therein). Incentive

mechanisms are proposed in [21] to achieve a balanced tradeoff
between privacy and trust in the setting of data-centric ad-
hoc networks. In [22], such an interplay is formulated as
an optimization problem in which both privacy and trust are
expressed as metrics. In [23], trust towards an entity is used
to take decisions about the amount of sensitive information to
reveal to the entity. Further works on unlinkability [24] and
pseudonymity (see, e.g., [25], [26]) provide insights on the
tradeoff between privacy and trust.

A typical characteristic of the approaches proposed in the
literature is concerned with the incremental nature of privacy
disclosure. In fact, sensitive information linking is irrevocable
and, as a consequence, any privacy breach is definitive. Instead,
the approach proposed in this work aims at relaxing such a
condition.

We conclude the state-of-the-art presentation by citing two
practical systems that deal with privacy and trust management
in cooperative networks. Identity Mixer [27] allows users to
control and minimize the amount of personal data they have to
reveal in any access request. By selectively disclosing only the
information strictly needed for access, different transactions
performed by the same user become unlinkable, thus avoiding
tracking of users. U-Prove [28] provides a cryptographic plat-
form allowing users to minimally disclose certified information
during transactions. In particular, user credentials are generated
dynamically and encode only the attributes chosen by the
user in a way that makes different transactions unlinkable. In
both systems, differently from our proposal, unlinkability is a
semantic notion depending on the specific attributes involved
in the transactions. Moreover, no computational notion of trust
is explicitly employed.

As a specific contribution of our approach that makes it
different with respect to other methodologies, a collective
notion of trust is employed that ensures privacy through iden-
tity obfuscation and offers incentive mechanisms stimulating
honest, collaborative behaviors in user-centric networks.

II. MODELING PRIVACY MANAGEMENT

In a classical view of privacy, a user exposes (part of)
personal information in order to be trusted enough to get access
to the service of interest. In other words, privacy disclosure is
traded for the amount of reputation that the user may need to be
considered as a trustworthy partner in some kind of negotiation
in which, e.g., service cost may depend on trust. Typically,
once different pieces of sensitive information, say I1 and I2
(which may represent credentials, virtual identities, or simply
the proof of being the user involved in a transaction previously
conducted), are linked and exposed to be trusted by someone
else, then such a link is irrevocably released. In this view, we
say that the disclosure of sensitive information is incremental
along time.

In order to exemplify, as discussed in [19], I1 and I2
may identify two different transactions conducted by the user
under two different pseudonyms, each one revealing different
personal user data. The user is obviously able to show that
both I1 and I2 are associated with the same origin and, if
such a proof is provided, I1 and I2 become irrevocably linked
together.



18

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As opposite to the scenario discussed above, we envision
an alternative model of privacy release in which the link is
not definitive. This is achieved if, for each new transaction
conducted by the user, the amount of privacy disclosure is in-
dependent of the information released in previous interactions.
Such a flexibility would allow the user to tune the amount of
information to disclose in order to negotiate a transaction at
the desired level of privacy without taking care of previous
and future interactions. With respect to the example above,
we intend that once I1 and I2 are linked to complete a given
transaction, in a future interaction the same user can decide
to break such a connection and expose, e.g., only I1, with
the guarantee that I2 will be not associated with such an
interaction.

In order to make it possible such a revocation mechanism,
the idea consists of introducing some form of uncertainty
associated with the owners of specific actions. Let us explain
how to achieve such a condition by employing the virtual
identity framework of [19]. As mentioned above, a virtual
identity is represented by the crypto-id. The basic idea of
the independent model of privacy release is that trust and
transactions are mapped to pieces of the crypto-id, called
chunks, rather than to the crypto-id as a whole.

Consider, e.g., a typical handshake between Alice, who
issues a service request, and Bob, who offers the service.
Instead of revealing to be Alice, she accompanies the request
with a portion of her crypto-id identified by applying a bitmask
to the crypto-id through the bitwise AND operation. Therefore,
a chunk is a subset of bits of the crypto-id, of which we know
value and position. Amount and position of 1’s occurrences in
the bitmask are under Alice’s control.

The transaction is then identified by the chunk chosen by
Alice. Hence, trust values (and related variations due to the
feedback following the transaction execution) are not associ-
ated with Alice directly, but are related to the chunk of bits
extracted from Alice’s crypto-id through the chosen bitmask. In
general, the same chunk is potentially shared by other crypto-
ids belonging to several different users. In other interactions,
Alice may select different chunks of her crypto-id. Moreover,
she can also spend a set of chunks of her crypto-id in order
to exploit a combination of the trust associated with each of
these chunks. Thanks to the uncertainty relating chunks and
associated owners, every time Alice exposes a chunk to Bob
in order to negotiate a transaction, Bob cannot link the current
transaction to any of the previous transactions conducted (by
Alice or by other users) by using the same chunk or one of
its possible subsets or supersets.

Example 1. For the sake of presentation, consider a 8-bit
crypto-id, e.g., 10010101, and calculate the chunk revealing
the 2nd and 5th bits of the crypto-id. This is obtained through
the following bitwise operation:

10010101 (crypto-id)
AND 00010010 (bitmask)

= 00010000 (chunk)

Notice that the same bitmask identifies the same chunk if
applied to the crypto-id 00011100.

In the following, we say that a crypto-id K matches a given
chunk C if there exists a bitmask that, applied to K via the
bitwise AND operation, returns C (in this case, we sometimes
say also that C matches K). If two crypto-ids K1 and K2

coincide for the bit values identified by a certain bitmask,
then they both match the resulting chunk. In other words,
whenever the two users identified by K1 and K2 use such
a chunk, then they are indistinguishable from the viewpoint
of the other members of the community. When necessary, we
use the extended notation CB to identify a chunk resulting
from the application of bitmask B and the usual vector based
notation CB [i] (resp., B[i]) to denote the value of the i-th bit
of the chunk (resp., bitmask).

In practice, the chunk sharing principle discussed above
represents the basic mechanism enabling the form of identity
obfuscation needed by the independent model of privacy
release. Strictly speaking, the uncertainty relating chunks and
owners is not granted absolutely, as it may happen that a
chunk identifies univocally a crypto-id, especially whenever
the population is small. However, several solutions can be
applied to manage the transient phase during which the com-
munity is growing, e.g., by injecting fictitious crypto-ids until
the critical mass is reached. Hence, we can safely assume
that a deterministic matching between chunk and crypto-id is
statistically irrelevant.

An important effect of chunk sharing concerns trust and
reputation management. In fact, the trust t(C) towards a chunk
C represents a collective notion of the trust towards the set S
of users with crypto-id matching C. Hence, the approximation
with which t(C) represents the actual trustworthiness of the
user employing C in the current transaction depends on the size
(and composition) of S. Calculating correct trust estimations
by just knowing chunks that can identify several different users
is just one of the critical aspects. Another one is concerned
with the validation of the chunk exposed by the user in a
transaction, who is expected to prove to be a proper owner of
the chunk without actually revealing the related crypto-id.

While all these practical issues are discussed in Section IV,
in the next section we abstract away from any implementation
detail and we ask whether, in general, an independent model
of privacy release is worth to be considered with respect to
classical, incremental disclosure models. As we will see, an
answer to such a question can be provided by applying model
checking based formal methods.

III. FORMAL VERIFICATION

In order to estimate the validity of the independent model of
privacy release, in this section we propose a comparison with
an abstraction of standard approaches in which information
linking is irrevocable and privacy disclosure is incremental.
Such a comparison is based on the evaluation of metrics
that reveal how trading privacy for trust influences access to
services and related costs.

For this purpose, we employ quantitative formal methods,
thanks to which it is possible to estimate rigorously several
properties of the system of interest, prior to implementation.
The analysis is supported by the software tool PRISM [10],
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[29]–[31], which is a model checker encompassing all the
ingredients needed to model and verify our case study. More
precisely, through PRISM it is possible to build automatically
probabilistic models – like discrete-time Markov chains and
Markov decision processes – from state-based formal specifi-
cations. The tool supports also modeling of stochastic multi-
player games, in which nondeterministic choices are governed
by distinct players, thus enabling explicitly the verification of
different choice strategies. On the semantic models deriving
from formal descriptions, quantitative properties expressed in
probabilistic extensions of temporal logics can be verified
through model checking techniques.

The comparison is conducted by assuming that the two
models of privacy release are applied in the setting of a real-
world cooperation system [9], in which users providing ser-
vices, called requestees, and recipients of such services, called
requesters, are involved in a cooperation process balancing
trustworthiness of each participant with access to services and
related costs. In the following, we briefly describe the original
trust model and its relation with service remuneration [9].
Then, after introducing the modeling and verification assump-
tions, we discuss the analysis results.

A. Trust Model

Trust is a discrete metric with values ranging in the interval
[0, 50], such that null = 0, low = 10, med = 25, and high =
40. The trust Tij of user i towards credential j (which can be,
e.g., a crypto-id or an entity identity) is modeled abstractly as
follows:

Tij = α · trust ij + (1− α) · recsij (1)

Parameter α ∈ [0, 1] is the risk factor balancing personal
experience with recommendations by third parties. The trust
metric trust ij is the result of previous direct interactions of
i with j. Initially, trust ij is set to the dispositional trust of
i, denoted by dt i. After each positive interaction, trust ij is
incremented by a factor v. Parameter recsij is the average of
the trust metrics towards j recommended to i by other users.
For each service type, the service trust threshold st represents
the minimum trust required to negotiate the service.

B. Service Cost Model

The joint combination of trust and remuneration is imple-
mented by making the service cost function dependent on the
trust T of the requestee towards the requester credential. The
other main parameters are: Cmin , which is the minimum cost
asked by the requestee regardless of trust, Cmax , which is
the maximum cost asked to serve untrusted requests, and the
threshold values T ′ and T ′′, such that T ′′ < T ′.

The cost function proposed in [9] expresses linear depen-
dence between trust and cost:

C(T ) =

{
Cmin + Cmax−Cmin

T ′ · (T ′ − T ) if T < T ′

Cmin otherwise
(2)

In order to examine thoroughly the trust/cost tradeoff, we
consider two more functions approximating the linearity of the

relation between trust and cost. In particular, a simple one-step
function is as follows:

C(T ) =

{
Cmax if T < T ′

Cmin otherwise
(3)

while a possible two-steps function is as follows:

C(T ) =

{
Cmax if T < T ′′

Cmax/2 if T ′′ ≤ T < T ′

Cmin otherwise
(4)

C. Modeling Assumptions

Our objective is to compare the model of incremental release
of privacy (represented in the figures by the curves named inc)
with the model of independent release of privacy (represented
in the figures by the curves named ind ). For the sake of
uniformity, for both models we assume abstractly that privacy
is released (through the pseudonyms mechanism [19] and
through the chunk mechanism, respectively) as a percentage
of the total amount of sensitive information that the user may
disclose. Similarly, in every trust-based formula we consider
percentages of the trust involved.

The experiments are conducted by model checking several
configurations of the system against formulas expressed in
quantitative extensions of Computation Tree Logic [10]. For
instance, Figure 1 refers to one requester interacting with one
requestee with the aim of obtaining 10 services that can be
of three different types. The figure reports the results for the
best strategy, if one exists, allowing the requester to get access
to all the services requested by minimizing the total expected
cost (reported on the vertical axis) depending on the amount
of revealed sensitive information (reported on the horizontal
axis). The choice of the amount of privacy to spend for each
request is under the control of the requester. The choice of
the service type is either governed by the requester, or it is
probabilistic with uniform distribution (see the curves denoted
by prob in the figure). Requestee’s parameters are dt = med
and v = 5, as we assume that each transaction induces a
positive feedback. The three service types are characterized
by st1 = null and (2), st2 = low and (3), st3 = med and (4),
respectively. The service cost parameters are Cmin = 0,
Cmax = 10, T ′ = high , and T ′′ = med .

In order to focus on the difference between the two privacy
models whenever the choice of the service is under the control
of the requester, we also propose a sensitivity analysis with
respect to parameter dt , where we concentrate on the interval
of privacy values in which the previous experiment emphasizes
the gap between the two models, see Figure 2.

We complete the comparison with an experiment assuming
one requester and two requestees, which are chosen nondeter-
ministically by the requester. The number of issued requests
is 10, while we consider only the first type of service. The
analysis, reported in Figure 3, proposes the results obtained
by changing the service cost function. Requestee’s trust pa-
rameters are as follows: dt = med , st = null , α = 0.5.
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Figure 1. Trading cost for privacy.

D. Evaluation
We now comment on the obtained results, by first consider-

ing Figure 1, which reveals two interesting behaviors.
Firstly, if the choice of the service is under the control of

the requester, then the difference between the two models is
significant only for values of the privacy release higher than
70%. In order to interpret this result, we checked the best
requester’s strategy, which consists of choosing always the
service offering the best ratio trust/cost, i.e., the one using (2).
Whenever trust is high enough to apply the minimum cost, then
it turns out to be convenient to select also the other two service
types. According to this strategy, if the privacy disclosure is
below 70% it happens that trust does not reach the threshold
T ′. Therefore, as a consequence of (2), the relation between
trust and cost is always linear and the two privacy models
turn out to be equivalent from the economic standpoint. On
the other hand, if the requester is highly trustworthy, then
the cost to pay becomes constantly equal to the minimum
cost, meaning that the requester could invest less privacy to
obtain the same cost, thus revealing the advantages of the
independent model. In practice, independently of the privacy
model, it is economically convenient for the requester to
disclose the information needed to obtain rapidly the best cost.
Instead, for high levels of trust, it would be convenient for
requester’s privacy to reduce as much as possible the amount
of disclosed information. Whenever identity of the requester
is always fully disclosed, then the two models experience the
same performance.

Secondly, if the choice of the service is probabilistic, thus
modeling, e.g., a situation in which the requester may require
every type of service independently of their cost, then it is not
possible to satisfy all the requests if a minimum disclosure of
privacy is not guaranteed. However, such a minimum value is
considerably higher for the incremental model, in which case
at least an average privacy release of 92% is needed. Hence,
if the requester is somehow forced to require certain services,
then the independent model performs better.

The analysis of Figure 2 confirms the results above also

(a) Independent privacy release.

(b) Incremental privacy release.

Figure 2. Trading cost for privacy by varying dispositional trust.

by varying the dispositional trust of the requestee, which is a
parameter that does not affect the comparison between the two
models. Different results are instead obtained by studying the
role of the service cost function, as emphasized by the curves
of Figure 3, which show that when step functions are used,
the independent model is able to exploit better the intervals of
trust in which the service cost is constant.

In the previous experiments, priority is given to service cost
and to the average disclosure of privacy needed to optimize
such a cost. However, if cost is not a fundamental issue, then
the tradeoff of interest concerns trust and privacy. In order
to analyze such a tradeoff, we reformulate the experiment
of Figure 1 by focusing on the optimization of the average
percentage of privacy release needed to obtain 10 services
of a given type. The results are reported in Table I and
refer to the second and third service types, for which the
service trust threshold is low and med, respectively. Since
to obtain such services the requester must be trusted by the
requestee, we examine the tradeoff between such a trust and
requester’s privacy. For each of the two cases, the observed
values show that through the independent model we obtain
all the required services by disclosing much less privacy
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(a) Cost Equation 2.

(b) Cost Equation 3.

(c) Cost Equation 4.

Figure 3. Trading cost for privacy by varying cost function.

than through the incremental model. The related difference
is directly proportional to the trust threshold needed to obtain
the services.

IV. IMPLEMENTATION ISSUES

The independent model of privacy release is based on the
notion of virtual identity represented by means of the crypto-id,
which we assume to be calculated using a cryptographic hash

TABLE I. TRADING TRUST FOR PRIVACY: AVG % OF PRIVACY RELEASE.

service inc. ind.
type 2 (st2 = low) 38% 28%
type 3 (st3 = med) 92% 64%

function, like SHA-3, over the public key of an asymmetric
cryptography key pair generated by the user (see, e.g., [32]
for a survey on cryptographic primitives). As a notation, we
assume that (pku, sku) is the asymmetric crypto key pair
associated with user u, such that pku is publicly available and
hash(pku) represents the related crypto-id.

Whenever issuing a service request, Alice chooses a bitmask
that is applied to her crypto-id in order to extract the chunk
according to the mechanism explained in Section II. Then,
Alice sends to Bob a ciphertext (generated using Bob’s public
key) containing the chunk and a cryptographic proof for
the request demonstrating that the chunk exposed is actually
extracted from the crypto-id of the user issuing the request. In
the following, we propose two solutions for the generation of
such a proof that preserve anonymity of Alice’s crypto-id.

In a centralized scenario, we assume that crypto-ids are
stored in a non-public repository managed by a trusted, central
authority (CA). In this case, the cryptographic proof may
consist of a blind signature [33] obtained by Alice from the CA
prior using the chunk, as explained in the following and shown
in Figure 4. In the proposed protocol, (eA, dA) denotes an
asymmetric crypto key pair generated by Alice to implement
the blind signature.

Before issuing a service request associated with chunk C,
Alice signs (with her private key skA) a request to the CA
containing C and the encryption (using eA) of the hash of a
timestamp, (C, (hash(t))eA)skA

. The request is accompanied
by Alice’s identity.

Upon reception of the validation request from Alice, the
CA extracts C (using pkA) and checks its conformity through
the public key of Alice, by comparing C against the crypto-
id hash(pkA). Then, if such a check is successful, the CA
generates a blind signature including C and the encrypted
hashed timestamp, (C, (hash(t))eA)skCA . Notice that the CA
can neither guess the timestamp t, nor associate its hashed
value with Alice.

When receiving such a ciphertext, Alice strips away her
encryption using dA, thus leaving her with the CA signature
of C and of the hash of the timestamp, (C, (hash(t)))skCA .

The request sent to Bob includes C, the timestamp, and the
CA signature, (C, t, (C, (hash(t)))skCA

).
Hence, Bob can check the signature for validity, by com-

paring C and t against the content of the message signed
by the CA, and then forward the obtained information to the
CA, which verifies timestamp doublespending. The reason for
using a timestamp is to avoid unauthorized users employing
chunks signed by the CA, while the use of the blind signature
ensures Alice anonymity. Indeed, notice that the knowledge
of C does not allow neither Bob nor the CA to infer the
originating crypto-id and, therefore, the identity of Alice. More
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)pkCA
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(4)

(4) : (C, t, (C, (hash(t)))skCA)pkCA

(5)

(5) : t validity

Figure 4. Cryptographic proof of chunk C through the CA.

sophisticated blind signature schemes can be used, e.g., to
offer fairness [34], in order to revoke blindness in case of
suspicious behaviors by some chunk and, therefore, isolate
dishonest users.

Alternatively, zero-knowledge proofs can be applied on-the-
fly whenever we consider a distributed scenario that does not
involve communication with the CA during the transaction
lifetime. For instance, zero-knowledge sets and set member-
ship [35], [36] are proposed to decide the membership problem
x ∈ S by preserving as much privacy as possible about S (or
x). In particular, a zero-knowledge membership proof works
as follows. Let P(S) be a privacy-preserving token of a set S
(e.g., a certified commitment by the CA on the set S that does
not reveal any information about its constituting elements) and
x an element belonging to S. Whenever the verifier knows the
pair (P(S), x), the prover can convince the verifier in zero-
knowledge that x ∈ S without leaking anything about S to
the verifier. Membership encryption [37] is a cryptographic
technique extending membership proof in which:
• P(S) is generated from S and a secret key kS ;
• the encryption algorithm, called ME, takes as input x,
P(S), and the message m to encrypt;

• the decryption algorithm, called MD, requires the pair
(S, kS) and holding the membership x ∈ S to return
successfully m.

In our setting, x is represented by the chunk C used by Alice,
while S is given by the set of chunks committed by the CA
whenever Alice registers her crypto-id in the CA repository.
Hence, Bob plays the role of verifier whenever Alice exposes
chunk C and the certified token P(S). The handshake works
as illustrated in Figure 5.

Initially, Alice signs a request to the CA including the list
S of chunks she intends to use in future interactions (such a

Alice Bob

CA

-

�B
B
B
B
B
B
B
B
B
BBNB

B
B
B
B
B
B
B
B
BBM

(1)

(1) : (Alice, (S)skA
)pkCA

(2)

(2) : ((P(S))skCA , (kS)skCA)pkA

(3) and (5)

(3) : (C, (P(S))skCA)pkB

(4)

(4) : ME(C,P(S), t)
(5) : (t)pkB

Figure 5. Cryptographic proof of chunk C in zero-knowledge.

request can be renewed if Alice requires more chunks).
The CA verifies whether S is correct with respect to Alice’s

crypto-id, i.e., each of its elements matches the hash of the
public key of Alice. If this is the case, the CA generates the
privacy-preserving token P(S) and the secret key kS , and then
signs such a pair for Alice.

Afterwards, when issuing a request to Bob, Alice sends the
chosen chunk C, which is expected to belong to S, and the
certified token P(S).

Bob calculates ME(C,P(S), t), where t is a timestamp
chosen by Bob, and then asks Alice to extract successfully
t to prove that C ∈ S.

Finally, Alice computes MD(ME(C,P(S), t), S, kS), which
is equal to t if and only if C ∈ S. It is worth noticing that
the membership proof from membership encryption is non-
transferable, i.e., Bob cannot convince any third party that C ∈
S, thus ensuring the privacy of P(S).

Once Bob accepts a request accompanied by chunk C, he
must estimate trustworthiness towards C in order to negotiate
the service parameters. In the following, we propose a central-
ized reputation based approach and a distributed trust based
approach. To this aim, we assume to deal with a numeric,
totally ordered domain T for trust and reputation values and
that the evaluation feedback at the end of every transaction is
reported as a positive/negative variation.

A. Design of a Centralized Reputation System

The key feature of the proposed approach to privacy man-
agement is that any transaction is associated with portions,
called chunks, of the crypto-id representing the virtual identity.
The same chunk can be shared by different users, who decide
for each transaction the chunk size and whether to combine
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together chunks previously used. Hence, the relation among
chunks and related crypto-ids must be managed carefully in
order to estimate correctly the reputation of users.

For this purpose, the centralized reputation system we
propose is managed by the CA, which is in charge of two
main tasks:

1) management of the reputation of each crypto-id on the
basis of the feedback reported about the chunks that
match the crypto-id;

2) calculation of the reputation of the chunk spent in a
transaction on the basis of the reputations of the crypto-
ids matching the chunk.

Since in a limiting scenario a chunk could be a single bit, based
on such a granularity we assume that reputation is managed
at the bit level.

As far as the first task of the CA is concerned, whenever
at the end of a transaction a user transmits the feedback
concerning a chunk C, the CA is not able to infer from which
crypto-id C is actually originated. Hence, the CA distributes
the result v of the user evaluation among the bits of C for
every crypto-id matching C. More precisely, the bit reputation
variation is δ · v, where δ is a discounting factor in [0, 1]
proportional to the size of the chunk. On one hand, the role
of δ is to strengthen the relation between the amount of
sensitive information exposed by the user in a transaction and
the trustworthiness towards such a user. On the other hand,
δ mitigates the effect of the use of small chunks, as they
are shared by a larger number of users and, therefore, they
represent very roughly the users employing them.

Example 2. Consider four users with the following crypto-ids:

K1 : 10010100 K2 : 00010010
K3 : 01110111 K4 : 11011011

and an initial situation in which the vector of bit’s reputation is
repKi

= 00000000, for 1 ≤ i ≤ 4. If user 1 employs bitmask
01110000 for a transaction evaluated positively with v = 1
(and δ = 1), then, the update performed by the CA is repK1

=
01110000 and repK2 = 01110000, because the chunk used is
shared by users 1 and 2.

Then, if user 3 uses bitmask 00011100 and the feedback is
as above, we obtain the reputation changes repK1 = 01121100
and repK3 = 00011100.

Finally, if user 4 uses bitmask 00000111, then any feedback
is applied to (the first three bits of) K4 only.

As shown by the example, the choice of the chunk does
not ensure perfect privacy of the user with respect to the
CA. Similarly as discussed in Section II, the probability of an
unequivocal identification of the crypto-id by the CA depends
on the size of the community and of the chunk.

As far as the second task of the CA is concerned, the
calculation of the reputation of a chunk deals with the same
issues surveyed above. Whenever a user forwards to the CA a
chunk C in order to know the related reputation, the CA could
not be able to infer the identity of the originating crypto-id.
Thus, the reputation of C results from a combination (through
the arithmetic mean) of the reputations of such a chunk within
every crypto-id K matching C.

Let repK(C) be the reputation of chunk C within the
crypto-id K, which is calculated by summing up the reputa-
tions of the bits of K forming C. By default, repK(C) = 0 if
K does not match C. Moreover, letM(C) denote the number
of crypto-ids matching C. Then, the reputation of chunk C is:

1

M(C)
·
∑
K

repK(C) (5)

where the summation is over all the crypto-ids K registered
in the CA repository.

Example 3. With reference to the previous example, consider
a new transaction in which user 1 employs the bitmask
01110000. The resulting chunk is shared by users 1 and 2.
Hence, by using (5), its reputation is:

1
2 · ((1 + 1 + 2) + (1 + 1 + 1)) = 3.5

B. Design of a Distributed Trust System
Handling trust towards users by tracing the usage of (pos-

sibly shared) chunks is a hard task in the absence of a
centralized reputation system. To deal with this problem, in
order to estimate user’s trustworthiness we define a local trust
structure that allows any user offering a service to associate a
trust value with every chunk received to negotiate the service.
In particular, the proposed approach does not rely on the
knowledge of the list of crypto-ids.

Let C be the set of chunks with which the user has interacted
in completed transactions. The local trust structure is based
on the definition of a partially ordered set (poset, for short)
(C,≤) over set C with respect to a partial order ≤. We recall
that to define a poset, the binary relation ≤ must be reflexive,
antisymmetric, and transitive for the elements of C. In the rest
of the section, we call ≤ refinement operator, which is defined
as follows.

Definition 1 (Chunk refinement). Let n be the crypto-id size.
Given chunks CB , CB′ , we say that CB′ refines CB , denoted
CB ≤ CB′ , if and only if:
• for all 1 ≤ i ≤ n: B[i] ≤ B′[i];
• for all 1 ≤ i ≤ n: if B[i] = 1 then CB [i] = CB′ [i].

Notice that if CB ≤ CB′ then B is a submask of B′ and
the information exposed by CB′ includes that revealed by CB .
The intuition is that if two chunks are related through ≤ then
they could be originated from the same crypto-id.

As we will see, maintaining the poset structure provides
the means to approximate the trust towards any crypto-id
by employing the trust related to the potential constituting
chunks. Each element of the poset (C,≤) is labeled by a value
of the trust domain T . Such a value represents the trust of
the user towards the related chunk resulting from interactions
associated with such a chunk. Formally, we denote such an
extended structure with (C,≤, t), where t : C → T defines
the mapping from chunks to trust values. Initially, for every
unknown chunk C with which the user interacts for the first
time, we assume t(C) to be equal to the dispositional trust
dt of the user, which represents the attitude to cooperate with
unknown users.
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C4 : 00010000
��1

PPi
C6 : 00010000 C7 : 00000000

C5 : 00000000
��1

PPi

C2 : 00011000
��1

PPi
C3 : 00000100

C1 : 00011000

C1 : 45 C2 : 30 C3 : 35 C4 : 15 C5 : 25 C6 : 10 C7 : 5

Figure 6. Example of a local trust structure.

Example 4. Figure 6, which in the following we use as running
example, shows the graphical representation of a poset, where,
e.g., C6 ≤ C4 ≤ C2 ≤ C1, as well as C7 ≤ C5 ≤ C3, while,
e.g., C6 and C3 are not related with each other. Moreover,
the figure reports also the trust associated with each known
chunk at a given instant of time, by assuming the trust domain
[0, 50].

To emphasize the nature of the independent model of privacy
release, notice that even if Alice invested chunk C1 in a past
interaction with Bob, whose reference trust structure is that
depicted in Figure 6, then in the current transaction she may
use chunk C2 only, while Bob cannot infer the link between
the user of the past interaction associated with C1 and the
current one. As a side effect, notice also that all the users
with a crypto-id matching C2 actually benefit from the trust
(or pay the mistrust) associated with C2.

The obfuscation mechanism illustrated in the example above
respects the requirements of the independent model of privacy
release discussed in Section II.

Similarly as done in the previous section, we now illustrate
how to manage the trust t(C) towards the chunk C on the
basis of the feedback v following any transaction associated
with C. In particular, the trust variation applied to t(C) is
simply δ · v, where δ is the discounting factor discussed in the
previous section.

Example 5. As a consequence of a positive transaction
conducted through chunk C2 and resulting in a trust variation
equal to, e.g., +5, we would obtain t(C2) = 32.5 if δ = 0.5,
and t(C2) = 35 if δ = 1. Notice that in the former case
the discounting factor represents the ratio between the size
of the chunk used and the size of the originating crypto-id,
thus emphasizing that trust is proportional to the amount of
information disclosure.

Once t(C) has been updated by applying the variation δ · v,
it is worth deciding whether and how the feedback related
to chunk C has to be propagated to other elements of the
trust structure (C,≤, t). First of all, propagation would result
in ambiguity if applied to chunks of the poset that cannot be
related through ≤, because unrelated chunks cannot be brought
back to the same crypto-id. Therefore, the remaining cases
refer to the chunks that refine (or are refined by) C.

Depending on the feedback, which can be either positive
or negative, the potential application of a discounting factor,

and the propagation direction (towards finer or coarser chunks,
or else both), every possible combination gives rise to a
different propagation policy. Tuning these parameters is a task
of the user depending on her/his attitude to cooperation. In the
following, we describe a policy balancing accuracy of the trust
estimations with robustness against malicious behaviors.

On one hand, negative trust variations are not propagated
to elements that refine C, because an interaction disclosing a
small amount of sensitive information should not compromise
the trust level of chunks that expose more information. The
objective of this rule is to contrast potential attacks by users
preserving their identity and aiming at penalizing the trust
of small chunks shared by a large number of users. On
the other hand, in order to overcome the problem of trust
underestimation and to fully exploit the flexibility of the
independent model of privacy release, positive trust variations
are propagated to chunks refining C, while positive/negative
trust variations are propagated to every chunk in the poset that
is refined by C. Another objective of this rule is to favor, in
terms of trust, the disclosure of information. In order to keep
under control the propagation mechanism, the trust variation
for any chunk C ′ inherited by the feedback related to chunk
C is further discounted by a factor δ′ proportional to the
difference between the size of C and the size of C ′. In practice,
the larger the difference between C and C ′ is, the slighter the
impact of the trust variation of C upon C ′.

Example 6. Consider chunk C2 and the positive transaction
of the previous example determining t(C2) = 32.5 (i.e., δ ·v =
2.5). Then, by virtue of the propagation policy discussed above
we have, e.g., t(C4) = 16.25 and t(C6) = 10.625. Chunk C5

(resp. C7) gains the same variation applied to C4 (resp., C6).
On the other hand, C1 inherits a discounted trust gain equal
to 2.5 · 2

3 , because C1 refines C2 and the trust variation is
positive, while C3 does not inherit any trust gain, because C2

and C3 are not related with each other.

The local trust structure continuously evolves not only by
virtue of the updates discussed above, but also as a conse-
quence of the treatment of new chunks. Associating a new
chunk C that is added to the poset with the dispositional
trust of the user is a policy that does not take into account
the knowledge of the trust structure (C,≤, t), which can be
employed to infer some trust information about C.

Based on the same intuition behind feedback propagation,
the trust values associated with known chunks that are in some
relation with C can be combined to set up the initial value of
t(C). In fact, C can be interpreted as an approximation of
such chunks. As in the case of the propagation policy, we can
envision several different rules, among which we advocate the
following one: t(C) is assigned the arithmetic mean of the
trust values associated with chunks that refine C, while those
refined by C are ignored. In fact, the accuracy of the trust
estimations is directly proportional to the size of the chunks.
Therefore, estimating t(C) based on small chunks refined by
C would lead to a rough approximation of the trust towards
the users employing C. Moreover, the chunks refining C that
are considered must be pairwise unrelated by ≤ in order to
avoid redundancy when counting the related trust values.
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Definition 2 (Chunk coverage). Let (C,≤, t) be a trust struc-
ture and C 6∈ C a new chunk that must be added to the poset.
A coverage for C is a set K = {C1, . . . Cm} ⊆ C such that:
• Ci 6≤ Cj for all 1 ≤ i, j ≤ m;
• C ≤ Ci for all 1 ≤ i ≤ m.

The initial value of t(C) induced by the coverage K is:

tK(C) =
1

m
·

m∑
i=1

t(Ci).

It is worth noticing that the poset may enable several
different coverages for a chunk C. If K1, . . . ,Kp are the
possible coverages for C in the trust structure (C,≤, t), then
whenever C is added to C we set:

t(C) = f{| tKi
(C) | 1 ≤ i ≤ p |}

where f is an associative and commutative arithmetical func-
tion (like, e.g., min, max, and avg) applied to the multiset of
initial trust values induced by the different coverages.

Example 7. Consider the trust structure of Figure 6. A
coverage for chunk C8 : 00000000 is the set K = {C4, C5},
which induces the initial trust value tK(C8) = 20. Other
candidates are {C2, C3}, {C3, C4}, and {C1}. Therefore, the
initial trust resulting from the application of function avg
is 30.625, while we obtain 45 for function max and 20 for
function min.

In general, from the effectiveness standpoint, the trust struc-
ture (C,≤, t) is used to manage locally information (about
chunk’s trust) allowing the user to approximate the trust
towards other users, without any knowledge about their crypto-
ids and actual behaviors. As far as efficiency issues are
concerned, in order to circumvent the problem of dealing with
a huge trust structure, it is possible to constrain a priori the
number of different chunks that can be chosen by every user.

C. Evaluation
The chunk based identity sharing mechanism of the inde-

pendent model of privacy release has several impacts upon the
functionalities of the reputation and trust systems. As a con-
sequence of chunk sharing, the crypto-ids matching the same
chunk actually benefit from the reputation (or pay the mistrust)
associated with such a chunk. This aspect is crucial for the
requirements of the independent model of privacy release and
can be viewed as an incentive to take honest decisions, because
a high number of trustworthy chunks contribute to increase
the probability of obtaining services at a reasonable cost by
preserving the desired level of privacy. Hence, all the users
sharing trustworthy chunks benefit from this virtuous circle.

Obviously, it is beneficial for a chunk C if all users
controlling it are trustworthy. However, if at least one of them
is very untrustworthy and carries out at least one illegal action
linked to C, then the chunk may rapidly become untrustworthy
and useless for all other users. In addition, if C becomes
untrustworthy then it may also impact the trustworthiness of
any chunk C ′ such that C and C ′ match the crypto-id of
the same user. These side effects are mitigated implicitly by

Figure 7. Approximating user trust through chunk trust.

using mixed cooperation strategies based on trust and cost [14],
[16], [17] and explicitly by applying the discounting factors
discussed in the previous sections. An effective but severe
solution consists of resorting to a CA capable of revoking
blindness in case of suspicious behaviors by some chunk, in
order to isolate dishonest users and repair the reputation of the
chunk involved.

The choice of the chunk size represents another important
aspect. In fact, a tradeoff exists between chunk size, privacy,
and trust/reputation. The user privileging privacy employs
chunks of small size. With high probability, small chunks
cannot be used to negotiate favorable service conditions and
provide also a rough approximation of the real trustworthiness
of the user, as they are shared by a high number of users
influencing their usage. On the other hand, the user privileging
accuracy of trustworthiness employs chunks of large size, thus
sacrificing more privacy as the probability of identification
becomes higher.

The discussion above emphasizes that the use of chunks (and
of trust information based on them) implies an approximation
of the estimation of the trust towards users. In order to quantify
the approximation level, an experiment has been conducted
by employing the formal framework illustrated in Section II.
By assuming a scenario with 4 users, each one having 2
chunks to issue 25 total requests to a service provider, we have
evaluated the difference between the estimated trustworthiness
of each user (as resulting from the combination of the trust
of each chunk matching the user crypto-id) and the actual
trustworthiness of each user (that derives by tracing the actual
behavior of the user). For each service request, uniform
probability distributions have been used to govern the choice
of: the user negotiating the transaction, the chunk exposed, and
the feedback reported about the user behavior (no discounting
factor is applied). Moreover, we recall that the trust domain is
the interval [0, 50].

For this scenario, the curves of Figure 7 evaluate the proba-
bility with which the (absolute value of the) difference between
actual and estimated trust is higher than the values reported in
the horizontal axis. Each curve refers to a different sharing
level, which expresses the minimum number of users sharing
every chunk. For instance, we observe that the probability that
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the trust gap is greater than 2 for a sharing level equal to 2
(resp., 3) is less than 10% (resp., 12%) and rapidly converges
to zero.

Finally, the combination of the trust and reputation systems
surveyed above can be easily achieved by merging the resulting
metrics through the following formula:

α · trust(C) + (1− α) · rep(C) (6)

where C is the chunk under evaluation, α is the risk factor,
function trust returns the trust resulting from the distributed
trust system, and function rep returns either the reputation
provided by the CA if a centralized reputation system is avail-
able, or a combination (through the arithmetic mean) of the
trust values possibly recommended by neighbors. Moreover,
we emphasize that the presentation of the proposed design
models abstracts away from the specific trust and reputation
metrics that are adopted. Indeed, basically, our method may be
integrated with any computational notion of trust and with any
recommendation mechanism used in classical trust/reputation
systems, see, e.g., [38]–[40].

V. CONCLUSION

The attitude to cooperation is strongly affected by the trade-
off existing among privacy and trustworthiness of the involved
parties and cost of the exchanged services. The proposed model
of privacy release offers a high level of flexibility in the
management of such a tradeoff. In particular, by virtue of a
mechanism based on the splitting of crypto-ids, it is possible
to manage the disclosure of sensitive information in a less
restrictive way with respect to classical models.

To summarize the results obtained from the formal veri-
fication, we observe that the major freedom degree of the
independent model ensures better performance with respect
to the incremental model. This is always true if the main
objective is trading privacy for trust. If services must be paid
and cost depends on trust, then the adopted cost function
affects the tradeoff among privacy, trust, and cost, by revealing
the advantages of the independent model in the intervals of
trust values in which cost is constant.

From the implementation viewpoint, it has been shown that
the novel model can be effectively applied both in centralized
reputation systems and in distributed trust systems. The em-
pirical analysis of the peculiarities of each solution, like the
bottleneck problem induced by the CA or the efficiency and
accuracy ensured by the local trust structure, represents work
in progress.

We conclude by observing that a successful deployment of
the proposed approach is strictly related to the choice of the
trust policies and configuration parameters, which are currently
subject to sensitive analysis through formal verification. Solu-
tions to manage the dynamic variability at run time of these
parameters are left as future work. Similarly, the approximation
induced by the analysis of chunk trustworthiness whenever
estimating the actual behavior of users shall be verified in
a real-world scenario characterized by a sufficiently large
population.
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