
StegoWeb: Towards the Ideal Private Web Content Publishing Tool

Tamás Besenyei, Ádám Máté Földes, Gábor György Gulyás, Sándor Imre
Department of Telecommunications

Budapest University of Technology and Economics
Magyar tudósok körútja 2., 1117 Budapest, Hungary

tamas@besenyei.net, foldesa@hit.bme.hu, gulyasg@hit.bme.hu, imre@hit.bme.hu

Abstract—Privacy breaches through profiling constitute a

considerable threat to users of Web 2.0 services. While many

concepts have been proposed to address this issue by allowing

users to encrypt, obfuscate, or otherwise conceal information

of their choice, all have certain limitations. In this paper, we

survey the available solutions, and propose a taxonomy for

classifying them based on a revised evaluation scheme that

builds upon our previous work. Our main contribution is a

model that harnesses steganographic techniques in order to

hide sensitive data, and the description of a proof-of-concept

implementation thereof that allows a user to hide profile data

on a website without installing any sort of software aside from

a conventional web browser.

Keywords-Web 2.0; web privacy; user content;

steganography

I. INTRODUCTION

As the use of Web 2.0 services – most notably Social
Networking Sites or SNSes – is becoming more and more
widespread, the privacy-related questions of the sensitive
information published there gain significance in a similar
tact. The term ‘profiling’ is used to describe activities which
involve collecting data about a person from various sources
(e.g. customer preferences in a webshop and personal data
published on social networking websites), and merging the
pieces of information into a single record, called a profile.
Since Web 2.0 services are based on user-created content,
profilers can use these services to complement their profiles
[4]. Accurate user profiles serve as useful bases for many
dubious or outright malicious activities, including targeted
advertising and dynamic pricing. This tendency is likely to
get worse as real-time searching becomes a core feature in
search engines, which makes revocation of information
impossible. Therefore, this problem is gaining importance
frighteningly fast.

The techniques of profiling have evolved greatly since
the birth of the World Wide Web. When IP addresses were
fixed, they could be used to identify a user on the Web. Later
on, as Internet Service Providers adopted the use of dynamic
IP addresses, the main basis of identifying a user became
unique identifiers in HTTP cookies and, later, ‘Flash
cookies’ or LSOs [2]. The evolution of tracking techniques is
continuous; the concept of Evercookies [15] and the
Panopticlick browser fingerprinting experiment [16] indicate
that research and improvements in the area have certainly not
concluded. Furthermore, information superpowers – service

providers that offer a wide range of products to their users –
are a major threat [4], because they can have access to
various data about the user.

As such, there is a need for applications that protect the
user against these actors through limiting the information of
personal nature that a profiler potentially has access to. Our
previous work [4] introduced such a piece of software called
BlogCrypt, a Firefox extension that could encrypt and
decrypt data on websites with as little user interaction as
possible. In that paper, we showed that BlogCrypt was an
efficient countermeasure against profiling, but, as it does not
conceal encryption, users are likely to face countermeasures
on Web 2.0 sites where encrypting or otherwise obfuscating
user content is forbidden by the Terms of Use.

Our main contribution in this paper is a steganographic
approach to this problem, which, albeit not a direct successor
or an improved version of BlogCrypt, addresses the same
issue as it did, but in a slightly different context. The main
reason is that steganography is ‘expensive’, i.e. only a small
amount of data can be stored with such techniques.
Therefore, while BlogCrypt was a useful solution to encrypt
blog posts, StegoWeb is more likely to be applicable in the
context of profile data on SNSes. If our application is used
for this purpose, a profiler will not be able to link our
personal information to other data she has potentially
obtained about us.

The paper is structured as follows. In Section II, we
survey already existing implementations and concepts that
are destined to hinder profiling, and provide a taxonomy for
classifying them. Then, in Section III, we discuss our own
implementation, and analyse it in terms of advantages and
drawbacks. In Section IV, we evaluate our implementation
from the aspect of key management, and propose some
improvements. Section V describes how the concept can be
used for identity management purposes. Finally, we conclude
our work in Section VI.

II. EVALUATION OF EXISTING SOLUTIONS

In this section, we discuss the already existing solutions
for the aforementioned issues, and categorise them into a
taxonomy. Some of these solutions are discussed and
classified in our previous work [4].

A. Existing Solutions

There are many different solutions for protecting user
content on Web 2.0 sites. We discussed the merits and

109Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

shortcomings of most of them in our previous work [4]. The
currently available solutions can be categorised as follows:
1) Universal applications. These applications can

cooperate with arbitrary services that provide a generic
interface such as a textbox. Some of them (e.g. BlogCrypt
and NOYB – Secret Messaging [9]) are implemented as
standalone Firefox extensions, while others need additional
external software to operate (e.g. FireGPG [10]).
2) Site-based applications. These programs (or models)

are destined to work with a single Web 2.0 website.
Examples of such applications include Lockr [11],
FaceCloak [12] and FlyByNight [13]. Newer concepts
include Persona [7], which is essentially a privacy-enhanced
SNS. As a proof-of-concept implementation, the authors
integrated their model with Facebook in such a way that the
backend is a Facebook application. Another site-based
application is FaceVPSN [8], which is a Firefox extension
that allows users to import fellow Facebook users’ profile
data into a local database, and substitute the corresponding
attributes with the locally stored information (if available)
when the profile page of a user is loaded. Lastly, SeGoDoc
[6] is essentially a middleware for encrypted storage on
Google Docs. It is implemented as a Firefox extension, and
works on-the-fly, completely automatically.
3) Models without available implementations. These are

models that were published in academic research, but their
implementation is not available. Examples for this are
NOYB – Social Networking [14] and an unnamed
community-based access control concept that – similarly to
BlogCrypt – assumes server-side storage of encrypted data
[5].

B. Evaluation Model

In our previous work [4], we discussed a categorisation
scheme for the available solutions, and described the
principles based on which its attributes are defined. The
revised version of the categorisation scheme is summarised
in Table I. We do not discuss the results that have already
been published in our previous work, and listed only some
solutions that have appeared since then, namely SeGoDoc,
Persona, FaceVPSN and our own solution StegoWeb.
Furthermore, we have done away with the attribute
‘Autonomy’, and defined new attributes and categories, too:
1) Key distribution. Possible categories: manual (M),

partially automatised (PA), fully automatic (Auto).
2) Independence. Possible categories: operating system

independent (OS), browser independent (B), service
independent (S).
3) Realisation. Possible categories: external software

(ExSw), browser extension (Ext), bookmarklet (B).

C. Taxonomy of Private Web Publishing Solutions

We have introduced a new taxonomy for these services,
which is depicted on Fig. 1. The leading idea during the
preparation of the taxonomy was to model how the user

relates to the application before starting to use it. Therefore,
the first set of attributes which we chose to branch the
universe of access control applications for published data
were gradual deployment, realisation and ease of installation.
If gradual deployment is not possible, the application is
realised as external software, or its installation is
complicated, we put the solution into the category
‘impractical’; otherwise it is labelled as ‘practical’.

The fork of the category ‘practical’ has been chosen to be
based on the independence of the application. If the program
is not at least operating system independent, or it is service
specific, it is classified as ‘dependent’, else it is put into the
category ‘independent’. The reason for this is that the user is
likely to prefer solutions that can be used in several
environments, e.g. if she intends to run an application both
on her corporate computer with Windows and her home
computer running Linux.

The split on category ‘independent’ has been based on
discoverability and key distribution, because these factors
have major influence on the security properties of the
software. (We have not included the type of encryption,
since it does not tell much about the security properties of
the application.) If the presence of an application is
discoverable, i.e. its discoverability attribute is ‘crypto’, or
key management is not automatic, the solution is classified
as ‘recommended’. In other cases, it is assigned the label of
‘smoothly usable’.

Lastly, the fourth split considers compromises and ease
of usage. These factors have a major impact on user
experience, so they are likely to influence the user’s relation
to the software in the long run. Based on this idea, we have
split the category ‘recommended’ into ‘average’ and ‘good’;
if the application seriously hinders the use of the host
application (i.e. the Web 2.0 service it is applied on), or it is
cumbersome to use, we use the former category, else we put
it in the latter. The category ‘smoothly usable’ is split into
‘powerful’ and ‘ideal’ based on a similar reasoning.

The column ‘Taxonomy type’ in Table I. summarises the
results of fitting the taxonomy onto the applications
discussed in Section II A. It can be seen that all current
solutions that are discussed in this paper are ‘dependent’,
since they are service specific. Our own solution, besides
having other merits, is service independent, and is easy to
use, as can be seen in the discussion in Section III.

Figure 1. The taxonomy of access control solutions.

110Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

Therefore, it falls into the category ‘good’. It must be noted
that this result could be improved by implementing the ideas
discussed in Section IV.

III. STEGOWEB: A SIMPLE BOOKMARKLET

Our solution called StegoWeb is implemented as a
bookmarklet, i.e. as a simple program that can be executed
by clicking on a bookmark in the browser. In this section, we
describe the model on which it is based, and then provide a
description of the actual implementation. The simple
usability and the absence of special software requirements
were fundamental aspects during the design phase.

A. Model of StegoWeb

Our model defines four separate entities:
• Browser: Operations can be controlled by the user

with installed bookmarklets.
• Web service: It stores the fake data which serves as

a pointer to the location of the real data on a URL
shortener service (see below).

• Application storage: It stores JavaScript libraries
realising the core functionality of StegoWeb.

• URL shortener service: It stores the real data in an
obfuscated form. Arbitrary URL shortener service
will do, provided that it supports the aliasing
feature, preferably complemented by the ability to
delete already registered aliases, e.g. to revoke keys.

We define the following primitives for describing the
operation of the algorithms:

• e(x, k): Encrypts x with key k.
• d(x, k): Decrypts x with key k.
• h(x): Returns the one-way hash (digest) of x.
• cat(x1, x2, ...): Concatenates its arguments.
• fetch(x): Returns the data field of the URL

registered under the alias x at the URL shortener
service.

The inputs of the hiding and revealing algorithms are as
follows:

• KEY: A key for a symmetric-key encryption
algorithm.

• FAKE_URL: The address of the website which
contains the fake data.

• REAL_DATA: An atom of data to be hidden,
corresponding to some content on FAKE_URL.

• XPATHS: The XPath expressions corresponding to
the elements in FAKE_URL for which REAL_DATA is
to be hidden. (In our implementation, the user has
to provide these by highlighting text on the
webpage.)

When performing hiding, three parameters are considered
for each piece of fake data: its XPath, the corresponding
original data, and the key. The operation is executed in two
steps. First, the XPath expressions are hidden, and then the
real data. These algorithms can be described as follows:

• XPath hiding:
ALIAS := h(cat(KEY, FAKE_URL))
DATA := e(XPATHS, KEY)

• Data hiding:
ALIAS := h(cat(KEY, FAKE_URL, XPATH))
DATA := e(REAL_DATA, KEY)

After each sub-operation, a URL
http://example.com/?data='DATA' is registered under the
alias ALIAS at the URL shortener service. Technically, the
domain part of the address is arbitrary, but it is wise to
choose a popular website to avoid attracting attention.

Real data can be revealed in two steps, too, as follows:
• Revealing XPaths:

ALIAS := h(cat(KEY, FAKE_URL))
XPATHS := d(fetch(ALIAS), KEY)

• For each entry in XPATHS, revealing real data:
ALIAS := h(cat(KEY, FAKE_URL, XPATH))
DATA := d(fetch(ALIAS), KEY)

The entire process of revealing the real data is depicted
on Fig. 2.

B. Description of the Implementation

Our implementation is realised as a set of bookmarklets
that download a short JavaScript code which realises the
aforementioned operations. We have used MD5 as a hash
algorithm, AES-CBC as a cipher, and http://is.gd as a URL
shortener service.

TABLE I. CLASSIFICATION OF CURRENT SOLUTIONS

P
ro
g
ra
m

G
ra
d
u
a
l

d
ep

lo
y
m
en
t

In
d
e-

p
en
d
en

ce

U
n
iv
er
sa
li
ty

C
o
m
p
ro
-

m
is
es

E
a
se
 o
f

u
sa
g
e

E
a
se
 o
f

in
st
a
ll
a
ti
o
n

E
n
cr
y
p
ti
o
n

D
is
co
v
er
-

a
b
il
it
y

K
ey

d
is
tr
ib
u
ti
o
n

R
ea
li
sa
ti
o
n

T
a
x
o
n
o
m
y

ty
p
e

SeGoDoc [6] N/A OS SS 50-99% Min NoConf Sym Crypto N/A Ext
Depend-

ent

Persona for
Facebook [7]

Possible OS SS 50-99% Min NoConf Both
Crypto+
Fake

Auto Ext
Depend-

ent

FaceVPSN [8] Possible OS SS 50-99% Normal NoConf N/A Fake N/A Ext
Depend-

ent

StegoWeb Possible
OS, B,

S
GI 50-99% Normal NoConf Sym

Stego+
Crypto

M B Good

Ideal Possible
OS, B,

S
UI 100% Min NoConf N/A

Stego+
Crypto

Auto Ext or B Ideal

111Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

To hide data, the user has to navigate to the website that
contains the fake data, click on the selection bookmarklet,
and select some text on the page (Fig. 3 (a)). The user is then
prompted to enter the corresponding real data. These steps
can be repeated as many times (i.e. with as many pieces of
text) as desired. When finished, the user has to click on the
hiding bookmarklet, which asks the user to type the key to be
used for the hiding (Fig. 3 (b)).

To reveal data, the user has to go to the website
containing the fake data, and click on the revealing
bookmarklet. A dialog box appears where the user has to
enter the key. If the right key was provided, each piece of
fake data is substituted with the corresponding real data,
completely automatically (Fig. 3 (c)).

C. Analysis

Our solution slightly deviates from the classical idea of
steganography, where information is hidden directly into a
cover media, the result of said operation being the stego
media. However, our opinion is that classifying this
technique as steganographic is appropriate, since the result
of its application is that the very fact of the existence of
hidden information is hidden from all unauthorised parties.
In this – somewhat broader – sense, the cover and stego
media can be defined as the combination of the fake website
and the set of URLs registered at the shortener service.
Indeed, it is impossible to tell if an alias contains hidden
information without the key and the fake webpage, provided
that the domain part does not give it away. In other words,
StegoWeb makes the fake URL hide in the crowd of real
URLs. Of course, URLs registered by StegoWeb can only
accidentally lead to valid websites, but the case of a user
error and that of the use of StegoWeb is not easily
distinguishable by the service provider. This is a
steganographic quality, even if symmetric-key encryption is
used as a core idea of the algorithm. (E.g. TrueCrypt Hidden
Volumes [17] are based on hiding cryptograms, too.)

The major advantage of the model is that it can be
implemented with free and public web services (just like our
proof-of-concept implementation), and it does not require

any software to be installed. It is easy to use, and the real
data is accessible only on the client side, so the solution is
not dependent on the trustworthyness of third party services.
Indeed, the URL shortener service and the application server
can be easily replaced by other providers, as long as the
former complies with the requirements discussed in Section
III. A. Furthermore, it is independent both from the browser
and the operating system, and therefore it can be used on any
platform that can run JavaScript code, which is customary in
all modern browsers.

A potential disadvantage is that bookmarklets do not run
automatically once the webpage containing the fake data is

Figure 2. Revealing real data.

(a)

(b)

(c)

Figure 3. Using StegoWeb [18].

112Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

loaded, and therefore user interaction is required to reveal the
real profile. Furthermore, the password cannot be stored in
the browser, so it must be typed again for each execution.
(This drawback will be easily eliminated when the
penetration of HTML5 local databases will make efficient
browser-side storage possible.) Updating the real data is also
a problem given that the key has to be renewed every time.
Moreover, revocation is possible only if the URL shortener
supports deleting aliases, so it is wise to choose such a
service that supports this feature.

It must be noted that there is a risk pertaining to the third
parties (i.e. the web service, the application storage, and the
URL shortener) that our solution relies on. First of all, any of
these may stop functioning, e.g. if a server falls victim to a
denial-of-service attack. As such, this vulnerability
constitutes an availability problem. Furthermore, the scripts
hosted on the application storage might be ‘poisoned’, as is
the case when a cracker replaces the StegoWeb libraries with
her malicious code. This is a classical system security risk.
Fortunately, both vulnerabilities can be eliminated by using
multiple application storage and URL shortener services and
comparing the information obtained from all sources. Digital
signatures may also be considered for additional protection.

To test the implementation, we have verified our solution
with several websites. Test runs of the software can be
accessed through the webpage http://stegoweb.pet-portal.eu.

IV. KEY AND IDENTITY MANAGEMENT

In this section, we discuss the possible ways of managing
keys and identities in our model. If HTML5 databases were
widespread enough, these ideas would have made it into the
final implementation. Until then, however, it does not make
much sense to try to implement automatic key management
into our bookmarklet, because an efficient, yet platform-
independent means of client-side storage is absent.

A. Key Management

Symmetric-key algorithms use only one key for
encryption and decryption (or the encryption key can easily
be transformed into the decryption key and vice versa). In
our model, data is stored only on the sites of URL shortener
services, and, assuming a symmetric-key algorithm as a
basis of the implementation, the alias depends on this single
key and the URL of the page containing the fake data.
Consequently, there is no obstacle to hiding information
with different keys for a given profile page. This key can be
unique either for each user or for a group, depending on the
recipients themselves. The revocation of a key is also simple
by deleting the URL alias (if such a feature is implemented
on the URL shortener).

Asymmetric-key algorithms use two different keys: a
public for encryption and a private for decryption. In
StegoWeb, the algorithm for hiding using asymmetric
encryption could be similar to the symmetric case. The main
difference is that a symmetrical message key is created for
each occasion of hiding, and this key is encrypted by the
addressees’ public keys, who get the cryptograms in private
messages. (N.b., if asymmetrical keys were the bases of the

encryption phase during hiding, the ‘hidden’ URLs would
be easy to reproduce by everyone, and therefore the goal of
steganography would be thwarted, hence the idea of
message keys.) The revocation of a key can be performed
with the deletion of the alias, in this case, too.

The main problem of asymmetric-key cryptography is
the distribution of keys. This obstacle can be easily
overcome for certain services; for instance, users of a social
network may share this key on their profile page. A script
can then collect the keys from their friends’ profiles,
without explicit communication with them. In other cases, a
PGP-like web of trust mechanism [1] can be used for
distributing keys, but this involves communication between
the participating users.

B. Privacy-Enhancing Identity Management

Here we propose a Privacy-Enhancing Identity
Management (PIDM) model for StegoWeb. Our model is
based on a social networking service whence public keys of
users can be obtained, and where the objective is to conceal
profile attributes. A general PIDM scheme offers a hierarchy
for managing profiles where attributes of the profiles are
inherited from their ancestors in the tree structure or set by
the user for the specified profile [3].

This concept can be customised for StegoWeb based on
asymmetric and symmetric-key cryptography. If all users
publish their public keys on their profile page, sending
information (e.g. real profile data) involves looking up the
public key, using the hiding algorithm as described in
Section III. A, and then notifying the addressee out-of-band,
e.g. through the private messaging feature of the social
networking website. This works excellently for a single user,
but it would require too many aliases at the URL shortener
for many addressees. As such, we suggest a hierarchy of
groups, each of which has its assigned symmetric key. The
users themselves are at the bottom of the hierarchy, and each
of them gets the secret keys of the groups that are located
between the root of the tree and them when they are added.
Then, if one wants to reveal her profile data to a group of
users, she does the encryption part of the hiding algorithm
with all the intermediate keys, and then registers the URL at
the shortening service. Each addressee can then try the
revealing algorithm with all key combinations she is aware
of. (N.b., all of them got at least one combination of secret
keys when they were added to the hierarchy, but they could
have got multiple if they were included in multiple groups.)

It can be seen that the number of users in a group defines
a trade-off between the number of URLs to be created by the
sender and the difficulty of revoking a group key; if one
defines groups with high granularity, the sender has to use
many different key combinations to publish her real profile
information, but ‘unfriending’ someone is not difficult due to
the low number of users in the same group, and conversely,
if a group has many users, the initial effort required from the
sender is low, but rekeying the group is cumbersome if the
fluctuation is high.

It is also interesting to consider the model from the
perspective of plausible deniability. One can create multiple

113Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

hierarchies for the same set of social network friends, and
send different profile information on both. Then, if an
addressee is forced to surrender her keys, she can hand over
those that lead to fake information, and deny the existence of
another set of keys, provided that the fake profile
information is plausible. This way, the sender’s profile data
can be effectively protected even from powerful third parties.

V. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the threats that profiling
poses to users, and categorised the existing solutions that aim
to address this problem. The basis of comparing the
applications we could find in academic literature was a
categorisation scheme based on important attributes that
apply to virtually all such applications, and a taxonomy
based on these attributes. Then we proposed an own model,
and discussed our own implementation thereof. We showed
that, through the realisation as a bookmarklet, our solution is
not only secure thanks to the underlying steganographic
principles, but it is also very easy to use, versatile and as
platform independent as possible, the only requirement being
a browser that can interpret JavaScript code.

As far as possible improvements are concerned, we
believe that the most crucial deficiency is the lack of key and
identity management. We have described some alternatives
for this in Section IV. When HTML5-based local storage
becomes a standard in all modern browsers, this feature can
be easily implemented in a completely platform independent
way, which is, we argue, paramount for such solutions.
Additionally, these features can be enhanced with GUIs
created with JavaScript.

Another way of implementing key and identity
management would be to realise our solution as a browser
extension, so that the application could use the local storage
space of the browser itself. This could possibly lead to being
bound to a single platform; however, implementing the
application as an extension can be advantageous, because the
revealing algorithm could be triggered automatically. Such a
feature is suitable especially for use with social networking
profiles, as these are webpages that have a more or less fixed
structure, in contrast to blogs, photo sharing websites, etc. It
must be noted that the extension to be implemented is very
simple, so it could be easily realised for all modern browsers.

Finally, it would be interesting to verify the
implementation in an experiment involving several users.
This way, both user experience (e.g. ease of use) and other
fundamental properties of the algorithm (e.g. its
steganographic security and capacity properties) could be
assessed. The results would provide important feedback
about what we should improve in the implementation, and a
more in-depth comparison to other similar implementations
would be possible, too.

ACKNOWLEDGEMENT

We would like to thank the High Speed Networks
Laboratory for financially supporting our work.

REFERENCES

[1] B. Schneier, Applied Cryptography, John Wiley & Sons, Inc.,
United States of America, 1996.

[2] B. Krishnamurthy and C. Wills, “Privacy diffusion on the
web: a longitudinal perspective,” Proc. of the 18th
international conference on World wide web, April 2009, pp.
541–550., doi: 10.1145/1526709.1526782.

[3] G. Gy. Gulyás, R. Schulcz, and S. Imre, “Modeling Role-
Based Privacy in Social Networking Services,” Proc. of the
2009 Third International Conference on Emerging Security
Information, Systems and Technologies, SECURWARE, June
2009, pp. 173–178, doi: 10.1109/SECURWARE.2009.34.

[4] T. Paulik, Á. M. Földes, and G. Gy. Gulyás, “BlogCrypt:
Private Content Publishing on the Web,” Proc. of the 2010
Fourth International Conference on Emerging Security
Information, Systems and Technologies, SECURWARE, July
2010, pp. 123–128, doi: 10.1109/SECURWARE.2010.28.

[5] Y. Zhu, Z. Hu, H. Wang, H. Hu, and G-J. Anh, “A
Collaborative Framework for Privacy Protection in Online
Social Networks,” Cryptology ePrint Archive: Report
2010/491, 2010.

[6] D’Angelo, G., Vitali, F., and Zacchiroli, S, “Content
Cloaking: Preserving Privacy with Google Docs and other
Web Applications,” Proc. of the 25th Annual ACM
Symposium on Applied Computing, March 2010, pp. 826–
830, doi:10.1145/1774088.1774259.

[7] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D.
Starin, “Persona: an online social network with user-defined
privacy,” Proc. of the ACM SIGCOMM 2009 conference on
Data communication, August 2009, pp. 135–146, doi:
10.1145/1592568.1592585.

[8] M. Conti, A. Hasani, and B. Crispo, “Virtual private social
networks,” Proc. of the first ACM conference on Data and
application security and privacy, February 2011, pp. 39–50,
doi: 10.1145/1943513.1943521.

[9] NOYB: Posting Secret Messages on the Web,
http://adresearch.mpi-sws.org/noyb.html, retrieved on
March 27th, 2011.

[10] FireGPG – Welcome to the official website of FireGPG!,
http://getfiregpg.org/s/home, retrieved on February 19th, 2010.

[11] A. Tootoonchian, K. K. Gollu, S. Saroiu, Y. Ganjali, A.
Ganjali, and A. Wolman, “Lockr: social access control for
Web 2.0.,” Proc. of the first workshop on Online social
networks, August 2008, pp. 43–48, doi:
10.1145/1397735.1397746.

[12] W. Luo, Q. Xie, and U. Hengartner, “FaceCloak: an
architecture for user privacy on social networking sites,” Proc.
2009 International Conference on Computational Science and
Engineering, IEEE Press, August 2009, pp. 26–33, doi:
10.1109/CSE.2009.387.

[13] M. M. Lucas and N. Borisov, “FlyByNight: mitigating the
privacy risks of social networking,” Proc. of the 7th ACM
workshop on Privacy in the electronic society, October 2008,
pp. 1–8, doi:10.1145/1456403.1456405

[14] S. Guha, K. Tang, and P. Francis, “NOYB: privacy in online
social networks,” Proc. of the first workshop on Online social
networks, August 2008., pp. 49–54,
doi:10.1145/1397735.1397747.

[15] evercookie - virtually irrevocable persistent cookies,
http://samy.pl/evercookie/, retrieved on June 1st, 2011.

[16] Panopticlick, https://panopticlick.eff.org/, retrieved on
June 1st, 2011.

[17] TrueCrypt, http://www.truecrypt.org/, retrieved on June 1st,
2011.

[18] StegoWeb, http://stegoweb.pet-portal.eu/
index_en.html#usage, retrieved on June 1st, 2011.

114Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

