
48

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Symbolic Execution Based Automated Static Bug Detection for Eclipse CDT

Andreas Ibing

Chair for IT Security

TU München, Germany

Email: andreas.ibing@tum.de

Abstract—Software vulnerabilities may be exploited for intruding
into a system by an attacker. One approach to mitigation is
to automatically analyze software source code in order to find
and remove software bugs before release. A method for context-
sensitive static bug detection is symbolic execution. This article
presents an SMT-constrained static symbolic execution engine

with sound path merging. The engine is used by checkers for
memory access violation, infinite loops, and atomicity violations.
Context information provided by the engine is shared by the
different checkers. Further checkers can easily be connected. The
engine integrates as plug-in extension into Eclipse CDT and uses
CDT’s parser, AST visitor and CFG builder, as well as Eclipse’s
GUI and marker framework for bug reporting. The presented
approach is evaluated with test cases from the Juliet test suite
for C/C++. The evaluation shows a significant speed-up by path
merging already for the small Juliet programs. The speed-up
depends on the number of decision nodes with more than one
satisfiable branch and increases for larger programs.

Keywords–Static analysis; Symbolic execution.

I. INTRODUCTION

This article is an extended version of [1], which presents
a backtracking symbolic execution engine with sound path
merging on the C source level. This extended version gives a
more detailed description, provides more context information
and evaluates the symbolic execution engine on a larger
test set. Software weaknesses are classified by the common
weakness enumeration [2]. For brevity, a software weakness
is called bug in this article. If a weakness could be exploited
by an attacker, it is a vulnerability. The likelihood of exploit
varies for different bug types. For buffer overflows, e.g., the
likelihood of exploit is very high [2].

Symbolic execution [3] is a program analysis method,
where software input is regarded as variables (symbolic val-
ues). It is used to automatically explore different paths through
software, and to compute path constraints as logical equations
from the operations with the symbolic input. An automatic
theorem prover (constraint solver) is used to check program
paths for satisfiability and to check bug conditions for sat-
isfiability. The current state of automatic theorem provers are
Satisfiability Modulo Theories (SMT) solvers [4], the standard
interface is the SMTlib [5]. An example state-of-the art solver
is described in [6].

Automatic analysis tools that rely on symbolic execution
have been developed for the source-code level, intermediate
code and binaries (machine code). Available tools mostly
analyze intermediate code, which exploits a small instruction
set and certain independence of programming language and
target processor. A prominent example is [7], which analyzes

Low Level Virtual Machine (LLVM [8]) code. Symbolic
execution on the source-code level is also interesting for
several reasons. An intermediate representation loses source
information by discarding high-level types and the compiler
lowers language constructs and makes assumptions about the
evaluation order. However, rich source and type information is
needed to explain discovered bugs to the user [9] or to generate
quick-fix proposals.

In order to detect bugs as early as possible, bug detection
tools should be integrated into IDEs. The integration of bug
finding tools into IDEs is further important for ease of use
and for the integration of different tools. A synergy lies for
example in the automated generation of quick-fix refactoring
proposals based on detected bug information.

During symbolic execution, a symbolic execution engine
builds and analyzes satisfiable paths through programs, where
paths are lists of control flow graph (CFG) nodes. Always
restarting symbolic execution from the program entry point
for different, partly overlapping program paths (path replay) is
obviously inefficient. The standard approach is therefore the
worklist algorithm [10]. In this algorithm, a list of symbolic
program states (the worklist) is kept in memory. These states
are the frontier nodes (unexplored nodes) of the program
execution tree. While the list is not empty, one symbolic
program state is taken from the list and interpreted to yield its
successor state(s), which are then added to the list. At program
branches, there may be more than one satisfiable successor
state. In this case the respective predecessor is cloned before
interpretation. The reuse of intermediate analysis results with
state cloning has the downside of being memory-intensive.
In [11], state cloning with a recursive data structure to store
only state differences is used. Another approach for engine
implementation is symbolic state backtracking [12]. It keeps
only the symbolic program states along the currently analyzed
program path in memory (stored incrementally with single
assignments) and avoids the inefficiency of path replay as well
as the exponential memory consumption of state cloning.

The tree of satisfiable program paths, called the program
execution tree, grows exponentially with the number of de-
cisions in the program for which two or more branches are
satisfiable. Straight-forward application of symbolic execution
is therefore not scalable. This is often called the path explosion
problem. In [13], it is noted that program paths can be merged
when the path constraints differ only in dead variables, because
further path extension would have the same consequences for
the paths. It presents an implementation that extends [11]. This
implementation uses a cache of observed symbolic program
states and introduces a type of live variables analysis, which

49

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it calls read-write-set (RWSet) analysis.

Interesting properties of bug detection algorithms are
soundness (no false positive detections) and completeness (no
false negatives). Because a bug checker cannot be sound and
complete and have bounded runtime, in practice bug checkers
are evalutated with measurement of false positive and false
negative detections and corresponding runtimes on a suffi-
ciently large bug test suite. The currently most comprehensive
C/C++ bug test suite for static analyzers is the Juliet suite [14].
Among other common software weaknesses, it contains test
cases for buffer overflows, infinite loops and race conditions.
In order to systematically measure false positives and false
negatives, it contains both ’good’ and ’bad’ functions, where
’bad’ functions contain a bug. It further combines ’baseline’
bugs with different data and control flow variants to cover the
language’s grammar constructs and to test the context depth
of the analysis.

This paper develops and evaluates a sound path merging
method in a source-level backtracking symbolic execution
engine. The aim is to context-sensitively find bugs in un-
annotated C code, in the sense of automated testing without
test-suite, while alleviating the path explosion problem. The
approach is targeted at all C bug types that can be detected
as constraint violations. The implementation extends [12].
According to the TIOBE index [15], C is currently the most
popular programming language (based on average ranking
during the last 12 months). The remainder of this paper is
organized as follows. Section II gives an overview of related
work. Section III shortly reviews symbolic execution. Section
IV describes the tool architecture and design decisions. The
description includes the integration in the Eclipse C/C++
development tools (CDT). Section V depicts different checker
classes connected to the symbolic execution engine. These
checkers are described in more detail in previous publications
[12], [16], [17], [18]. Section VI presents results of experi-
ments with test cases from the Juliet suite, with focus on the
analysis speed-up provided by path merging. Section VII then
discusses the presented approach based on the results.

II. RELATED WORK

There is a large body of work on symbolic execution
available, which spans over 30 years [19]. Therefore, only a
small selection is named here. More in-depth information is
available in survey articles [19], [20], [21], [22].

a) Related approaches: There are several approaches
that are closely related to automated bug detection with sym-
bolic execution. One approach is annotation-based verification,
which proves the absence of errors. The annotations reduce the
context that is necessary for analysis. An annotation language
for C is presented in [23], one for Java in [24]. Prominent
verification tools for C are described in [25], [26]. Another
approach is symbolic model checking [27], where the whole
program is treated as a formula. Bounded model checking
for C is described in [28]. An approach that offers a smooth
transition between static analysis and verification is extended
static checking [29]. Symbolic execution can be seen as an
instance of abstract interpretation, because some variables have
formulas as values, which abstracts from concrete interpreta-
tion. Abstract interpretation in a narrower sense [30] is referred
to in the paragraph on abstraction.

b) Different levels of software: Symbolic execution has
been applied on the software architecture level to models,
e.g., to UML-RT state diagrams [31]. Further related state-
based work on the model level is presented in [32], [33]. On
the source code level, symbolic execution has been applied
to a variety of languages. Examples for C are [34], [11].
Most tools perform symbolic execution on an intermediate
code representation. Apart from [7], where LLVM intermediate
code is analyzed, prominent symbolic execution engines are
presented in [35] and [36]. In [35], dynamic symbolic ex-
ecution of the Common Intermediate Language (MSIL/CIL)
is performed. The engine described in [36] analyzes Java
bytecode. Binary code has been analyzed by lifting to an
intermediate representation and symbolic execution of the
intermediate code, described in [37], [38]. Analysis of x86
binaries with symbolic execution is presented in [39].

c) Static and dynamic: Symbolic execution can be
applied both as static and as dynamic analysis. The latter is
also referred to as concolic testing [40]. Dynamic symbolic
execution for test case generation is described in [7], [11], [35],
[39], [40], [41]. To reduce complexity and increase analysis
speed, as many variables as possible are regarded as concrete
values. Normally, only input variables or variables that directly
depend on program input are modelled as symbolic. The anal-
ysis runs dynamically as long as all parameters are concrete,
and equation systems for the solver are smaller. In [40], [41],
dynamic symbolic execution is applied on the C source code
level. In [39], dynamic symbolic execution is applied for
the analysis of x86 machine code. A combination of static
and dynamic symbolic execution called selective symbolic
execution is presented in [42]. The approach is to specify a
system part of interest where symbolic variables are used, and
to execute other parts with concrete/concretized values. It uses
a hypervisor with LLVM backend and utilizes the symbolic
execution engine described in [7].

d) Path merging: Sound path merging based on dead
path differences is presented in [13], the implementation
extends [11]. Merging of paths with live differences is investi-
gated in [43]. Path disjunctions are used in the corresponding
logic formulation passed to the solver. Heuristics for path
merging are presented, which aim at balancing computational
effort between the symbolic execution frontend and the SMT
solver backend. The implementation extends [7].

e) Abstraction: Other related work uses abstraction,
i.e., generalization of constraints, to merge more paths. Ab-
stract interpretation [30] allows for complete bug detection (no
false negatives), but introduces false positives (unsound). An
approach to automatically generate an abstraction based on
predicates over decision conditions contained in the program
source is presented in [44]. Counter-example guided abstrac-
tion refinement [45] is an automated abstraction refinement
to iteratively undo unsound path merges in order to remove
false positives. Another method is presented in [46] and further
developed in [47], [48], [49]. It uses logic interpolation [50]
and weakest precondition computing during backtracking of
error-free paths, so that further error-free paths explored later
could be merged.

f) IDE integration: This paragraph considers only the
widely used open-source Eclipse IDE. It is possible to connect
external tools as processes to the IDE. There are, e.g., Eclipse

50

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

plug-ins available that communicate over character streams
with the analysis engines presented in [25], [28]. Eclipse is
designed according to the OSGi architecture (formerly known
as Open Services Gateway initiative) [51], i.e., it consists
of a small runtime, and functionality is provided as plug-
ins. It contains its own dependency and update management.
Therefore, tight IDE integration offers several advantages, the
most important one being the synergies between plug-ins.
Eclipse CDT features a code analysis framework [52]. Eclipse
also includes a SAT solver [53]. On the other hand, it currently
(version 4.4) does not feature an SMT solver, and CDT’s code
analysis framework does not include path-sensitive or context-
sensitive analyses.

III. SYMBOLIC EXECUTION

Symbolic execution can be seen as a state transition system
(e.g., [48], [54]). This section shortly describes interprocedural
symbolic execution for whole-program analysis.

A. Symbolic program state

A symbolic program state is a quadruple σ = (l, s,Π, T).
l is a program location. On the source code level this means
a control flow node. To this program location corresponds a
syntax subtree a(l) of the abstract syntax tree (AST) of a
source file. s denotes the set of symbolic program variables,
i.e., logic equations over symbolic input variables. Π is the
path constraint, and T the function call stack.

B. Successor locations

Depending on the type of l, there are the following cases
for the set of successor locations of a symbolic program state:

1) a(l) contains one or more not yet evaluated function
call expressions. Then the successor location is the
start node of the function whose function call ex-
pression is next in traversal order of a(l). Location l
is saved as return node: T.push(l).

2) l is an exit node and a(l) does not contain an
unevaluated call expression. The successor location is
the return node from the stack: l′ = T.pop(). In case
of exit from main(), symbolic execution terminates.

3) l is not an exit node and a(l) does not contain an
unevaluated call expression. Then, the set of succes-
sor locations are l’s children along the edges in the
function’s control flow graph.

C. Symbolic successor states

For the transition from l to successor l′ there are the
following cases:

1) l′ is a start node. Then σ′ = (l′, s∧cC ,Π, T
′), where

cC = [aC(l)] is the evaluation of the subtree of a(l)
rooted in the respective function call expression.

2) l′ is a branch node. Then σ′ = (l′, s,Π∧c, T ′), where
the constraint c = [a(l)] is the evaluation of a(l).
That is, the branch condition is added to the path
constraint.

3) l′ is neither a start node nor a branch node. Then σ′ =
(l′, s∧c,Π, T ′), i.e., the constraint c = [a(l)] is added
for the symbolic variables. If l was an exit node, then

the evaluation c = [a(l)] continues with the return
value for the respective function call expression.

IV. ARCHITECTURE AND IMPLEMENTATION

A. Main classes and Eclipse integration

The tool is a plug-in for the Eclipse IDE and extends
the CDT code analysis framework (Codan [52]). Eclipse CDT
provides a C/C++ parser and AST visitor, and the code analysis
framework provides a control flow graph builder. Codan uses
Eclipse’s marker framework for reporting bugs in the CDT
GUI.

The main classes of the architecture are illustrated in Figure
1. WorkPoolManager and Worker are active classes. The
main functions of the classes are [12]:

• WorkPoolManager implements Codan’s
IChecker interface and through this becomes
callable from the Eclipse GUI (through Codan).
It starts Worker threads and reports found bugs
through the Codan interface to the Eclipse marker
framework. As synchronization object, WorkPool is
used (synchronized methods). It tracks the number
of active Workers and serves for dynamic work
re-distribution.

• Worker explores a part of the program execu-
tion tree specified by a start path, with help of its
Interpreter. Different Worker-threads concur-
rently analyse disjunct partitions of a program’s ex-
ecution tree. Worker has a forward and a backward
(backtracking) mode. It passes references to control
flow graph nodes for entry (forward mode) or back-
tracking to its Interpreter.

• Interpreter performs symbolic interpretation
according to the tree-based interpretation
pattern [55]. The control flow node processor
(CFNodeProcessor) implements CDT’s AST
visitor and translates into SMTlib logic equations.

• SMTSolver wraps the SMT solver. In the current
implementation, the wrapper is configured to call the
SMT solver described in [6].

• IPathObserver is an interface provided by the
Interpreter for checker classes. Checkers can
register for notifications and can access context in-
formation.

• BranchValidator checks branches for satisfia-
bility with a solver query and throws an exception
(caught by the Worker) in case of unsatisfiabil-
ity, which causes pruning of the respective path.
BranchValidator is triggered when entering a
branch node.

• ProgramStructureFacade provides access to
control flow graphs.

B. Tree-based interpretation

First, all source files of the program under test are parsed
into ASTs, and a CFG is generated for each AST subtree

51

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

« interface »

org.eclipse.cdt.codan.core.model.IChecker

...InfoFlowCheckerIn niteLoopChecker

n1

FunctionSpaceStack

PThread

 1

 n

RaceChecker

ThreadState

PathAbstractor

- updateCreateThread()

- updateUseSharedVar()

- updateMutexLock()

- ...

InterleavingGenerator

- partialOrderDFS()

ActionLog

1 n

WorkPool

- reportSATPath(AbstractedPath)

BoundsChecker

IPathObserver

org.eclipse.cdt.core.dom.ast.ASTVisitor

BranchValidator

SMTSolver

CFNodeProcessor

GlobalMemSpace

Environment

1
1 Interpreter

 1 n

ProgramStructureFacade
WorkPoolManager

Worker

Figure 1. Architecture, main classes

that is rooted in a function definition. Symbolic execution
traverses CFGs, beginning from main() start. For each con-
trol flow node, the corresponding AST subtree is interpreted.
The maximum loop depth to be explored can be bounded.
Symbolic variables are stored in and retrieved from a memory
system, which consists of the classes GlobalMemSpace and
FunctionSpaceStack. Symbolic variables are resolved
by their syntax tree name (CDT’s IASTName) and bind-
ing. Each Interpreter instance supports multiple thread
objects (PThread) of which each has its own stack object
(FunctionSpaceStack, compare Figure 1). Variable de-
pendencies are traced. This is used for slicing, so that solver
queries only contain the necessary subset of logic equations.
The program under test communicates with its environment
through the operating system API, which is wrapped by
the C standard library. Symbolic execution is not extended
into the standard library. Instead, symbolic function models
can be provided for standard library functions (through the
Environment class). In order to allow for backtracking of
the symbolic program state, the semantic actions performed
per CFG node, like, e.g., variable declarations, are stored in an
ActionLog. The interpreter passes AST subtree references,
which are referenced by CFG nodes, to CFNodeProcessor
for translation.

Figure 2 illustrates the data structures for CFG and AST,
which are provided by CDT/Codan. The figure shows on the
left the control flow for an example function from [14]. On the
right it shows two AST subtrees which are referenced by two
control flow nodes. There are eight satisfiable paths through
the function. One of these paths contains a buffer overflow bug.
This path is depicted in red. All eight paths could be merged
at the function exit. The function’s exit node is depicted in
blue.

In general, the interpretation works per CFG node. The
current CFG node is interpreted, then a successor node is
chosen, who is interpreted next. An exception are function
calls. If a CFG node corresponds to a statement or expression
that contains a function call, then the node is first only partially

interpreted, i.e., up to the function call expression (which
includes parameter collection). Then the called function’s start
node and respective successors are interpreted. After exit of
the called function, interpretation continues with the remaining
uninterpreted AST subtree part of the calling CFG node, with
the function’s return value.

C. Translation into SMTlib logic

Translation is implemented by bottom-up traversal of an
AST subtree according to the visitor pattern [56]. This pattern
is commonly used for operations on a graph of elements (here
the AST), where the operation on a node depends on the
node’s runtime type. The class CFNodeProcessor imple-
ments CDT’s ASTVisitor (compare Figure 1). Translation
attributes are passed upwards during AST traversal. Attributes
can be for example intermediate translation results. During
translation, type promotion is performed according to the
operators. The translation uses single assignments to avoid
desctructive updates. Pointers and structs are not directly trans-
lated into SMT logic, they are represented internally during in-
terpretation (e.g., a pointer has a target and an offset formula).
Logic equations are generated at pointer dereference and at
field access to a struct. The translation output are equation
in the SMTlib sublogic of arrays, uninterpreted functions and
nonlinear integer and real arithmetic (AUFNIRA). While the
translation in general works per CFG node, one exception are
function call expressions as mentioned in the last subsection.
Another exception are switch statements – where the default
branch’s formula depends on all sibling CFG nodes.

D. Analysis of multi-threaded code

Analysis of multi-threaded code is supported for programs
which use a subset of the Portable Operating System Interface
(POSIX) threads API. Certain functions from the POSIX
threads library like mutex locking and unlocking, and creation
and joining of other threads are currently supported by function
models [18]. The symbolic execution is run with a pre-defined

52

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scheduling algorithm. The implementation uses ’lowest thread-
id first’ scheduling. A thread blocks (becomes inactive), e.g.,
by trying to acquire a lock already held by another thread
or with a join call for a thread that is still alive. Unless
the code contains race condition bugs, the program behaviour
is identical for all possible schedulings, so one scheduling
algorithm suffices.

If race conditions are also to be detected, a recording and
abstraction of satisfiable paths can be activated. Scheduling
can in principle occur between any assembler instructions. But
most actions of different threads are independent and commu-
tative. This can be exploited by a partial-order reduction [57].
Only thread interactions are relevant for race detection, where
thread interactions are events like thread creation, joining,
mutex locking and unlocking, and also the read or write
access to shared variables. Whether or not a variable is shared
between threads is in principle context-sensitive. It depends
on the current program path including the current function’s
call context. All global variables are marked as shared when
they are first accessed. Then the shared property is inferred
over data flow constructs like assignments, references, function
call parameters and return values. Further, the thread start
arguments are also marked as shared. Shared variables are
traced by the Interpreter, and all thread interaction events
are recorded by the class PathAbstractor.

The analysis of multi-threaded code does not require more
effort than the analysis of single-threaded code. Extra effort is
only spent if race conditions are to be detected. Race condition
analysis works on the recorded thread interaction abstraction
level [18] and is described in more detail in Section V-D.

E. Multi-threaded engine

The implementation is multi-threaded, a configurable num-
ber of worker threads concurrently explores different parts of
the execution tree [12]. Each worker performs a depth-first
exploration of its partition with backtracking of the symbolic
program state. Control flow graphs and syntax trees are shared
between worker threads. AST nodes are not thread-safe. Work-
ers therefore lock AST subtrees at the CFG node level, i.e.,
the AST subtree that is referenced by the currently interpreted
CFG node. Dynamic redistribution of work between workers
is enabled by splitting a workers partition of the execution tree
at the partition’s top decision node, where a partition is defined
by the start path leading to its root control flow decision node.
The concatenations of the partition start path and one of the
branches not taken by the current worker are returned as start
paths for other workers. After a split, the current worker’s
start path is also prolonged by one branch node, which is the
branch node that the worker had taken. The current worker’s
prolonged start path still defines its execution tree partition,
which is now reduced in size. Analysis starts with one worker,
who splits its partition until the configured number of workers
is busy. A worker is initialized by replaying its partition start
path. If a worker reaches an unsatisfiable branch or a satisfiable
leaf of the execution tree, it backtracks and changes a path
decision according to depth-first tree traversal. If backtracking
reaches the end of the partition start path, the partition is
exhausted. The WorkPool is used for synchronization. It
serves to exchange split paths between workers and tracks
the number of active workers. A parallelization speed-up is

possible if the program under test has decisions for which
more than one branch is satisfiable [12].

F. Backtracking and path merging

1) Dead and live variables: Paths can be merged without
any loss in bug detection accuracy when the path constraints
and symbolic variable constraints differ only in dead variables
[13]. The detection of such merge possibilities requires a
context cache at potential merge points. Also required is a way
to detect dead variables and to filter them from the path and
variable constraints. Therefore, potentially interesting merge
points are program locations where the sets of dead and live
variables change. Such points are function start and function
exit and after scope blocks like if / else or switch

statements and loops.

2) Merge points: Path merges are performed at function
exit in the current implementation. Merges are possible be-
cause stack frame variables die at function exit. Path and
variable constraints at function exit are treated as concatenation
of the function’s call context and the local context. The
approach misses possibilities to merge paths earlier after scope
blocks inside one function. On the other hand, it does not
require more complex live variable analysis at intermediate
points. The approach merges paths that have split inside the
same function, possibly with other function calls in between.
It needs to know the set of variables that have been written
since the merge paths have split. This is overapproximated by
the set of variables written since entering the function that is
left at the program location in question. A set of potentially
read variables along path extensions is not computed. From the
set of variables that have been written as local context (i.e.,
since function entry), global variables, the return value and
all variables that have been written through pointers (pointer
escape, potential write to, e.g., other stack frame) are assumed
as live. The remaining written local variables are assumed as
dead, which is a sound assumption. The local context is then
reduced by removing the dead variables. A context cache is
used to lookup observed reduced local contexts from pairs of
a function’s exit node (in the function’s control flow graph)
and call context. During symbolic execution, at each exit node
the context cache is queried for a merge possibility. Then the
current path is merged if possible, otherwise the local reduced
context is added as new entry to the context cache.

3) Backtracking: Due to single assignment form, a sym-
bolic program state contains all previous states along the path.
Backtracking is enabled by class ActionLog, which records
certain semantic actions performed for CFG nodes on the
current path (e.g., variable creation or hiding). For example, if
a function exit is backtracked, the function’s stack frame with
contained variables must be made visible again. Dead variables
are therefore not garbage-collected, because this would impede
backtracking. The engine further allows to record and visualize
explored parts of a program execution tree.

4) Path merging: Path merging needs knowledge about the
sets of written variables since path split. The implementation
uses the class ActionLog to derive this information. It
contains all writes to variables, including writes to globals
and writes through pointers (potentially to other stack frames).
The action log is looked through backwards up to the current

53

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

:StartNode

int data = -1

global_returns_t_or_f()

else then

char input_buf[CHAR_ARRAY_SIZE] = "";

fgets(input_buf, CHAR_ARRAY_SIZE, stdin) != NULL

data = atoi(input_buf);

global_returns_t_or_f()

printLine("fgets() failed.");

data = 7

data >= 0

int i;

int bu�er[10] = { 0 };

else then

else then

int i;

int bu�er[10] = { 0 };

data >= 0 && data < (10)

elsethen else then

printLine("ERROR:

 Array index is negative.");

return; // fake

bu�er[data] = 1;

i < 10

else then
printIntLine(bu�er[i]);

i++;

printLine("ERROR:

 Array index is negative.");
bu�er[data] = 1;

i = 0;

i < 10

elsethen
printIntLine(bu�er[i]);

i++;

:CASTBinaryExpression

 int operator = op_assign

operand1

:CASTExpressionStatement

expression

:CASTIdExpression

 CASTName name = data

operand2

:CASTIdExpression

 CASTName name = atoi

data

:CASTFunctionCallExpression

functionName

fArguments[]

:CASTIdExpression

 CASTName name = input_buf

i=0;

data

:CASTBinaryExpression

 int operator = op_assign

operand1

:CASTExpressionStatement

expression

operand2

:CASTArraySubscriptExpression

array

subscript

:CASTIdExpression

 CASTName name = bu�er

:CASTIdExpression

 CASTName name = data

:CASTLiteralExpression

value = 1

Figure 2. Left: Control flow graph for an example function from [14]. One path leading to a buffer overflow bug is marked red. Paths are merged at function
exit (the function’s exit node is marked blue). Right: Two AST subtrees referenced by CFG nodes

function’s CFG start node, and the reduced local context is
built from the variable declaration actions. The reduced local
context is yielded by removing all writes to variables if the
variables do not have global scope, are not written through
pointers and are not the current function’s return value. This
approach does not necessitate a comparably more complex
dead/live variable analysis. Path merge possibilities are de-
tected using a class ContextCache, which is a HashSet.
The keys are exit nodes with function call context, the values
are the observed reduced local contexts. The context cache is
queried at each function exit (CFG exit node). Comparing the
reduced local contexts does not necessitate expensive calls to
the SMT solver.

Path merging applies in the same way to branches that
belong to loops, when the loop iteration number depends on
program input (otherwise there would be only one satisfiable
sub-path through the loop). Symbolic execution is currently
applied with loop unrolling up to a maximum loop depth
bound. A path through a loop can therefore split into a
maximum number of paths equal to the loop unrolling bound.
Branch nodes in the CFG belonging to loop statements are
treated by symbolic execution just as branch nodes belonging
to if/else statements. The branch nodes also have the same
labels, i.e., ’then’ for the loop body and ’else’ to skip the
loop. The only difference is that loops have a connector node
with two incoming branches, which closes the loop before the
decision node. However, this has no influence on the merging
of unrolled paths.

V. EXAMPLE BUG CHECKERS

A. Memory access

The major memory access bugs are stack-based or
heap-based buffer over-write (overflow), over-read, under-
write or under-read (CWE-121,122,124,126,127). The class
BoundsChecker is triggered when the translation encoun-
ters array subscript expressions and pointer dereferences [12].
The bounds checker queries the set of equations, on which
the pointer and offset variables depend, from the interpreter.
Two satisfiability checks are then added to this equation system
slice. One of them checks whether the offset could be negative
(lower bound violation), the other checks whether the offset
could be larger than the array size. These satisfiability queries
are decided by the SMT solver.

B. Infinite loops

If an infinite loop can be triggered by unexpected program
input, which is not properly validated, it can be used by an
attacker for a denial of service attack. Since the standard
number formats are discrete and finite, any infinite loop orbit
without number overflow must be periodic. The common
weakness enumeration calls this ’loop with unreachable exit
condition’ (CWE-835), in contrast to ’number overflow’ bugs.
An infinite loop can therefore be detected with a fixed-
point satisfiability check. It checks whether it is satisfiable
that the loop is re-visited with identical context. The class
InfiniteLoopChecker is trigger for ’loop closed’ events,
i.e., when a decision node is re-visited on the path [16]. The

54

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Execution tree for test program CWE121_Stack_Based_Buffer_Overflow__char_type_overrun_memcpy_12 from [14], showing only
decision and branch nodes.

Figure 4. Effect of path merging for the test program of Figure 3. The execution tree is folded at two locations (blue arrows). The number of traversed
satisfiable paths is reduced from four to one.

loop variables are identified using the ActionLog. The loop
checker formulates the fixed-point query, which is then passed
to the solver.

The loop checker avoids re-checking ’simple’ loops in
different contexts by performing context-free termination and
non-termination checks at the loop’s first closing event. This
check is performed without the constraint of the path on which
the loop is reached, i.e., only using the loop guard set and the
unrolled loop body (unrolled one iteration). The termination
check for ’simple’ loops is based on Brouwer’s fixed-point
theorem [16], [58]. This theorem implies that all linear loops
that do not have a fixed-point in the guard set must terminate.

Loops that have not been decided by the context-free
checks are checked context-sensitively during symbolic ex-
ecution, i.e., with consideration of the path and variable
constraints of the path on which the loop is reached. Symbolic

execution unrolls all satisfiable paths through the loop, up to
a configurable loop depth bound. Like for other checkers with
symbolic execution, bug detection is sound (no false positives)
and bounded complete [16]. The infinite loop checker detects
all infinite loops with t prefix loop iterations and a loop orbit
periodicity of p ≤ n− t, when all loops are unrolled up to a
depth n [16].

C. Information flow

Examples for information flow bugs are cleartext trans-
mission of sensitive information (CWE-319) or information
exposures through environment variables, debug log files or
shell error messages (CWE-526, 534, 535 [2]). The model for
secure information flow follows the lattice model from [59].
Information belongs to ’security classes’, and information must
not flow from higher to lower security classes. The implemen-

55

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tation regards the operating system API as trust boundary [17].
Information flows through a program from sources to sinks,
which are standard library calls and therefore trust bound-
aries. These trust boundaries are implemented in the function
models, which are accessed through the Environment classs
(compare Figure 1). Program input is labelled with a security
class. During symbolic interpretation, security class affiliation
is inferred over the data flow. The InfoFlowChecker is
triggered when a trust boundary is crossed with program
output, i.e., for information sinks. The checker assures that
sensitive output parameters do not flow into a lower security
sink [17].

D. Atomicity violations

The detection is based on thread interleavings, that is, pos-
sible thread schedulings on a single-core processor. The detec-
tion is implemented on the abstraction level of thread interac-
tions, from the recorded satisfiable program paths with ’lowest
thread-id first’ scheduling [18]. Alternative thread interleavings
are generated by class InterleavingGenerator, and
the detection of atomicity violations (CWE-366) is imple-
mented in class RaceChecker (compare Figure 1). The
InterleavingGenerator generates the scheduling tree
of relevant alternative thread interleavings from the abstracted
satisfiable program paths. The algorithm uses ample set partial
order reduction [60] and selectable interleaving coverage [61].

1) Ample set partial order reduction: From a satisfiable
program path, all other thread interleavings corresponding to
different scheduling decisions can be generated. The gener-
ated set of interleavings should be of minimal size without
degrading the ability to detect atomicity violations. The tree
of possible scheduling decisions is traversed on-the-fly with
depth-first search. The tree nodes are constructed as maximal
sets of independant actions (ample sets). The construction of
ample sets reduces the width of the scheduling tree and thus
the number of generated interleavings. read() or write()
actions from different threads for shared variables are indepen-
dent if the variable is not the same. Actions may be blocked
until they are enabled by other actions. Examples are a thread
waiting to acquire a lock held by another thread, or a thread
waiting to join another. Interleaving representatives are found
as tree leafs, i.e., when there are no more blocked and enabled
actions. The representative is given as path through the ample
set scheduling tree [18].

2) Interleaving coverage: Like there are different code
coverage criteria for single-threaded code, e.g., branch cov-
erage or modified condition/decision coverage, there are also
different interleaving coverage criteria for multi-threaded code
[61]. In general, concurrency bugs can involve any number
of threads and variables. However, due to its practical rele-
vance, the special case of atomicity violations as overlapping
read()/write() actions to the same variable from different
threads is of particular interest. Therefore, the interleaving
generation not only supports the ’all interleavings’ criterion
(with partial order reduced implementation), but currently also
the ’local-or-remote-define’ criterion from [61]. This criterion
means that for every read access to a shared variable, both
an interleaving where the respective variable was defined in
the local thread and one interleaving where it was defined
by a remote thread are covered. This criterion offers a far

better scaling behaviour, at the expense of missing more
involved concurrency bugs. Reduced interleaving coverage is
implemented jointly with partial order reduction as ’branch
and bound’ pruning of the ample set scheduling tree.

3) Atomicity violation detection: Atomicity violations are
detected in the set of generated interleaving representatives
by the class RaceChecker, which looks for overlapping
read()/write() actions (at least one read and two writes)
from different threads to the same variable [18].

VI. EXPERIMENTS

The tool is evaluated with test cases from the Juliet suite for
C/C++ [14]. The test programs are artificial and automatically
generated by combination of baseline bugs and control/data
flow variants, in order to cover all language constructs. In
the current version (1.2), the suite covers 1617 baseline bugs
(flaw types) for 118 common weaknesses. Combined with
48 flow variants (38 of them for C, 10 only for C++) this
results in over 60000 test cases (buggy programs) with together
over 8 million lines of code. Bugs are context sensitive. The
maximum bug context depth needed for accurate detection,
i.e., no false positive and no false negative detections, is 5
function calls in 5 different source files (flow variant 54). Flow
variants include flow controlled by global variables, different
loop types, function pointers or void pointers,

Analysis of test programs could be started manually
through the Eclipse GUI, i.e., through the extensions provided
by Codan [52]. Codan in turn calls the symbolic execution
plug-in presented in this paper (if activated in the Codan
configuration). A screenshot for bug reporting with the CDT
GUI is shown in Figure 6. In order to measure analysis run-
times, the tests are rather run as JUnit plug-in tests. The
measurements are obtained with Eclipse 4.3 on 64bit Linux
kernel 3.2.0 and an i7-4770 CPU. This section evaluates the
effect of path merging on analysis run-times. The same bug
detection accuracy with and without path merging is validated,
there are no false positive or false negative bug detections on
the test set.

The effect of path merging on the execu-
tion tree is illustrated with the test program
CWE121_Stack_Based_Buffer_Overflow__char_

type_overrun_memcpy_12, which denotes a buffer
overflow with memcpy() and flow variant 12 [14]. It
contains a ’good’ and a ’bad’ function. The ’bad’ function
is shown in a slightly simplified version in listing 1. The
function contains an if/else decision for which both
branches are satisfiable. In the then branch it contains a
buffer overflow bug, which is marked with a comment in
the listing. For both branches the function only writes to
stack variables, and the reduced local context at function
exit is the empty set for both branches. Merging the two
paths at function exit, which have split at the decision node,
is therefore clearly possible without missing any bug. The
’good’ function is almost identical, but is bug-free. Apart
from some output functions, this program calls the ’good’
and ’bad’ function once each. Therefore, it contains four
satisfiable paths. The execution tree is illustrated in Figure
3. The figure only shows decision nodes and branch nodes.
Therefore, the top node in the figure is the first decision

56

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

�

�

�

��

��

��

��

��

��

��

	�

��

�	

�
� � �� ���

������������������������� ����������
��������	
�

�
�

�
��

�
��
�
�
�

(a) Analysis time for buffer overflow tests with fgets().

�

�

�

�

�

��

��

��

��

��

� � � � � � 	

������������������������
�����������������	
�

�
�

�
��

�
��
�
�
�

(b) Analysis time for race condition tests on global variables.

Figure 5. Analysis run-times for test sets CWE121_fgets and CWE366_global_int from [14].

TABLE I. Analysis runtime sums for five test sets from [14], with and without path merging.

CWE121 fgets CWE121 memcpy CWE366 global int CWE366 int byref CWE835 Sum

(36 test programs) (18 test programs) (18 test programs) (18 test programs) (6 test programs) (96 test programs)

backtracking 80,7 s 14,7 s 61,2 s 62,1 s 9,0 227.7 s

backtracking + path merging 34,4 s 15,3 s 59.2 s 62.6 s 9,8 181.3 s

Figure 6. Bug reporting in the Eclipse GUI.

57

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

node after start of the main() function. Branch nodes are
marked with the branch label (if or else). If a branch is
decided to be unsatisfiable, the figure indicates this with a
child note marked UNSAT. If the program end is reached, the
figure indicates this with a child node marked SAT. Figure
4 shows the same tree when path merging is applied. Paths
are merged at two points (the two function exits), which is
indicated in the tree with blue arrows. An arrow connects
two paths, which are merged. The arrow source indicates the
subtree that is pruned, the arrowhead indicates the subtree
that is further traversed. It can be seen that path merging
corresponds to folding of the execution tree, the number of
traversed satisfiable paths is reduced from four to one.

An infinite loop example from [14] is shown in Listing
2. The function contains a single-path loop, which is non-
terminating for all input. While path merging could in principle
be applied to infinite loops, a checker is still used to detect the
infinite loop as software bug. The example loop is decided with
the context-free non-termination test for ’simple loops’ [16],
unrolling the loop only once (rather than 256 times).

Listing 1. Simplified example function from [14], contains a buffer overflow
in the then branch.

t y p e d e f s t r u c t c h a r v o i d
{

char x [1 6] ;
void ∗ y ;
void ∗ z ;

} c h a r v o i d ;

void CWE121 memcpy 12 bad simplif ied () {
i f (g l o b a l r e t u r n s t o r f ()) {

c h a r v o i d c v s t r u c t ;
c v s t r u c t . y = (void ∗)SRC STR ;
/∗ FLAW: Use t h e s i z e o f (c v s t r u c t) which

w i l l o v e r w r i t e t h e p o i n t e r y ∗ /
memcpy (c v s t r u c t . x , SRC STR ,

s i z e o f (c v s t r u c t)) ;
/∗ n u l l t e r m i n a t e t h e s t r i n g ∗ /
c v s t r u c t . x [(s i z e o f (c v s t r u c t . x) / s i z e o f (

char)) −1] = ’\0 ’ ;
}
e l s e {

c h a r v o i d c v s t r u c t ;
c v s t r u c t . y = (void ∗)SRC STR ;
/∗ FIX : Use s i z e o f (c v s t r u c t . x) t o a v o i d

o v e r w r i t i n g t h e p o i n t e r y ∗ /
memcpy (c v s t r u c t . x , SRC STR ,

s i z e o f (c v s t r u c t . x)) ;
/∗ n u l l t e r m i n a t e t h e s t r i n g ∗ /
c v s t r u c t . x [(s i z e o f (c v s t r u c t . x) / s i z e o f (

char)) −1] = ’\0 ’ ;
}

}

Table I shows analysis benchmark results with and without
path merging for five test sets (in sum 96 programs) from [14],
which contain buffer overflows, races and infinite loops bugs.
The effect of path merging varies per test-set. Path merging
requires a certain overhead for computing and comparing
reduced local contexts. If path merging possibilities are found,
there is a speed-up of analysis time. The table shows a 60%
speed-up for tests containing buffer overflows with fgets()

Listing 2. Example infinite loop from [14].

void CWE835 Inf ini te Loop do 01 bad () {
i n t i = 0 ;
do { /∗ FLAW: no b r e a k ∗ /

p r i n t I n t L i n e (i) ;
i = (i + 1) % 256;

} wh i l e (i >= 0) ;
}

(from 80.7 s to 34.4 s), but a 9% slow-down for the infinite
loop tests.

Figure 5 shows the analysis runtimes for the sets of buffer
overflows with fgets() (Figure 5a) and for the races test set
on global variables (Figure 5b). The figure shows the runtimes
depending on the test case data/control flow variant, for the
symbolic execution engine with backtracking only and for
backtracking with path merging. Figure 5a uses a logarithmic
scale and contains values for 36 flow variants. Flow variants
in Juliet are not numbered consecutively, to leave room for
later insertions. Since path merging folds complete subtrees
of a program’s execution tree, it has an exponential effect
on runtimes. This is exemplified by flow variant 12. While
merging paths for the memcpy() buffer overflow with variant
12 reduces the runtime only from 1.1 s to 0.8 s, the runtime for
the fgets() buffer overflow is reduced from 22.8 s (longest
analysis time for any tested program) to 1.7 s. This is because
the fgets test program contains several other decision nodes
with two satisfiable branches.

The dependence of possible path merging speed-up on the
program structure becomes clear through the specific test case
structure, which is a combination of baseline flaws with flow
variants. There are three possibilites:

1) The baseline flaw has a path merging possibility.
Then it is likely that there is a speed-up already for
the simplest test program containing the bug (flow
variant 1), and for all other flow variants. An example
is the CWE121_fgets test set (compare Figure 5a).

2) The baseline flaw does not have a path merging
possibility. Then there can only be a speed-up for test
cases, in which the flow variant contains a merging
possibility. In the current test suite version this is
only the case for flow variant 12. An example is
the CWE366 test set, where only flow 12 shows a
significant path merging speed-up (compare Figure
5b).

3) Neither the baseline flaw nor any flow variants com-
patible with this flaw contain merging possibilites.
An example is the infinite loop test set (CWE835,
compare Table I).

VII. DISCUSSION

This paper describes a backtracking symbolic execution
engine with path merging functionality and its implementa-
tion in Eclipse CDT. Symbolic execution enables sound bug
detection, i.e., without false positives. The evaluation of path
merging with small test programs from the Juliet suite already
shows a significant speedup. For larger programs, path merging
has an exponential effect on analysis runtimes (exponential in

58

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the number of decision nodes with more than one satisfiable
branch). Future work might include the investigation of the
effect of additional merge points inside functions. Automated
abstraction might enable scaling to larger programs by offering
yet more path merging possibilities. The implementation could
also be used as a basis for selective symbolic execution, e.g.,
by adding consistent concrete execution using CDT’s debug-
ger services framework. Another direction is the automated
generation of quick-fix refactoring proposals based on the
obtained information about bugs and program paths on which
they occur. The tight tool integration enabled by Eclipse seems
advantageous for this purpose.

ACKNOWLEDGEMENT

This work was funded by the German Ministry for Educa-
tion and Research (BMBF) under grant 01IS13020.

REFERENCES

[1] A. Ibing, “A backtracking symbolic execution engine with sound path
merging,” in Int. Conf. Emerging Security Information, Systems and
Technologies, 2014, pp. 180–185.

[2] R. Martin, S. Barnum, and S. Christey, “Being explicit about security
weaknesses,” CrossTalk The Journal of Defense Software Engineering,
vol. 20, 3 2007, pp. 4–8.

[3] J. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, 1976, pp. 385–394.

[4] L. deMoura and N. Bjorner, “Satisfiability modulo theories: Introduction
and applications,” Communications of the ACM, vol. 54, no. 9, 2011,
pp. 69–77.

[5] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB standard version
2.0,” in Int. Workshop Satisfiability Modulo Theories, 2010.

[6] L. deMoura and N. Bjorner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008, pp. 337–340.

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2008, pp. 209–224.

[8] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Int. Symp. Code Generation
and Optimization (CGO), 2004, p. 75.

[9] T. Kremenek, “Finding software bugs with the Clang static analyzer,”
LLVM Developers’ Meeting, Aug. 2008, retrieved: 05/2015. [Online].
Available: http://llvm.org/devmtg/2008-08/Kremenek StaticAnalyzer.
pdf

[10] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 2010.

[11] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE:
Automatically generating inputs of death,” in 13th ACM Conference on
Computer and Communications Security (CCS), 2006, pp. 322–335.

[12] A. Ibing, “Parallel SMT-constrained symbolic execution for Eclipse
CDT/Codan,” in Int. Conf. Testing Software and Systems (ICTSS),
2013, pp. 196–206.

[13] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: Attacking path
explosion in constraint-based test generation,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2008, pp. 351–
366.

[14] T. Boland and P. Black, “Juliet 1.1 C/C++ and Java test suite,” IEEE
Computer, vol. 45, no. 10, 2012, pp. 88–90.

[15] TIOBE index, retrieved: 05/2015. [Online]. Available: www.tiobe.com/
index.php/content/paperinfo/tcpi

[16] A. Ibing, “A fixed-point algorithm for automated static detection of
infinite loops,” in IEEE Int. Symp. High Assurance Systems Eng., 2015,
pp. 44–51.

[17] P. Muntean, C. Eckert, and A. Ibing, “Context-sensitive detection of
information exposure bugs with symbolic execution,” in Int. Workshop
Innovative Software Development Methodologies and Practices, 2014,
pp. 84–93.

[18] A. Ibing, “Path-sensitive race detection with partial order reduced sym-
bolic execution,” in Workshop on Formal Methods in the Development
of Software, 2014, pp. 311–322.

[19] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, 2013, pp.
82–90.

[20] C. Cadar et al., “Symbolic execution for software testing in practice –
preliminary assessment,” in Int. Conf. Software Eng., 2011, pp. 1066–
1071.

[21] C. Pasareanu and W. Visser, “A survey of new trends in symbolic
execution for software testing and analysis,” Int. J. Software Tools
Technology Transfer, vol. 11, 2009, pp. 339–353.

[22] S. Anand, E. Burke, T. Chen, J. Clark, M. Cohen, W. Grieskamp,
M. Harman, M. Harrold, and P. McMinn, “An orchestrated survey of
methodologies for automated software test case generation,” Journal of
Systems and Software, vol. 86, no. 8, 2013, pp. 1978–2001.

[23] P. Boudin, P. Cuoq, J. Filliatre, C. Marche, B. Monate, Y. Moy,
and V. Prevosto, “ACSL: ANSI/ISO C specification language,
version 1.9,” 2013, retrieved: 05/2015. [Online]. Available: http:
//frama-c.com/download/acsl.pdf

[24] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino,
and E. Poll, “An overview of JML tools and applications,” International
Journal on Software Tools for Technology Transfer, vol. 7, no. 3, 2005,
pp. 212–232.

[25] L. Correnson, P. Cuoq, F. Kirchner, V. Prevosto, A. Puccetti,
J. Signoles, and B. Yakubowski, “Frama-C user manual, release
sodium,” 2015, retrieved: 05/2015. [Online]. Available: http://frama-c.
com/download/frama-c-user-manual.pdf

[26] E. Cohen, M. Dahlweid, M. Hillebrandt, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, “VCC: A practical system for
verifying concurrent C,” in Int. Conf. Theorem Proving in Higher Order
Logics, 2009, pp. 23–42.

[27] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[28] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, 2004, pp. 168–176.

[29] D. Detlefs, K. Leino, G. Nelson, and J. Saxe, “Extended static check-
ing,” SRC Research report 159, Compaq Systems Research Center,
1998.

[30] P. Cousot and R. Cousot, “Abstract interpretation: A unified latttice
model for static analysis of programs by construction or approximation
of fixed points,” in Symp. Principles of Programming Languages
(POPL), 1977, pp. 238–252.

[31] K. Zurowska and J. Dingel, “Symbolic execution of UML-RT state
machines,” in ACM Symp. Applied Computing, 2012, pp. 1292–1299.

[32] H. Hansen, J. Ketema, B. Luttik, M. Mousavi, and J. Pol, “Towards
model checking executable UML specifications in mCRL2,” Innovations
Syst. Softw. Eng., no. 6, 2010, pp. 83–90.

[33] J. Abrial and L. Mussat, “Introducing dynamic constraints in B,” in B
Conference, 1998, pp. 83–128.

[34] E. Reisner, C. Song, K. Ma, J. Foster, and A. Porter, “Using symbolic
evaluation to understand behaviour in configurable software systems,”
in Int. Conf. Software Eng., 2010, pp. 445–454.

[35] N. Tillmann and J. Halleux, “Pex – white box test generation for .NET,”
in Int. Conf. Tests and Proofs (TAP), 2008, pp. 134–153.

[36] W. Visser, C. Pasareanu, and S. Khurshid, “Test input generation with
Java PathFinder,” in Int. Symp. Software Testing and Analysis (ISSTA),
2004, pp. 97–107.

[37] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang,
J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new approach
to computer security via binary analysis,” in Int. Conf. Information
Systems Security, 2008, pp. 1–25.

[38] D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz, “BAP: A binary

59

International Journal on Advances in Security, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/security/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

analysis platform,” in Int. Conf. Computer Aided Verification, 2011, pp.
463–469.

[39] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz
testing,” in Network and Distributed System Security Symp. (NDSS),
2008.

[40] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” in European Software Engineering Conference and
International Symposium on Foundations of Software Engineering,
2005, pp. 263–272.

[41] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Conference on Programming Language Design and
Implementation, 2005, pp. 213–223.

[42] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for in-
vivo multi-path analysis of software systems,” in Int. Conf. Architectural
Support for Programming Languages and Operating Systems, 2011.

[43] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” in Conf. Programming Language
Design and Implementation (PLDI), 2012, pp. 193–204.

[44] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Int. Conf. Computer Aided Verification (CAV), 1997, pp. 72–83.

[45] E. Clarke, O. Grumberg, Y. Lu, S. Jha, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” Journal of
the ACM, vol. 50, no. 5, 2003, pp. 752–794.

[46] J. Jaffar, A. Santosa, and R. Voicu, “An interpolation method for
CLP traversal,” in Int. Conf. Principles and Practice of Constraint
Programming (CP), 2009, pp. 454–469.

[47] K. McMillan, “Lazy annotation for program testing and verification,”
in Int. Conf. Computer Aided Verification (CAV), 2010, pp. 104–118.

[48] J. Jaffar, J. Navas, and A. Santosa, “Unbounded symbolic execution
for program verification,” in Int. Conf. Runtime Verification, 2011, pp.
396–411.

[49] J. Jaffar, V. Murali, J. Navas, and A. Santosa, “TRACER: A symbolic
execution tool for verification,” in Int. Conf. Computer Aided Verifica-
tion (CAV), 2012, pp. 758–766.

[50] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” The Journal of Symbolic Logic, vol. 22,
no. 3, 1957, pp. 269–285.

[51] OSGi Alliance Specifications, retrieved: 05/2015. [Online]. Available:
www.osgi.org/Specifications

[52] A. Laskavaia, “Codan- C/C++ static analysis framework for CDT,” in
EclipseCon, 2011.

[53] D. LeBerre and A. Parrain, “The SAT4J library, release 2.2, system
description,” Journal on Satisfiability, Boolean Modeling and Compu-
tation, no. 7, 2010, pp. 59–64.

[54] R. Dannenberg and G. Ernst, “Formal program verification using
symbolic execution,” IEEE Trans. Software Eng., vol. 8, no. 1, 1982,
pp. 43–52.

[55] T. Parr, Language Implementation Patterns. Pragmatic Bookshelf,
2010.

[56] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[57] E. Clarke, O. Grumberg, M. Minea, and D. Peled, “State space reduction
using partial order techniques,” Int. J. Software Tools for Technology
Transfer, vol. 2, no. 3, 1999, pp. 279–287.

[58] L. Brouwer, “Über Abbildungen von Mannigfaltigkeiten,” Mathematis-
che Annalen, no. 71, 1911.

[59] D. Denning, “A lattice model of secure information flow,” Communi-
cations of the ACM, vol. 19, no. 5, 1976, pp. 236–243.

[60] D. Peled, “Combining partial order reduction with on-the-fly model-
checking,” in Workshop on Computer Aided Verification, 1994.

[61] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving coverage criteria,”
in ECEC/FSE, 2007.

