
Secure Scrum: Development of Secure Software
with Scrum

Christoph Pohl
and Hans-Joachim Hof

MuSe - Munich IT Security Research Group
Munich University of Applied Sciences

Email: christoph.pohl0@hm.edu, hof@hm.edu

Abstract—Nowadays, the use of agile software development meth-
ods like Scrum is common in industry and academia. Considering
the current attacking landscape, it is clear that developing secure
software should be a main concern in all software development
projects. In traditional software projects, security issues require
detailed planning in an initial planning phase, typically resulting
in a detailed security analysis (e.g., threat and risk analysis), a se-
curity architecture, and instructions for security implementation
(e.g., specification of key sizes and cryptographic algorithms to
use). Agile software development methods like Scrum are known
for reducing the initial planning phases (e.g., sprint 0 in Scrum)
and for focusing more on producing running code. Scrum is also
known for allowing fast adaption of the emerging software to
changes of customer wishes. For security, this means that it is
likely that there are no detailed security architecture or security
implementation instructions from the start of the project. It also
means that a lot of design decisions will be made during the
runtime of the project. Hence, to address security in Scrum,
it is necessary to consider security issues throughout the whole
software development process. Secure Scrum is a variation of
the Scrum framework with special focus on the development
of secure software throughout the whole software development
process. It puts emphasis on implementation of security related
issues without the need of changing the underlying Scrum process
or influencing team dynamics. Secure Scrum allows even non-
security experts to spot security issues, to implement security
features, and to verify implementations. A field test of Secure
Scrum shows that the security level of software developed using
Secure Scrum is higher then the security level of software
developed using standard Scrum.

Keywords–Scrum; Secure Scrum; Security; Secure Software
Development; SDL

I. INTRODUCTION

Nowadays, software is all around us, even refrigerators now
have network support and run a whole bunch of software. As
software is so ubiquitous today, software bugs that lead to
successful attacks on software systems are becoming a major
hassle. Hence, modern software development should focus on
SECURE software. At the moment, Scrum [1][2] is a very
popular software development framework. This paper presents
Secure Scrum, an extension of the Scrum framework that
helps developers, even non-security experts, to develop secure
software.

Scrum groups developer in small developer team that have
a certain autonomy to develop software. It is assumed that
all developers can implement all tasks at hand. Software is

incrementally developed in so called sprints. A sprint is a
fixed period of time (between 2 and 4 weeks). During a
sprint, the team develops an increment of the current software
version, typically including a defined number of new features
or functionality, which are described as user stories. User
stories are used in Scrum to document requirements for a
software project. All user stories are stored in the Product
Backlog. During the planning of a sprint, user stories from the
Product Backlog are divided into tasks. These tasks are stored
in the Sprint Backlog. A so called Product Owner is the single
point of communication between customer and developer team.
The Product Owner also prioritizes the features to implement.
Standard Scrum does not include any security-specific parts.

One major driver of software security in Secure Scrum
is the identification of security relevant parts of a software
project. The security relevance is then made visible to all
team members at all times. This approach is considered to
increase the security level because developers place their focus
on things that they had evaluated themselves, which they fully
understand, and when their prioritization of requirements does
not differ from prioritization of others [3][4].

Secure Scrum aims on achieving an appropriate security
level for a given software project. The term ”appropriate”
was chosen to avoid costly over engineering of IT security
in software projects. The definition of an appropriate security
level is the crucial point in resource efficient software devel-
opment (e.g., time and money are important resources during
software development). For the definition of an appropriate
security level, Secure Scrum relies on the definition in [5]:
Software needs to be secured until it is no longer profitable
for an intruder to find and exploit a vulnerability. This means
that an appropriate security level is reached once the cost to
exploit a vulnerability is higher then the expected gain of the
exploit. So, Secure Scrum offers a way to not only identify
security relevant parts of the project but to also judge on
the attractiveness of attack vectors in the sense of ease of
exploitation.

Related to the identification of security issues, the develop-
ers need to implement features to avoid these potential security
risks. In Scrum, each team member is responsible for the
completeness of his solution (Definition of Done). However,
there is a huge number of choices of methodologies to verify
completeness. This means that a team member can use any
method for verification (same as with normal tests, Scrum

15Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



does not tell the developer how to test). Secure Scrum helps
developers to identify appropriate security testing means for
security relevant parts of a software project.

One last challenge solved by Secure Scrum is the availabil-
ity of know how when needed. Secure Scrum assumes that the
vast majority of requirements should and could be handled by
the team itself to keep many benefits of Scrum. However, for
some security related issues, it could be necessary or more cost
effective to include external resources like security consultants
in the project. Secure Scrum offers a way to include these
external resources into the project without breaking the char-
acteristics of Scrum and with little overhead in administration.

The rest of this paper is structured as follows: The follow-
ing section summarizes related work. Section III shows the
design of Secure Scrum in detail. Secure Scrum is evaluated
in a field test in Section IV. Section V summarizes the findings
of this paper.

II. RELATED WORK

There are several methods for achieving software secu-
rity, e.g., Clean Room [6], Construction by Correctness [7],
CMMI-DEV [8][9], etc. However, these methods cannot be
used in Scrum as they clash with the characteristics of agile
software development and specifically Scrum. Construction by
Correctness [7] for example, advocate formal development in
planning, verification and testing. This is completely different
to agility and flexible approaches like agile methodologies.
Other models like CMMI-DEV [8][9] can deal with agile
methods, but they are process models. The main difference
is that CMMI focuses on processes and agile development
on the developers [9]. This means that Scrum and other
agile methodologies are developer centric, while CMMI is
more process oriented. Concepts like Microsoft SDL [10] are
designed to integrate agile methodologies, but is also self-
contained. It can not be plugged into Scrum or any other agile
methodology. Scrum focuses on rich communication, self-
organisation, and collaboration between the involved project
members. This conflicts with formalistic and rigid concepts.

To sum it up, the major challenge of addressing software
security in Scrum is not to conflict with the agility aspect of
Scrum.

S-Scrum [11] is a “security enhanced version of Scrum”.
It modifies the Scrum process by inserting so called spikes.
A spike contains analysis, design and verification related to
security concerns. Further, requirements engineering (RE) in
story gathering takes effect on this process. For this, the
authors describe to use tools like Misuse Stories [12]. This
approach is very formalistic and needs lot of changes to
standard Scrum, hence hinders deployment in environments
already using Scrum. Secure Scrum in contrast does not change
standard Scrum.

Another approach is described in [13]. It introduces a
Security Backlog beside the Product Backlog and Sprint
Backlog. Together with this artifact, they introduce a new
role. The security master should be responsible for this new
Backlog. This approach introduces an expert, describes the
security aware parts in the backlog, and is adapted to the
Scrum process. However, it lacks flexibility (as described
in the introduction) and does not fit naturally in a grown
Scrum team. Also, the introduction of a new role changes

the management of the project. With this approach it is not
possible to interconnect standard Scrum user stories with the
introduced security related stories. Secure Scrum in contrast
keeps the connect between security issues and user stories of
the Product Backlog respectively tasks of the Sprint Backlog.

In [14] an informal game (Protection Poker) is used to
estimate security risks to explain security requirements to the
developer team. The related case study shows that this is a
possible way to integrate security awareness into Scrum. It
solves the problem of requirements engineering with focus on
IT Security. However, it does not provide a solution for the im-
plementation and verification phase of software development,
hence it is incomplete. Secure Scrum in contrast provides a
solution for all phases of software development.

Another approach is discussed in [15]. An XP Team is
accompanied by a security engineer. This should help to
identify critical parts in the development process. Results are
documented using abuse stories. This is similar to the definition
in [16]. This approach is suitable for XP-Teams but not for
Scrum.

To sum it up, none of the related work mentioned above
integrates well into Scrum, allows for easy adaption for teams
already using standard Scrum, and focuses on all phases of
software development. Secure Scrum in contrast solves all of
these problems. The design of Secure Scrum is described in
detail in the following.

III. DESIGN OF SECURE SCRUM

Secure Scrum consists of four components:

• Identification component

• Implementation component

• Verification component

• Definition of Done component

These four components are put on top of the standard Scrum
framework. Secure Scrum influences six stages of the standard
Scrum process as can be seen in Figure 1.

The identification component is used to identify security is-
sues during software development. Security issues are marked
in the Product Backlog of Scrum. The identification component
is used during the initial creation of the Product Backlog as
well as during Product Backlog Refinement, Sprint Planning,
and Sprint Review.

The implementation component raises the awareness of
the Scrum team for security issues during a sprint. The
implementation component is used in Sprint Planning, as well
as during the Daily Scrum meetings.

The verification component ensures that team members are
able to test the software with the focus on IT Security. The
verification component gets managed within the Daily Scrum
meeting.

The Definition of Done component enables the developers
to define the Definition of Done for security related issues as
postulated in standard Scrum.

These four components of Secure Scrum are described in
detail in the following subsections.

16Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



Scrum partsSecurity parts

Initial Product
Backlog Creation

Product Backlog
RefinementIdentification

Sprint Planning

Daily Scrum

Definition of Done

Sprint Review

Implementation

Verification

Definition of Done

Figure 1. Integration of Secure Scrum components into standard Scrum

A. Identification Component

The identification component is used to identify and mark
security-relevant user stories. Secure Scrum takes a value-
oriented approach to security as described in the Introduction.
It focuses security implementation effort on parts of the
emerging software that are of high value for the stakeholders.
The identification component of Secure Scrum is used during
initial Product Backlog creation, during Sprint Planning, as
well as during Product Backlog Refinement.

In a first step, stakeholders (may be represented by the
Product Owner) and team members rank the different user
stories according to their loss value. The loss value of a user
story is not the cost of development neither the benefit of the
functionality that implements the user story. The loss value of a
user story is the loss that may occur whenever the functionality
that implements the user story gets attacked or data processed
by this functionality gets stolen or manipulated. For example
one can formulate “Whenever someone will get access to these
data, our company will have high damage”. Even better the
cost gets listed with a numerable value like USD or Euro.

In a next step, stakeholders and team members evaluate
misuse cases and rank them by their risk.

At this point, it can be useful to incorporate external
security expertise to moderate by asking the right questions
and proposing security aware user stories.

After finalization of the identification component, team
members and stakeholders have a common understanding
of security risks in the Product Backlog. To document this
understanding in the Product Backlog, Secure Scrum uses so
called S-Tags. Figure 2 shows the basic principle of an S-Tag.
An S-Tag consists of one or more S-Marks, a Backlog artifact,
and a connection between the Backlog artifact and one or more
S-Tags. An S-Tag identifies Product Backlog items that have
security relevance with a Marker called S-Mark. This ensures

User Story A
Story. . .

User Story B
Story. . .

User Story C
Story. . .

S-Tag A
Story (Description). . .

S-Tag B
Story (Description). . .

S-Mark
Connection Description

Figure 2. Usage of S-Tags to mark user stories in the Product Backlog and
to connect user stories to descriptions of security related issues.

that security sensitive items in the Product Backlog are visible
at all times. The technology behind the S-Mark is negligible (it
can be a red background, a dot, or something else), it only must
ensure that a Product Backlog item with security relevance
contrasts to other Backlog items.

An S-Tag describes a security concern. A detailed descrip-
tion of the security issue helps the Scrum team to understand
the security concern. The description of the security concern
itself can be formulated in a separate Backlog item. This can
be a user story, misuse story, abuse story, or whatever a team
decides to use as description technology. The description may
include elements from a knowledge base that gives advice
on how to deal with this specific security concern. If such
a knowledge base is maintained over the course of several
projects, it is very likely a valuable source of information for
the Scrum team.

An S-Tag links one security concern to one or more
Backlog items. A security concern is any security related
problem, attack vector, task, or security principle that should be
considered during implementation. One-to-many-connections
between security concern and affected Product Backlog items
allow for grouping of items that share the same security con-
cern (and hopefully may use the same security mechanisms)
as well as expressing security on a high level. To express the
connections, unique IDs can be used.

B. Implementation Component
The Scrum framework has a focus on implementation.

Thus, during implementation every team member needs to be
aware of the top priority topics of the project. This means
that most of the requirements (functionalities) are described
in the Product Backlog. This includes the S-Tags. To ensure
that security concerns are visible in daily work, they must be
present in the Sprint Backlog.

Usually, a sprint implements a subset of functionalities (for
example user stories). During a sprint, some user stories are
broke down to tasks (or similar conceptual parts). Whenever
a user story is marked with an S-Mark, the corresponding
S-Tag must also be present in the correspondding sprint.
An S-Tag can be handled like any other Backlog item. But
whenever an S-Tag gets splitted into tasks, the tasks must
also be marked with an S-Mark and connected to the original
S-Tag. This ensures that developers are always aware of the
original security concern and it can be linked back to the origin
description.

This approach determines that the interconnection will en-
hance the awareness of the developer for the security problems.

17Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



C. Verification Component and Definition of Done Component
Not only S-Tags help developers to be aware of security

relevance of user stories, they can also be used to identify
requirement for the verification of the emerging software. In
the first place, S-Tags clearly identify parts of the emerging
software that need security verification. In the second place,
S-Tags are useful to estimate the effort for verification.

Secure Scrum proposes two different approaches for ver-
ification and therefore the Definition of Done. For further
simplification, the term “task” is used for some work that
is performed by one developer in one sprint and that needs
one Definition of Done. Whenever the verification process
(whatever the developer or team chooses to use) for one
task can be performed during the same sprint and from the
same developer, the verification must be part of the task. This
ensures that the verification must be part of the Definition of
Done. However, it is possible that a developer does not have the
required knowledge for verification, or the verification needs
external resources, extra time for testing, or anything else that
hinders an immediate verification. In this case, the verification
cannot be part of the Definition of Done. In such cases, a new
task must be created which inherits only the verification part.
This new task must be marked with an S-Mark and should
be connected to the original S-Tag, together with the original
task. Then, the developer can define the Definition of Done
without the verification, hence a Definition of Done compatible
to standard Scrum is available.

The proposed approach for the definition of the Definition
of Done ensures that the connection between an S-Mark and
its corresponding S-Tag keeps existing throughout the project,
hence no security concern can get lost or stay untested.

D. Integration of External Ressources
IT security knowledge may be rare in a Scrum team or

special knowledge not present in the Scrum team may be
necessary for certain parts of the emerging software (e.g., im-
plementation and testing of cryptographic algorithms). Secure
Scrum offers ways to include external resources (e.g., security
consultants) in all components of Secure Scrum. External
resources could have one or more of the following three
functions:

• Enhance knowledge
• Solve challenges
• Provide external view

These three functions are described in the following.
Enhancing knowledge: This function includes security-

related training for the Scrum team to help them to gain a
better understanding of a specific security-related area. Doing
so on the job during a project offers a chance to teach IT
security with a specific example at hand (e.g., a certain S-Tag
that is linked to many user stories) and may be more efficient
than security training during two projects. Training may be
necessary for aspects that are not part of everyday work, e.g.,
the usability of security mechanisms [17], [18].

Solving Challenges: Some S-Tags represent hard security
challenges that require special expertise or special experience,
such that it is more cost efficient to let external resources solve
this challenge. To avoid breaches in Scrum, it is necessary
that these external solutions can be handled like a tool, a well

defined part of development, a framework, or a “black box”,
which is ready to use. This means that this external solution
should be encapsulated and therefore does not influence Scrum
or the Scrum team. For example, this can be a functional part
of software (with special IT Security concerns) or parts of the
project which can be used with an API by the Scrum team.
Another challenge is the integration of external services like
penetration testing into the development process. One way
to do so is that external resources provide test cases (e.g.,
for Metasploit [19]) that can be used for every branch of
the emerging software at any time. Results of tests can be
documented as artifacts in the Backlog. Then they can be
handled like any other change request.

Providing external view: One major part in IT Security is
to recognize ways to exploit the own system. In other words,
one must think like an attacker to recognize potential attack
vectors. Usually, it is easier for an outsider to spot potential
weaknesses of a system than it is for the developer of a
system. Hence, external resources may introduce a valuable
external viewpoint on a project. When using the identification
component of Secure Scrum, an external consultant can be
helpful to point the team to security concerns. When using the
implementation component, external resources can be helpful
in the sprint planning. When using the verification component,
an external consultant can help to create tests for security
concerns. These interventions by external resources should not
be part of the normal Scrum processes, the external resource
should only help to ask questions (in the meaning of: he should
show relevant concerns in scope of IT Security). In conclusion,
the external resource should help to set focus on problems the
team is not aware of.

IV. EVALUATION

The evaluation presented in this paper focuses on the
following questions: is Secure scrum a practicable approach to
develop secure software? Is Secure Scrum easy to understand?
Does Secure Scrum increase the security level of the developed
software?

As test setting, 16 developers were asked to develop a small
piece of software. The developers were third year students
in computer sciences and business informatics (BSc). They
were not aware that they are part of this evaluation. The
students showed programming skills that were on the usual
level of a third year bachelor student. No participant attended a
specialized course in IT Security before beside the compulsory
lecture in IT Security (basic level) in the second year of the
bachelor. All developers had average theoretical knowledge
about Scrum. Only two students had practical experiences (less
than 2 months) with Scrum. No one had practical experiences
in IT Security.

The developers were divided into three groups.

1) Team 1 (T1): The Anarchist group: They could man-
age themselves as they like, except using Scrum

2) Team 2 (T2): The Scrum group: They should use
standard Scrum

3) Team 3 (T3):The Secure Scrum group: They should
use Secure Scrum.

To avoid influences on the evaluation, teams 1 and 2
thought that team 3 also uses standard Scrum. All groups
got a list of six requirements for a new software product.

18Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



TABLE I. Results of the evaluation of the efficiency and effectiveness of
Secure Scrum

# Metric T1 T2 T3

1 Lines of Code 1149 758 458
2 Number of Basic Requirements 6 6 6
3 Number of additional Requirements defined 0 1 8
4 Number of Basic Requirements documented 0 6 6
5 Number of Basic Requirements implemented 6 5 4
6 Number of Requirements documented 0 7 14
7 Number of Requirements implemented 6 6 9
8 Number of Vulnerabilities sp 18 12 3
9 Group size 6 5 5

They were asked to develop a prototype for a social network
with the following features: registration, login, logout, personal
messages, wall messages, bans, friend lists, and further more.
Each group had only one week to develop this prototype using
Java and a preconfigured spring framework template (based
on BREW [20]). Each group was asked to develop a piece
of software including as many requirements as possible (they
knew that it was impossible to implement all requirements
for the final version of the software considering the harsh
time constraints). They were also told that they need to “sell”
their prototype on the last day of the experiment in front of a
jury. In fact they should learn how to present their prototype
and act like a team that wants to have a contract for further
development. This should ensure that every team needs to
define for itself the selling points of their prototype.

Team 3 has a short briefing of about one hour about Secure
Scrum. Every team is advised to make a proper documentation.
This includes all produced artifacts, the sources, and a short
description of their development process.

Table I summarizes some basic findings of the experiment.
All three teams had a rough definition of the six basic

requirements which should be implemented. They were told
that whenever the requirements list should be enhanced to
deal with the 6 requirements given by the customer, they are
free to define new requirements. Team 1 did not define any
new requirements. Team 2 defined one new requirement to
enhance performance. Team 3 defined 8 new requirements
that had a focus on IT Security. These requirements are an
excerpt of the descriptions for the S-Tag. Overall, they defined
29 new stories focused on IT Security. This shows that even
with beginner skills in computer sciences and low skills in IT
Security, it is possible to define a high amount (compared to
the original requirements) of security related requirements. It
also shows that it is possible to describe the most problematic
vulnerabilities or problems with the help of risk identification.

Metrics 4 − 7 of table I are used to evaluate if the
teams documented all requirements and how many of the
requirements were implemented. This shows that the teams did
not take care of any further requirements when not specified
by the customer. This sounds trivial, but it also shows that the
developer did not take care of IT Security when not specified.
The Secure Scrum team (team 3) is the only team that did
not implement all basic requirements. Instead, they obviously
prioritized some of the security requirements over the basic
requirements as some of the additional requirements were
implemented. This finding shows that Secure Scrum helps to

TABLE II. Results of the evaluation of the practicability of Secure Scrum

# Metric Team 2 Team 3

1 Number of requirements 7 14
2 Number of user stories 7 (13) 14 (62)
3 Number of tasks 18 35
4 Number of user stories with S-Mark - 14
5 Number of tasks with S-Mark - 8(35)

put focus on software security.
Metric 8 shows the number of security problems that were

created by the developers. The number of security problem is
calculated as follows: Let sl be a vulnerability listed in the
OWASP Top 10 list OTT (sl ∈ OTT ) . The OWASP Top
10 project lists the most common security vulnerabilities for
web applications, e.g., Injection, Broken Authentication and
Session Management, Cross-Site Scripting (XSS), Insecure
Direct Object References, Security Misconfiguration, Sensitive
Data Exposure, Missing Function Level Access Control, Cross-
Site Request Forgery, Using Components with Known Vulner-
abilities, and Unvalidated Redirects and Forwards. Let OS be
the complete source code of the developed software and SC
the part of the software written by the students ( SC ⊂ OS ).
Let cf be a Java function. Let cpf(sl) be a function that counts
the amount of sl for one cf . By definition, cpf(sl) increments
a vulnerability counter by one whenever the current function
is the source ms function for a vulnerability. A function cf
is considered as a source ms whenever cf ∈ SC and when
the function is the reason for the vulnerability or it calls a
function cf1 where cf1 /∈ SC and cf1 is the reason for
the flaw. The amount of vulnerabilities sp is the sum of all
cpf(cf). Such a definition of the number of security problems
only counts code that is responsible for vulnerabilities of a
software system. It also takes into consideration the use of
flawed code. For example, when a developer creates an SQL
statement with a potential SQL Injection flaw, the function
holding the database call with this statement is regarded as the
reason of the vulnerability. The results of the evaluation shows,
that team 1 and team 2 had a high amount of vulnerabilities
in their software (team 1: 18, team 2: 12). Both teams built
software exploitable by SQL Injection, XSS, CSRF, and had
a vulnerable session management. Team 3 had significantly
less vulnerabilities. This shows, that the use of Secure Scrum
increase the security level of the developed software.

The first metric (Lines of Code (LOC)) shows the amount
of code which was generated during the week. There are
significant differences between the three teams. The teams that
identified additional requirements (performance (team 2) and
security (team 3)) were not as productive as the other teams.
This shows the overhead that comes with a broadened focus on
software quality, especially on non-functional requirements.

To evaluate ease of use and practicability of Secure Scrum,
the documentation of the Scrum teams was evaluated. The
documentation consists of the Backlogs and a timetable. Table
II summarizes the results of this evaluation.

The numbers in braces are the total amount of user stories.
The aggregated number (not in braces) shows the amount of
user stories when grouped together. This means a group of user
story is a “bigger” user story which reflects a requirement.
Team 2 broke down every user story to a different task.

19Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies



Team 3 broke down tasks for only the stories that they also
implemented. This is why they defined more user stories
than tasks. Team 3 found for every user story some security
concerns, this is why they tagged all user stories. Metric 5
shows that all tasks also had S-Marks, overall they had 8
different groups in the tasks. Team 3 decided to create the links
by grouping, they simply used red cards for the descriptions
to show security problems (S-Mark ). This also shows that the
proposed tools are simple enough to adapt them very fast in a
Scrum process.

In conclusion, the evaluation shows that Secure Scrum is
able to improve the security level of the developed software.
Secure Scrum is easy to understand, can be used in practice,
and is even suitable for teams that have no deepened security
knowledge. The evaluation also shows that it is possible
to have a proper documentation through all stages of the
experiment. The tools of Secure Scrum harmoniously blend
into the standard Scrum toolset without the need of much
overhead for training.

V. CONCLUSION

This paper presents Secure Scrum, an extension of the soft-
ware development framework Scrum. Secure Scrum enriches
Scrum with features focusing on building secure software. One
of the main contributions of Secure Scrum are S-Tags, a way
to annotate Backlog items with security related information.
Secure Scrum was evaluated in a small software development
project. The evaluation shows that Secure Scrum can be used
in practice, is easy to use and understand, and improves the
level of software security.

REFERENCES

[1] K. Beck, M. Beedle, K. Schwaber, and M. Fowler, “Manifesto for
agile software development,” retrieved: 07, 2015. [Online]. Available:
http://www.agilemanifesto.org/

[2] K. Schwaber, “SCRUM development process,” in Business Object
Design and Implementation, D. J. Sutherland, C. Casanave, J. Miller,
D. P. Patel, and G. Hollowell, Eds. Springer London, pp. 117–134.

[3] C. Riemenschneider, B. Hardgrave, and F. Davis, “Explaining software
developer acceptance of methodologies: a comparison of five theoretical
models,” IEEE Transactions on Software Engineering, vol. 28, no. 12,
Dec. 2002, pp. 1135–1145.

[4] L. Vijayasarathy and D. Turk, “Drivers of agile software development
use: Dialectic interplay between benefits and hindrances,” Information
and Software Technology, vol. 54, no. 2, Feb. 2012, pp. 137–148.

[5] C. Herley, “Security, cybercrime, and scale,” Communications of the
ACM, vol. 57, no. 9, Sep. 2014, pp. 64–71.

[6] H. D. Mills and R. C. Linger, “Cleanroom Software Engineering:
Developing Software Under Statistical Quality Control - Encyclopedia
of Software Engineering - Mills - Wiley Online Library,” 1991.

[7] A. Hall and R. Chapman, “Correctness by construction: developing a
commercial secure system,” IEEE Software, vol. 19, no. 1, 2002, pp.
18–25.

[8] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for Development, ser.
Guidelines for Process Integration and Product Improvement. Pearson
Education, Mar. 2011.

[9] H. Glazer, J. Dalton, D. Anderson, M. D. Konrad, and S. Shrum,
“CMMI or Agile: Why Not Embrace Both!” 2008, pp. 1–48.

[10] M. Howard and S. Lipner, The security development lifecycle. O’Reilly
Media, Incorporated, 2009.

[11] D. Mougouei, N. F. Mohd Sani, and M. Moein Almasi, “S-scrum: a
secure methodology for agile development of web services.” World of
Computer Science & Information Technology Journal, vol. 3, no. 1,
2013, pp. 15–19.

[12] G. Sindre and A. L. Opdahl, “Eliciting security requirements with
misuse cases,” Requirements Engineering, vol. 10, no. 1, Jan. 2005,
pp. 34–44.

[13] Z. Azham, I. Ghani, and N. Ithnin, “Security backlog in scrum security
practices,” in Software Engineering (MySEC), 2011 5th Malaysian
Conference in. IEEE, 2011, pp. 414–417.

[14] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new
software security,” IEEE Security & Privacy, no. 3, 2010, pp. 14–20.

[15] G. Boström, J. Wyrynen, M. Bodn, K. Beznosov, and P. Kruchten,
“Extending XP practices to support security requirements engineering,”
in Proceedings of the 2006 international workshop on Software engi-
neering for secure systems. ACM, 2006, pp. 11–18.

[16] J. Peeters, “Agile security requirements engineering,” in Symposium on
Requirements Engineering for Information Security, 2005.

[17] H.-J. Hof, “Towards Enhanced Usability of IT Security Mechanisms
- How to Design Usable IT Security Mechanisms Using the Example
of Email Encryption,” International Journal On Advances in Security,
vol. 6, no. 1&2, 2013, pp. 78–87.

[18] H. J. Hof, “User-Centric IT Security - How to Design Usable Security
Mechanisms,” in The Fifth International Conference on Advances
in Human-oriented and Personalized Mechanisms, Technologies, and
Services (CENTRIC 2012), 2012, pp. 7–12.

[19] Rapid7, “Metasploit,” 2015, retrieved: 07, 2015. [Online]. Available:
http://www.metasploit.com/

[20] C. Pohl, K. Schlierkamp, and H.-J. Hof, “BREW: A Breakable Web
Application for IT-Security Classroom Use,” in Proceedings: European
Conference on Software Engineering Education 2014. ECSEE, 2014,
pp. 191–205.

20Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies


