
Implementations of Block Cipher SEED on Smartphone Operating Systems

HwanJin Lee, DongHoon Shin, and Hyun-Chul Jung
Security R&D Team

Korea Internet & Security Agency (KISA)
Seoul, Korea

{lhj79, dhshin, hcjung}@kisa.or.kr

Abstract—As more and more people are using smartphones
these days, a great deal of important information, such as
personal information and the important documents of
corporations among other things, are being saved on
smartphones. Unlike a PC, people can access another person’s
smartphone without great difficulty, and there is a high
possibility of losing one’s smartphone. If smartphone is lost
without encryption, important information can be exploited. In
addition, the open cryptographic library for PCs cannot be
used due to the limited performance of the smartphone. This
paper introduces the optimization implementation technique
for the smartphone OS and the results of using that technique.
In addition, the results of a speed comparison with the open
cryptographic library will be presented. According to the
results of comparing the one-time encryption implementation
time with the open cryptographic library, the performance
time was improved by 12% for Windows Mobile, 8.57% for
iOS, and 39.62% for Android.

Keywords-SEED; Windows mobile; iOS; Android;
implementation; blockcipher.

I. INTRODUCTION
Use of the smartphone is increasing due to the rapid

development of IT technologies. Now, we can make a call or
use various functions such as e-mailing, web surfacing, and
Office programs simply with a small smartphone. However,
the risk of loss or theft is also increasing due to the device’s
small size and light weight. Due to their inconvenient
portability, around 200,000 smartphones are lost or stolen
every month on average.

Loss of a smartphone can lead to a serious leak of an
personal information, as smartphones contain a large amount
of such information (call details, received messages, phone
numbers, schedules, location information, financial
transaction information, etc.). And smartphones are also used
for business and sales purposes. So, secondary damage can
be caused if a smartphone containing a corporation’s
sensitive information is lost or stolen.

Data encryption is very important to protect the various
types of personal information and confidential information
stored in the smartphone. SEED is block cipher that can be
used for data encryption. Because that SEED is Korean and
International Standard, the usage of SEED has been covered
the security service applications in Korea. So, application of
smartphone which needs security service must be
implemented SEED in Korea. However, a smartphone has

limited power and offers inferior performance compared to a
PC. Therefore, it is difficult to use an open cryptographic
library such as OpenSSL, which is designed for the PC
environment, in a smartphone. We need to study on the way
for the effective use of SEED in smartphone.

This paper presents the results of implementing the block
cipher SEED to a smartphone. The results of a comparison
with open cryptographic libraries (OpenSSL, BouncyCastle)
will also be presented. The SEED is a block cipher
established as an international standard ISO/IEC and the
Korean standard. Section 2 introduces the SEED and open
cryptographic libraries; Section 3 introduces smartphone
operating systems; Section 4 presents the implementation
method; Section 5 presents the implementation and
comparison results; and Section 6 presents the conclusion.

II. SEED AND OPEN CRYPTOGRAPHIC LIBRARIES

A. SEED

SEED is a 128-bit symmetric key block cipher that had
been developed by KISA (Korea Internet & Security
Agency) and a group of experts since 1998. SEED has been
adopted by most of the security systems in Korea. SEED is
designed to utilize the S-boxes and permutations that balance
with the current computing technology. The input/output
block size and key length of SEED is 128-bits. SEED has the
16-round Feistel structure. A 128-bit input is divided into
two 64-bit blocks and the right 64-bit block is an input to the
round function, with a 64-bit sub-key generated from the key
scheduling [1].

SEED has been adopted as an industrial association
standard of Korea (TTA, Telecommunication Technology
Association) at 1999 and ISO/IEC and IETF International
Standard at 2005 [2, 3].

Classification Number and Title

Korean
Standard

TTAS.KO-12.0004 : 128-bit Symmetric Block
Cipher(SEED)

International
Standard

Standard ISO/IEC 18033-3 : Information
technology - Security techniques - Encryption
algorithms - Part 3 : Block ciphers.

IETF RFC 4269 : The SEED Encryption Algorithm
※ RFC4269 obsoletes RFC 4009.

31Copyright (c) The Government of Republic of Korea, 2011. Used by permission to IARIA. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Furthermore, several standards (Cryptographic Message
Syntax, Cipher Suites to Transport Layer Security, IPsec
etc.) have been adopted as Korean standard and International
standards [4~6].

Classification Number and Title

Korean
Standard

TTAS.KO-12.0025 : Modes of Operation for The
Block Cipher SEED

International
Standard

IETF RFC 4010 : Use of the SEED Encryption
Algorithm in Cryptographic Message Syntax
(CMS)

IETF RFC 4162 : Addition of SEED Cipher Suites
to Transport Layer Security(TLS)

IETF RFC 4196 : The SEED Cipher Algorithm
and Its Use with IPsec

The usage of SEED has been covered the security service

applications such as, e-Commerce, e-mail, dedicated receiver
with Broadcasting, financial service, data storage, electronic
toll collection, VPN, Digital Right Management, etc.

In particular, under the auspices of the Bank of Korea,
eleven banks and one credit card company has launched a
pilot service of K-cash for about 600 franchisees in Seoul
since July of the year 2000. SEED has been used to protect
the privacy of the users and the transaction data in this
service.

B. Cryptographic Libraries

1) OpenSSL
OpenSSL [7] is an open cryptographic library written in

C language. OpenSSL implements most of the encryption
algorithms we use in our daily life, such as symmetric-key
ciphers, hash functions, public-key ciphers, message
authentication codes, and SSL/TLS. OpenSSL complies with
and can be used in various platforms such as Unix, Linux,
and Windows.

2) BouncyCastle

BouncyCastle [8] is an open cryptographic library written
in Java and C# language. BouncyCastle can be implemented
with J2ME, JDK 1.6, and C# API. Like OpenSSL, most
encryption algorithms used in our daily life have been
implemented.

III. SMARTPHONE OPERATING SYSTEM

A. Windows Mobile

Windows Mobile [9] is a mobile operating system

developed by Microsoft that was used in smartphones and
mobile devices. It is used in a variety of devices such as
smartphone, vehicle on board and portable media devices etc.
The current and last version is "Windows Mobile 6.5".

Windows Mobile can be classified as Application,
Operating System and Cryptographic Service Provider (CSP).
And it includes the Cryptography API set (CryptoAPI),
which provides services that enable application developers to
add encryption and decryption of data.

Figure 1. Architecture overview of Windows Mobile

Windows mobile provides service encryption, hashing

and digital signature, etc. Windows mobile supports many
block ciphers such that DES, 3DES, IDEA, CAST, RC5 and
AES-128/192/256. Supporting hash functions are MD2,
MD4, MD5, SHA1/256/384/512 and HMAC. And digital
signatures are RSA, DSS and ECDSA. But it does not
support SEED. So, application developer must program
SEED or port OpenSSL for using SEED in Windows mobile.

B. iOS

iOS [10] is the operating system that runs on iPhone,

iPod touch, and iPad devices. Although it shares a common
heritage and many underlying technologies with Mac OS X,
iOS was designed to meet the needs of a mobile environment,
where users’ needs are slightly different.

The iOS security APIs are located in the Core Services
layer of the operating system and are based on services in the
Core OS (kernel) layer of the operating system. Core
Services layer includes key chain service, certificate, key,
trust service and randomization service and supports library
for a symmetric-key Cipher, digital signature etc. The iOS
security APIs are based on services in the Core Services
layer, including the Common Crypto library in the libSystem
dynamic library. Common Crypto library supports DES,
3DES, AES-128/256 block cipher. And it supports MD2/4/5,
SHA-1/224/256/384/512 hash functions. But it does not
support SEED as windows mobile. So, SEED be
programmed or ported Openssl in application of iOS.

Figure 2. Architecture overview of iOS

32Copyright (c) The Government of Republic of Korea, 2011. Used by permission to IARIA. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

C. Android

Android [11] is an open-source software stack for mobile

devices that includes an operating system, middleware and
key applications. Google Inc. purchased the initial developer
of the software, Android Inc., in 2005.

Android can be classified as system layer, crypto library
and crypto class. Android developer can use java.security
package and Javax.crypto package in crypto library.
java.security package provides all the classes and interfaces
that constitute the Java security framework. java.security
package supports certificate and signature. javax.crypto
package provides the classes and interfaces for cryptographic
applications implementing algorithms for encryption,
decryption, or key agreement. javax.crypto package supports
stream cipher, block cipher, hash function and MAC.
Android does not support SEED. To use SEED, android
developer must program SEED or port BouncyCastle.

Figure 3. Architecture overview of Android

IV. 3. OPTIMIZATION ON SMARTPHONE OS

A. General

1) 32-bit processing
 ARM core version 6x version runs on 32bit.

Therefore, data processed by the algorithm is
implemented in 4 bytes.

2) Little endian
 For the ARM core environment, an algorithm was

designed and implemented, based on the little
endian.

3) Memory management
 The embedded system has a limited and inefficient

memory allocation system. The memory space for
temporary variables was allocated in advance and
re-used.

4) Loop optimization
 Unnecessary loops were reduced and repetition was

removed. For example, the ARM7 and ARM9
processors require one cycle for subtraction
processing, and three cycles for selection control
processing. That is, if subtraction is configured in a
loop, four cycles are required to process one loop. In
addition, we reduce the number of iteration as much
as possible, when “for loop” is used.

5) Variable declaration and operation

 The unsigned type variable was used. Regular
processes handle “unsigned integer” operation much
faster than “signed” operation.

B. Android

Android application development codes are compiled in a

machine-independent byte code, and executed by a Dalvik
virtual machine in the Android device.

That is, as the Java code is executed in the Java Virtual
Machine, the Android app is executed in the Dalvik Virtual
Machine. Therefore, Android’s processing speed is slower
than that of native codes.

To improve the processing speed, Java provides JNI
(Java Native Interface), which accesses the source coded in
other languages, and executes the source code.

The operation of memory copy and XOR (exclusive OR),
which are most frequently used in actual encryption
algorithms, were compared. It takes about 380ms on average
when the System.arraycopy Java method is used for 4096
bytes of data. However, it takes 266ms on average when
implementing memory copy using the memcpy C function in
the JNI. As a result, we can see that the performance of
memory copy was improved by 140%. For XOP operation,
Java takes 830ms and JNI takes 161ms, which implies that
the performance of XOR operation was improved by 500%
or more.

Therefore, if the algorithm is implemented appropriately
in the Android environment using the JNI, a very efficient
encryption algorithm can be implemented.

Figure 4. Processing time of JAVA and JNI

V. IMPLEMENTATION RESULTS
This paper presented the results of the SEED encryption

speed and power consumption for each smartphone OS. In
addition, the results of the comparison with open
cryptographic libraries (OpenSSL, BouncyCastle) are also
presented. Speed was compared with the amount of
encrypted data per second and the one-time encryption time.
Power consumption was compared, based on the time used
to consume 1% of the battery. The algorithm test was
conducted in the following environment.

33Copyright (c) The Government of Republic of Korea, 2011. Used by permission to IARIA. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Figure 5. The amount of encrypted data per second

TABLE I. TEST DEVICE SPECIFICATIONS

Platform Device OS H/W specification

Open
cryptogr

aphic
libraries

Windows
Mobile

HTC
HD2

Windows
Mobile

6.5

- CPU : Qualcomm,
Snapdragon 1Ghz
- RAM : 448MB

OpenSSL

iPhone
Apple
iPhone

3GS
iOS 4.0

- CPU : ARM,
Cortex A8 600Mhz

- RAM : 256MB
OpenSSL

Android
HTC

Nexus
One

Android
2.2

(Froyo)

- CPU : Qualcomm,
Snapdragon 1Ghz
- RAM : 512MB

BouncyC
astle

A. Results of speed comparison

The data processing amount per second refers to the

amount of data be encrypted by SEED for one second. CBC
(Cipher-block chaining) was used as a mode of operation.
The length of the input plaintext was set to 1, 4, 16, 64, and
256 blocks respectively (1 block = 128 bits). The length of
the input plaintext is 4 means input of SEED-CBC is 4
blocks plaintext and operating number of CBC is 4. The
length of the input plaintext is considered for size of
information in storage of smartphone such as phone numbers,
Social Security number etc. To reduce the possibility of error,
we repeat more than 1000 seconds. And results were divided
by process time. For example, in case 4 blocks, SEED-CBC

only operates 4 blocks plaintext until time is more than 1000
seconds.

According to the results of the comparison of the data
encrypting amount per second, Windows Mobile was
improved by 4.22~10.98%, whereas iOS and Android were
improved by 3.25~14.56% and 134.95~1153.73%,
respectively. As a result, windows mobile and iOS did not
show a great improvement. But Android showed high
improvement rate for using JNI. We think that increasing of
encrypted data per second depending on the length of the
input plaintext because memory input/output. With smaller
block, it is decreasing number of memory access. 1 block
access memory 256 times when 256 blocks access memory
once. For the cases of Windows Mobile and iOS, the
improvement rate decreases while increasing the size of
input data to encrypt. We think that the reasons are way of
optimization. It's not optimization of algorithm structure but
optimization of algorithm implementation. It is depend on
time of access memory and smartphone OS. For the case of
Android, the improvement rate increases continuously,
because that BouncyCastle is very slow. But it will reach the
limit.

The one-time encryption time refers to the time period
required to execute an encryption algorithm once. To reduce
the possibility of error, the average of the results of 80,000
repeated executions was calculated. According to the results
of the comparison, Windows Mobile improved by 12%,
whereas iOS improved by 8.57% and Android by 39.62%.
The results are different from results of encrypted data per
second. We think that the reasons are difference of
calculation methods. Results of encrypted data per second
include checking time whether more than 1000 seconds or
not.

34Copyright (c) The Government of Republic of Korea, 2011. Used by permission to IARIA. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

TABLE II. ONE-TIME ENCRYPTION TIME

(ms/1call) Windows
Mobile iOS Android

Ours 0.0044 0.0064 0.032

OpenSSL
(BouncyCastle *) 0.0050 0.0070 *0.053

Improvement
rate (%) 12% 8.57% 39.62%

B. Electricity consumption

The time taken to use 1% of the battery was measured,

when executing an encryption algorithm. The results of the
comparison of electricity consumption show a power saving
of 19.9% for Windows Mobile, and of 14.85% and 12.36%
for iOS and Android respectively.

TABLE III. ELECTRICITY CONSUMPTION COMPARISON

sec Windows
Mobile iOS Android

Ours 120.21 125.3 112.45

OpenSSL
(BouncyCastle *) 100.2 109.1 100.08

Improvement
rate (%) 19.97% 14.85% 12.36%

VI. CONCLUSION
It is essential to protect the information stored in

smartphones owing to their increasing popularity and various
functions. However, a method of optimization other than a
PC is required due to the limited performance of the
smartphone. This paper presents the results of the optimal
application of the block cipher SEED, which was selected as
both the international standard ISO/IEC and the Korean
standard, to the smartphone. Also, the results of comparing
the open cryptographic library OpenSSL (including the
SEED) with BouncyCastle were presented.

According to the results of optimizing and implementing
the SEED in smartphones, SEED provided better
performance than the open cryptographic library in all areas
(i.e., data processing amount per second, one-time
encryption execution time, and electric consumption). In
particular, Android showed a remarkably enhanced
performance than other OS when optimized with the JNI.

Recently, the smartphone has been attracting ever more
attention among the general public, and the number of
service environments that capitalize on this increasing
attention is also rising continuously. Accordingly, the
number of environments that require a high level of security
is also increasing, such as smart office and mobile cloud. To
create a safe smartphone use environment, methods of
optimizing the various encryption algorithms are needed.
Consequently, research on optimizing the algorithms, such as
public key cipher and SSL/TLS, is needed.

ACKNOWLEDGMENT
This research was supported by the ICT Standardization

program(2011-PM10-18) of MKE(The Ministry of
Knowledge Economy)

REFERENCES
[1] Korea Internet and Security Agency, Block Cipher Algorithm SEED,

Available from http://seed.kisa.or.kr/eng/about/about.jsp. [Accessed:
June 5, 2011]

[2] ISO/IEC 18033-3, Information Technology–Security Techniques–
Encryption Algorithms–Part 3: Block Ciphers, ISO, 2005.

[3] Lee, H., Lee, S., Yoon, J., Cheon, D., and J. Lee, "The SEED
Encryption Algorithm", RFC 4269, December 2005.

[4] J. Park, S. Lee, J. Kim, and J. Lee, "Use of the SEED Encryption
Algorithm in Cryptographic Message Syntax (CMS)", RFC 4010,
February 2005.

[5] H.J. Lee, J.H. Yoon, and J. Lee, "Addition of SEED Cipher Suites to
Transport Layer Security (TLS)", RFC 4162, August 2005.

[6] H.J. Lee, J.H. Yoon, S.L. Lee, and J. Lee, "The SEED Cipher
Algorithm and Its Use with IPsec", RFC 4196, October 2005.

[7] OpenSSL, Available from http://www.openssl.org/. [Accessed: June 5,
2011]

[8] BouncyCastle, Available from
http://www.bouncycastle.org/index.html. [Accessed: June 5, 2011]

[9] Windows Mobile 6.5 MSDN, Available from
http://msdn.microsoft.com/en-us/library/bb158486.aspx. [Accessed:
June 5, 2011]

[10] iOS Refernece Library, Available from
http://developer.apple.com/library/ios/navigation/. [Accessed: June 5,
2011]

[11] Android, Available from http://www.android.com/. [Accessed: June 5,
2011]

[12] C. R. Mulliner, “Security of Smartphones”, Master’s Thesis
submitted in University of California, Santa Barbara, 2006.

[13] Lisonek, D. and Drahansky, M., "SMS Encryption for Mobile
Communication", the 2008 International Conference on Security
Technology, 2008, pp. 198-201.

[14] F. Fitzek and F. Reichert, "Mobile Phone Programming and its
Application to Wireless Networking", Springer, 2007.

[15] L. Shurui, L. Jie, Z. Ru, and W. Cong, "A Modified AES Algorithm
for the Platform of Smartphone", 2010 International Conference on
Computational Aspects of Social Networks, 2010, pp. 749-752.

[16] F. M. Heikkila, "Encryption: Security Considerations for Portable
Media Devices," IEEE Security and Privacy, vol. 5, no. 4, 2007, pp.
22-27,

[17] JLC. Lo, "A framework for cryptography algorithms on mobile
devices", Master's Thesis, 2007.

[18] S. M. Habib and S. Zubair, "Security Evaluation of the Windows
Mobile Operating System", Master's Thesis, 2009.

[19] Asghar, M.T., Riaz, M., Ahmad, J. and Safdar, S., "Security model
for the protection of sensitive and confidential data on mobile
devices", International Symposium on Biometrics & Security
Technologies, 2008, pp. 1-5.

[20] A. Visoiu and S. Trif, "Open Source Security Components for Mobile
Applications," Open Source Science Journal, vol. 2, no. 2, 2010. pp.
155-166.

35Copyright (c) The Government of Republic of Korea, 2011. Used by permission to IARIA. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

