
A QTE-based Solution to Keylogger Attacks

Chien-Wei Hung∗, Fu-hau Hsu∗, Shih-Jen Chen†, Chang-Kuo Tso∗, Yan-Ling Hwang‡, Po-Ching Lin§ and Li-Pin Hsu¶
∗Dept. of Comput. Sci. & Inform. Eng., National Central University, Zhongli City, Taiwan (R.O.C.)

Email: winestwinest@gmail.com; hsufh@csie.ncu.edu.tw; cktso@csie.ncu.edu.tw
†Institute for Information Industry, Taipei City, Taiwan (R.O.C.)

Email: jchen@iii.org.tw
‡Dept. of Applied Foreign Languages, Chung Shan Medical University, Taichung City, Taiwan (R.O.C.)

Email: yanling@csmu.edu.tw
§Dept. of Comput. and Inform. Sci., National Chung Cheng University, Chiayi County, Taiwan (R.O.C.)

Email: pclin@cs.ccu.edu.tw
¶Dept. of Applied Inform. Sci., Chung Shan Medical University, Taichung City, Taiwan (R.O.C.)

Email: apple@csmu.edu.tw

Abstract—Nowadays keystroke logging is one of the most
widespread threats used for password theft. In this paper,
rather than detecting existing malware or creating a trusted
tunnel in the kernel, we present a different method QTE (Quick
Time Events) to protect the password that a user provides for
a web page to login to a web service. Installing such solutions
in a host only requires limited privileges of related computers.
The QTE method utilizes a canvas to cue users when their
input will be recorded or ignored by the QTE add-on, which
provides a chance for users to obfuscate keyloggers by inserting
meaningless letters among the keystrokes of their passwords.
QTE can be applied to all websites without any modification
of them.

Keywords-Authentication, computer security, keylogger, pri-
vacy.

I. INTRODUCTION

Keystroke logging is a behavior of recording keystrokes,
and a program with this property is called a keylogger.
Typically, keyloggers sniff users’ input, such as bank ac-
counts or passwords, behind the scenes and upload the
logs to attackers. Since keyloggers are easy to implement
and produce high profit, about half of malware includes a
keylogger in their code according to a Symantec’s report [1].
In 2005, more than eight hackers were accused of planning
to steal over 423 million dollars from a Japanese bank by
installing keyloggers in her systems [2], which highlights
the potential danger of keystroke logging.

In spite of many related works proposed various promis-
ing methods to defend keyloggers, they are less feasible in
practice owing to the prerequisite of having root privileges or
a dependable device. Besides, even though some companies
like Google and Facebook provide the one-time password
mechanism, it is only available for their services rather than
all websites. Furthermore, in order to use their mechanism,
one must reveal her/his personal data, such as a phone
number, to each service provider and therefore sacrifices
her/his privacy right indeed. To make matters worse, in
last year, some reports [1][3] found that about 12% of

leaked data were revealed by insiders and 96% of leaked
information are personal data.

With the popularization of computers and Internet, it is
very common for users to log in online banks or e-mail
services using public computers. However, it is challenging
to design a secure system in a public computer since
common users only have limited privileges, and various
persons can use the computer without being monitored.
Therefore, an appropriate solution for keyloggers in this
scenario must be able to be able to be actively executed by
users without special privileges and applied to all websites.
To meet the prerequisites, we propose the QTE method for
users to defend their systems against keyloggers.

The QTE method provides a secure environment for users
to input passwords in web browsers. The QTE method
records a keystroke as a letter of a password only when
the system is at a valid time interval. Valid time intervals
are interleaved with invalid time intervals. Letters input at
different time intervals are combined according to their time
interval order. QTE utilizes animation to visualize valid time
intervals, such as a special object moves over a specific
screen area. QTE allows a user to obfuscate keyloggers by
tapping keyboards haphazardly when the system is not at a
valid time interval.

In this paper, we focus on practicable solutions when
using public computers, and our work makes the following
contributions:

1) This paper provides a feasible solution to obfuscate or
bypass most kernel, hypervisor, hardware, and second-
channel keyloggers even with a privilege-limited ac-
count in the user-space.

2) Our solution can be applied to all websites rather than
a specific web service.

3) We do not rely on a password set beforehand or
disclose users’ information when using our approach.

4) Our solution will not slow down the speed of surfing
the Internet.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

5) Compared with most related work, our solution is
easier to use but provide more powerful defense to
keyloggers.

The rest of this paper is organized as follows. Section II
discusses previous work about keyloggers with the evolution
of attack and defense techniques. Section III depicts the
principle and the system design of our solutions. Section
IV gives the implementation details of our methods. Section
V evaluates our solutions with seven different user-space
and kernel-space keyloggers, and estimates the time an
attacker has to consume in order to get a password under
the protection of our mechanism. Experimental results show
that our approach is immune to all tested keyloggers. Section
VI concludes this paper and discusses the feasibility of
extending our work to more applications.

II. RELATED WORK

Since the first keylogger written by Perry S. Kivolowitz
[4] appeared in 1983, keyloggers have become an essential
element for most malware. While user-space keyloggers
like Home Keylogger and Family Keylogger can be easily
detected [5] and obfuscated by sending fake keystroke
messages [6][7], most malware nowadays uses rootkit to
hide itself in kernel or hypervisor. As a result, a lot of
previous work was proposed and can be categorized into
five types.

A. Signature-Based Solutions

A common way to detect kernel keyloggers is to use
anti-keylogger software, such as SpyReveal. Anti-keylogger
software detects keyloggers based on signatures [8]. For
hardware keyloggers, Mihailowitsch suggested differentiat-
ing it according to the clock cycles of the keyboard [9].
However, both of them require known samples or devices
for profiling; therefore, are resistless to new variants.

B. Encryption and Decryption

Another viewpoint adopted by both attackers and admin-
istrators utilizes cryptography to encrypt keystrokes in the
device drivers and decrypts them in the applications [10]–
[12]. To enhance the security, McCune used a mobile phone
to communicate with the kernel module installed on the
host with RSA encryption [13][14], and later the kernel
module transmitted encrypted keystrokes to the registered
application for decryption. Besides, similar principle is taken
by Hirano who used a hypervisor-based isolation of trusted
domain to exchange data over TLS/SSL [15].

These solutions provide stronger defense, but need root
privileges of the related computers, which is inapplicable for
public computer users, not to mention performance degrada-
tion caused by encryption and decryption. Moreover, with
the evolution of hacking techniques, some keyloggers can
even “upgrade” firmware for the purpose of concealment. A
notable event is the exploitation of Mac OS X discovered by

K. Chen [16]. More importantly, second-channel keyloggers
are the focus of public attention nowadays. This kind of
keyloggers can eavesdrop keystrokes via acoustics [17]–[19],
electromagnetism [20], registers [21], power leakage, or even
from optical sampling of mechanical energy [22]. In fact,
solutions of this type are resistless to these keyloggers.

C. Graphical Password and On-Screen Keyboard

As keyloggers become more and more sophisticated,
researchers continue developing new techniques to protect a
computer against keyloggers. Graphical passwords [23]–[26]
and on-screen keyboards [27][28], which make users type
their passwords by mice, are new mechanisms extensively
used by online banks to hedge against accounts theft.

Notwithstanding the new safeguards mentioned above,
keyloggers also developed various approaches, such as tak-
ing screen snapshots and tracking cursor events, to bypass
the protection or to facilitate information collection. The
capability of screen capturing may be the most serious threat
since everything displayed to users is also displayed to the
attacker; the attacker can therefore speculate what users
really type or click. In brief, an attacker can get passwords
simply by a screen-shot and mouse event logs.

D. One-Time Password

One defensive way chosen by Facebook is one-time
passwords [29]. Because each one-time password is only
valid for one login session and is sent to a user through
SMS by Fackbook, keystrokes logs become useless. Another
variant of one-time passwords is the two-step verification
[30] of Google that requires a random certificate as the
second verification when logging in to a Google account.

One-time passwords are one of the strongest measures
against keyloggers. However, users may need to render their
real information, such as their cell phone numbers, to service
providers, which may infringe users’ privacy surreptitiously.
Furthermore, a critical defect is that a one-time password
could only be recognized by its supporting website instead of
all websites. In other words, if the website that a user tries to
log in does not provide the one-time password mechanism,
the user cannot be protected by the mechanism. Moreover,
for each account on each website that provides one-time
passwords, in order to enable one-time passwords, a user
needs to make related setup. When a user has multiple
accounts with one-time passwords, the management of the
setup becomes a non-trivial work. However, our approach
not only can be applied to all websites without their support,
but also keep users’ privacy since they do not have to provide
their private information to our mechanism.

E. Proxy Server

For the purpose of generality, Wu, Gieseke, and Pashalidis
[31]–[34] recommend a proxy server as the intermedium
between public computers and login servers. They keep a

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

copy of passwords on the proxy, and authenticate users with
shared secrets defined beforehand such as personal questions
or answer lists. These approaches provide a convenient and
securer way to login to an account, but a compromised
server or an unethical webmaster may seriously damage
all related users. For this reason, Dinei [35] advices an
adapted version that keeps nothing but password decryption
algorithms used by users. However, this solution suffers non-
trivial performance overhead.

III. SYSTEM DESIGN

Occasionally, a user has to type her/his password on a
public computer. However, a public computer is usually
a hostile environment since it may contain any software
installed by any users, including skilled attackers. Besides,
a normal user usually has only a limited privilege on a
public computer. Thus, to develop a secure anti-keylogger
solution on a public computer, the above limitations should
be taken into account; otherwise, the proposed solution may
not be a feasible one. To satisfy the above requirements,
our solution assumes users have only limited privileges
on public computers. Furthermore, our solution does not
ask users to provide their private information or account
information beforehand. Our solution is implemented as a
browser extension that everyone can install using her/his
account.

In our design, we assume there is no Man-In-the-Middle
attack between a public computer with our extension and
a website to which a user of the public computer tries to
log in. But, if the website supports encryption, Man-In-the-
Middle attacks can be solved by encrypting all messages.
This section depicts the structures, components, advantages
and disadvantages of the QTE method first. Implementation
details will be expatiated in the next section.

A. QTE Method

QTE, which stands for Quick Time Event, is a video game
term coined by Yu Suzuki [36]. Literally, QTE requires
players to immediately perform some actions on control
devices for on-screen prompts; otherwise, they will get some
penalties or different outcomes. In other words, people may
get nothing from the event if they do not react to the prompt
in time. This idea is therefore be adopted by us to obfuscate
most sorts of keyloggers.

1) Analysis: Most keyloggers have a full privilege of a
compromised public computer while a user has a limited
privilege in a public computer. Hence, forging any keystroke
or hiding something by software may not be able to fool
keyloggers. Specifically, the only thing that can interfere
with most kernel, hypervisor, hardware, and second-channel
keyloggers is what a user really types. As a result, we convert
our problem to “When could users type keys safely?” or
“How could users know whether they could hit a keyboard
haphazardly without affecting the original result?”

Figure 1. A view of canvas components.

2) Preliminary QTE Utilization: Remind that what users
do will be ignored if they do not respond QTE in time. For
this property, the QTE method adds a canvas to visualize
both valid and invalid input areas on the screen. Furthermore,
it divides the canvas into three parts: background, hit area,
and moving foreground as shown in Figure 1. The hit area
and background do not overlap with each other.

The most crucial parts of the QTE method are the hit area
and the foreground. The foreground can be one or more
moving objects that slide over the background. A user’s
input will be memorized by the QTE add-on extension as
the characters of a password only if one moving object
is over the hit area when the user presses the keyboard.
The design therefore gives users a way to obfuscate most
keyloggers by hitting their keyboards haphazardly when no
foreground object is over the hit area. Besides, when the
cursor is in a password filed, no matter what key a user
presses on the keyboard, we replace it with an alphanumeric
character and append it to the string in the password field to
make keyloggers harder to retrieve the real password. The
alphanumeric character is randomly generated. An example
of this way is given in Figure 2, where we typed “ABC” when
the moving foreground was over the background and “123”
when it was over the hit area. Then the password field was
stuffed with meaningless characters, “i031Ta”, while the
real password was stored by the QTE add-on somewhere in
the heap segment. Afterwards, the real password was copied
to the password field just before the form was submitted;
therefore, users could still log in as though nothing was
changed.

Despite the fact that the preliminary way seems sturdy
enough to resist most keyloggers since users really press on
keyboards; it is still vulnerable to those who can capture
the screen whenever a user presses a key. To make the QTE
method more secure, we revise the preliminary way slightly
and advise an enhanced version.

3) Enhanced QTE Utilization: To begin with, we dis-
cuss functions about screen snapshots. So far as we know,

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

Figure 2. The result of typing ABC in background and 123 in hit area.

commercial spyware takes a screen-shot in three situations
according to periodical, event-triggered, and manual condi-
tions; hence, it might be insufficient to take our first counter-
measurement merely, if keyloggers are able to capture the
screen. Nevertheless, screen capturing, which chose by the
majority of spyware, has a great discrepancy with regard
to screen recording: while the former simply gets a frame
of a time point, the latter keeps track of every instant a
user acts. Therefore screen capturing, in all probability, may
miss to take a screen-shot at some critical moments, if they
do not happen at the time specified a keylogger. Thus, if
the events used to hint a user when she/he could type a
valid character should be inferred from the continuous time,
screen snapshots will no longer work.

Our prototype was inspired by the DDR machine, a
musical game which requires users to tread on corresponding
buttons when arrows on the screen become valid in a specific
area. As the instances given in Figure 3, we randomly
generate valid and invalid objects moving from left to
right over the background and hit area. Keystrokes will be
memorized as parts of a password only if a valid object
is over the hit area. Both valid and invalid objects have
the same shape. All valid objects have the same initial
color, so do invalid objects. But the initial color of valid
objects is different from the color of invalid objects. When
approaching a hidden boundary, valid objects will disguise
themselves as invalid objects by changing their color to the
color of invalid objects. In this way, even keyloggers have
the ability to log the screen whenever a user presses a key,
they still cannot obtain a password.

By virtue of QTEs, we bring up two simple ways that are
immune to most kernel, hypervisor, hardware, and second-
channel keyloggers merely with normal privileges. While
the first measure can not withstand those who can make
snapshots, we reinforce our work and make an enhanced
version that is resistant to them. Nonetheless, there might
be few scenarios which demand the most secure and con-

Figure 3. (a) The real entity was colored differently at the first second.
(b) The real entity masqueraded itself since the next second.

fidential procedure while screen recording is possible. With
a view to apply for such circumstances, we address another
innovative solution which works both safely and efficiently.

IV. IMPLEMENTATION

We implemented our solutions as a Firefox extension for
the reason that every user can install the extension alone
without special privileges of the related computer.

In order to visualize QTEs, we use the canvas ele-
ment newly introduced in HTML5 standard [37]. Although
the canvas element makes it easier to do animations in
JavaScript, it costs more resources to maintain and repaint
the same thing in different positions since the canvas element
does not remember what it had drawn. As a result, we
create only one canvas element per page to save performance
overhead.

In practice, we firstly find all password fields when a
webpage is loaded, and add event listeners for each password
control. On this ground, we can easily insert or remove
the canvas element when a control is focused or blurred.
Secondly, we replace the default keyboard events of pass-
word fields with our method, which checks whether there
exists at least one foreground object sliding over the hit area
when detecting a keystroke. If the condition is true, we will
store the key somewhere in the heap segment. However,
when the cursor is in a password control, no matter what
key a user presses on the keyboard, we replace it with a
random alphanumeric character and append it to the string
in the password control to simulate the original behavior.
Eventually, when the form is being submitted, we restore
the password control with the password string we have
memorized.

V. EVALUATION

Our evaluation is composed of two parts. Firstly, we ex-
amine the effectiveness of our solutions with seven different
user-space or kernel-space keyloggers.

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

Table I
THE LIST OF KEYLOGGERS WE HAVE TESTED.

Keylogger Level Clip-
board

Screen-
shots

Packets
Logging

Solve

Home User 3 7 7 3

Family User 3 7
Only
URL

3

Revealer Kernel 7 7 7 3

Refog Kernel 3 3
Only
URL

3

Ardamax Kernel 3 3
Only
URL

3

All-In-One Kernel 3 3
Only
URL

3

SpyAgent Kernel 3 3 3 3

A. Experiments

To meet the real circumstances, we created a privilege-
limited account on Windows XP SP3 in our machine.
Besides, our system was installed with the Firefox web
browser and seven different keyloggers including free and
commercial trials. After that, we changed to the limited
account and installed our extension without any special
privileges. The list of keylogger features and experimental
results are given in Table I.

At first, we tested the QTE method by typing the real
password when a foreground was sliding over the hit area;
otherwise, we just tapped on the keyboard arbitrarily. In the
end, we found that the noise we produced were recorded by
all keyloggers and made the real password indistinguishable.
The experiment proved that keys we hit outside the hit
area can successfully obfuscated attackers since the real
password characters were interleaved with irregular strings.
As a matter of fact, the outcome can be easily predicted
since we really pressed the keys.

To sum up, our experiments showed the feasibility that
one can bypass the monitor of keyloggers in web browsers
even though the user has lower privileges than those of
keyloggers’.

B. Attack Analysis

In this subsection, we analyze possible strategies that
attackers can adopt to bypass QTE’s protection.

If an attacker can obtain multiple keystroke samples
which are used to input the same password under a QTE
system, through common substrings analysis, the attacker
can greatly increase his chance to get the real passwords.
However, because a user usually will not use the same
public computer frequently, an attacker may not be able to
collect enough samples through a public computer. Besides,
by adopting appropriate approaches to input a password, a
user can increase the difficulty to leak the real password.
What follows is an example. Assume egi is a password.
A user can type a sequence of ‘a’ first, then a sequence

of ‘b’, and then a sequence of ‘c’, and so on, until he
types a sequence of ‘z’. But only when ‘e’, ‘g’, and ‘i’
are considered, the user will type them when the moving
foreground is over the hit area. No other character will be
typed when the moving foreground is over the hit area. As
a result, no matter how many times the password is typed,
a keylogger can only obtain a sequence of ‘a’ followed by
a sequence of ‘b’ followed by a sequence of ‘c’, and so
on. The above information is not useful for the attacker. In
the future, we plan to develop a new QTE component to
execute the above operations automatically; thus, a user can
input his password more quickly.

VI. CONCLUSIONS

While most solutions either require root privileges or leak
users’ information to service providers, we propose the QTE
method to bypass most kernel, hypervisor, hardware, and
second-channel keyloggers in the user-space even with a
privilege-limited account. In general, the QTE method gives
users a chance to obfuscate keyloggers by tapping keyboards
haphazardly without affecting the original results. Moreover,
we have tested seven different user-space and kernel-space
keyloggers, and none of them could get our real passwords.

A. Contributions

Our work demonstrates the feasibility of bypassing almost
all keyloggers, even users only have lower privileges, and
it causes no latency after logging into the related services.
Furthermore, the QTE method is compatible with all web-
sites without the need of their support. To conclude, one
can protect himself from keystroke logging with the QTE
method. The QTE method can conquer nearly all keyloggers
presumed the attacker will not record the screen and analyze
them manually.

B. Future Work

In the future, one thing that we plan to finish is applying
our solutions to all programs more than web browsers. For
the moment, we can only catch edit controls of applications
which use Win32 API to create user interface, and our
approaches can be applied to them in the same way except
that, instead of automatically inserting canvas or information
tips next to password fields, users have to select the edit
control on the screen manually. For other programs written
in Java or some languages that draw edit controls in their
ways, we can only make a screen-shot to ask users the
position of edit controls, and simulate the mouse events to
focus on it and fill passwords by user-space keystroke events.
In most cases, since keyloggers do not want to be obfuscated
by user-space events mentioned previously [6], [7], it may
be a safer way to enter passwords in this manner at present.

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

ACKNOWLEDGMENT

Our work is funded by National Science Committee of
Taiwan (ROC), and the numbers of the projects are NSC
99-2220-E-008-001 and NSC 99-2219-E-008-001.

REFERENCES

[1] Symantec, Symantec Internet Security Threat Report: Trends
for 2010, vol. 16, Symantec, 2011.

[2] B. News, “UK police foil massive bank theft,” BBC News,
BBC News, 2005.

[3] InfoWatch, Global Data Leakage Report 2010, InfoWatch,
2011.

[4] P. S. Kivolowitz. “A Program To Allow ANYONE To Crack
Unix (4.1 and 2),” http://securitydigest.org/unix/archive/006
06.11.2012.

[5] S. Ortolani, C. Giuffrida, and B. Crispo, “Bait your hook:
a novel detection technique for keyloggers,” Proc. the 13th
International Conference on Recent Advances in Intrusion
Detection, Ottawa, Ontario, Canada, 2010, pp. 198-217.

[6] Wuul, “AntiKeylogger,” 2007.
[7] Wuul, “Log This!,” 2008.
[8] SpyReveal, “SpyReveal,” 2009.
[9] F. Mihailowitsch, Detecting Hardware Keylogger, 2010.

[10] F. J. Cini, Keystroke Encryption System, US, E. P. Kristina
M. Grasso;Kristina M. Grasso, 2010.

[11] M. Kassner. “KeyScrambler: How keystroke
encryption works to thwart keylogging threats,”
http://www.techrepublic.com/blog/security/keyscrambler-
how-keystroke-encryption-works-to-thwart-keylogging-
threats/4648 06.11.2012.

[12] A. Young and Moti Yung , “Deniable password snatching: on
the possibility of evasive electronic espionage,” Proc. IEEE
Symposium on Security and Privacy, 1997 , pp. 224-235

[13] J. M. McCune, A. Perrig, and M. K. Reiter, “Bump in the
ether: a framework for securing sensitive user input,” Proc.
the annual conference on USENIX ’06 Annual Technical
Conference. pp. 17-17.

[14] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120-126,
1978.

[15] M. Hirano, T. Umeda, T. Okuda, E. Kawai, and S. Yam-
aguchi, “T-PIM: Trusted Password Input Method against Data
Stealing Malware,” 2009 Sixth International Conference on
Information Technology: New Generations, 2009, pp. 429-
434.

[16] K. Chen, “Reversing and Exploiting an Apple R⃝Firmware
Update,” in Black Hat, Las Vegas, Nevada, 2009.

[17] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic
emanations revisited,” Proc. the 12th ACM conference on
Computer and communications security, Alexandria, VA,
USA, 2005, pp. 373-382.

[18] Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using
keyboard acoustic emanations,” Proc. the 13th ACM confer-
ence on Computer and communications security, Alexandria,
Virginia, USA, 2006, pp. 245-254.

[19] A. Kelly, “Cracking Passwords using Keyboard Acoustics and
Language Modeling,” School of Informatics, The University
of Edinburgh, Edinburgh, 2010.

[20] M. Vuagnoux, and S. Pasini, “Compromising electromagnetic
emanations of wired and wireless keyboards,” Proc. the
18th conference on USENIX security symposium, Montreal,
Canada, 2009, pp. 1-16.

[21] K. Zhang, and X. Wang, “Peeping tom in the neighborhood:
keystroke eavesdropping on multi-user systems,” Proc. the
18th conference on USENIX security symposium, Montreal,
Canada, 2009, pp. 17-32.

[22] A. Barisani, and D. Bianco, “Sniff Keystrokes With
Lasers/Voltmeters - Side Channel Attacks Using Optical
Sampling Of Mechanical Energy And Power Line Leakage,”
in DEFCON 17, Riviera Hotel and Casino, 2009.

[23] M. N. Doja, and N. Kumar, “Image Authentication Schemes
against Key-Logger Spyware,” in ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Net-
working, and Parallel/Distributed Computing. pp. 574-579.

[24] H. Wei, W. Xiaoping, and W. Guoheng, “The Security Anal-
ysis of Graphical Passwords,” in International Conference on
Communications and Intelligence Information Security. pp.
200-203.

[25] E. Stobert, A. Forget, S. Chiasson, P. C. v. Oorschot, and
R. Biddle, “Exploring usability effects of increasing security
in click-based graphical passwords,” Proc. the 26th Annual
Computer Security Applications Conference, Austin, Texas,
2010, pp. 79-88.

[26] A. P. Waterland, Secure password entry, NY, USA,to Interna-
tional Business Machines Corporation, 2009.

[27] K. Lab. “Kaspersky Internet Security 2009 includes a virtual
keyboard that enables users to enter logins and passwords
safely,” http://www.kaspersky.com/news?id=207575675
06.11.2012.

[28] D. Hoover, Method and apparatus for secure entry of ac-
cess codes in a computer environment, CA US Patent No.
6,209,102,to Arcot Systems, Inc., 2001.

[29] J. Brill, “More Ways to Stay Secure,” More Ways to Stay
Secure | Facebook, October 12, 2010, Facebook, 2010.

[30] N. Shah, “Advanced sign-in security for your Google ac-
count,” Official Google Blog: Advanced sign-in security for
your Google account, February 10, 2011, 2011.

[31] M. Wu, S. Garfinkel, and R. Miller, “Secure Web Authentica-
tion with Mobile Phones,” in DIMACS Workshop on Usable
Privacy and Security Software, 2004.

[32] A. Pashalidis, and C. J. Mitchell, “Impostor: a single sign-on
system for use from untrusted devices,” in IEEE GLOBE-
COM. pp. 2191-2195.

[33] E. Gieseke, and J. McLaughlin, “Secure Web Authentication
with Mobile Phones Using Keyed Hash Authentication,”
Computer Science, Harvard University Extension, 2005.

[34] A. Pashalidis, ”Accessing Password-Protected Resources
without the Password,” in WRI World Congress on Computer
Science and Information Engineering. pp. 66-70.

[35] F. Dinei, and H. Cormac, “KLASSP: Entering Passwords on a
Spyware Infected Machine Using a Shared-Secret Proxy,” in
Computer Security Applications Conference, 2006. ACSAC
’06. 22nd Annual. pp. 67-76.

[36] T. Rogers, “Full Reactive Eyes Entertainment,” Game Devel-
oper, December, 2010, 2010.

[37] A. C. Inc., M. Foundation, and O. S. ASA., “HTML Living
Standard,” Ian Hickson, 2011, pp. 288-315.

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

