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Abstract—It is barely conceivable to ensure the security state of 

a device without a trusted computing base. However, a 

hardware security module is not provided in most low-power 

devices. This paper presents a new design approach, which can 

securely verify a current state of firmware at a booting time 

utilizing untrusted components. We discuss a Memory 

Protection Unit (MPU) enabled memory access control to 

ensure that memory regions of a bootloader are not 

accidentally compromised from unintended access. Further 

extensions of the suggested approach are also addressed for 

achieving the enhanced security confirmation. 

Keywords-firmware verification; memory protection; device 

security. 

I.  INTRODUCTION 

Secure booting is a fundamental security technique of 
computing devices and recently become a mandatory option 
for protection of computing tasks and resources. However, 
most Microcontroller Units (MCUs) of low-power devices 
do not contain a hardware security module functioning as a 
Trusted Computing Base (TCB). The commodity MCUs 
may not provide sufficient chip-level protection. It is 
difficult to validate if a device is correctly programmed as 
intended. Further, devices are highly vulnerable to a simple 
piece of exploits since run-time verification of code and data 
is performed on the uncertain assumption that a verification 
process may be trustable. 

To tackle this limitation, we discuss a feasible design 
approach, which can confirm a current security state of a 
device with the existing untrusted components. Our primary 
contributions can be summarized as two aspects: i) we first 
suggest how firmware verification can be performed by a 
custom bootloader; and ii) we then discuss an MPU-enabled 
memory protection scheme, which guarantees the reliability 
of firmware verification by controlling code and data access 
to the bootloader. In addition, the proposed design approach 
has been partially implemented and tested as a prototype 
software modules on devices working with Advanced RISC 
Machine (ARM) Cortex M3/M4 for checking its validation. 

The remainder of this paper is organized as follows. 
Section II briefly reviews the conventional approaches for 
maintaining device security. We discuss a new design 
approach for firmware verification and bootloader protection 
in Section III. Section IV provides further extensions on the 
proposed design. Finally, we conclude the paper in Section V. 

II. RELATED WORK 

Recent lines of research related to device security are 

reviewed and their issues are discussed in this section. 

A. Secure Booting 

A built-in Read Only Memory (ROM) is a minimal 
requirement for designing and implementing secure booting 
at small-footprint devices. Once some ROMs of MCUs are 
masked during manufacturing, further modifications are not 
allowed for bootloader protection [1]. Alternatively, a 
custom bootloader can be loaded from some blocks of flash 
memory. However, it is difficult to prevent an accidental 
erasure or modification of the bootloader and its related 
configurations and secure materials from unintended access. 
This directly implies that the genuine of firmware or 
operating system working at a device cannot be guaranteed. 

B. Remote Attestation 

To revalidate a programmed firmware at a device, 

software attestation schemes have been widely proposed [2]. 

One common assumption is that a remote verifier is trustable 

and secure communication is established between a prover 

and a verifier [3]. However, a prover’s trustworthiness 

remains unclear and manipulated checksum functions may 

not be complicated enough against a guessing attack. 

Another limitation is that this approach tends to focus on 

verifying the integrity of working codes only [4]. Moreover, 

code verification is performed at a pre-defined interval of 

time in a verifier-driven manner. Therefore, attackers may 

have more chances to compromise devices. 

C. Memory Protection 

Sancus [5] is a memory access control scheme based on 

program counter, so that a new hardware implementation is 

required as an extension of MCUs. This approach also 

depends on a specifically modified C compiler and a TCB. 

Similarly, Smart [6] uses a special hardware-controlled 

memory for a secure key storage and allows that ROM-

resident code only access to the keys. For execution-aware 

memory protection, TrustLite [7] uses an MPU built in a 

secure System on a Chip (SoC) and the on-chip memory is 

required to store MPU configurations. One critical drawback 

of this scheme is that authenticity and integrity of a secure 

loader cannot be verified at a booting time. 
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III. PROTECTED  FIRMWARE VERIFICATION 

We suggest one feasible design approach to security 
designers and system programmers for ensuring firmware 
protection without any hardware modifications. 

A. Memory Construction 

Figure 1 shows an example of memory layout, which is 
used in the proposed protected firmware verification. In this 
approach, we assume that the cryptographic computations, 
such as key derivation, firmware encryption, key wrapping, 
and signature creation can be completed prior to loading a 
custom bootloader and a firmware to a flash memory. 

To construct such memory layout, two offline processes, 
such as i) encrypting a firmware and ii) signing a firmware 
are required as depicted in Figure 2. In the first phase, a 
symmetric key generator creates a Firmware Encryption Key 
(FEK) and we derive a Confidentiality Root Key (CRK) 
from a given Production Unique Key (PUK). We then 
encrypt an original firmware image with the FEK and using 
the derived CRK, we also wrap the FEK based on the 
Advanced Encryption Standard (AES) [8] for containing the 
integrity information of FEK. In the latter, an authenticity 
key generator creates a key pair and compute a firmware 
signature based on the Elliptical Curve Digital Signature 
Algorithm (ECDSA) [9]. Through the above steps, we have 
the encrypted firmware, AES-wrapped FEK, ECDSA public 
key, and firmware signature as security materials for 
firmware protection. Those data are finally allocated to flash 
memory regions. 

B. Bootloader Protection 

Immediately after power-on or reset, the booting code 
performs an initial system configuration by referring to its 
header. We assume that a Custom Bootloader (CBL) resides 
on some memory regions of flash and its code and security 
materials can be protected by setting lock bits at a flash 
register. However, locking the booting related memory 
blocks may not be a strong method of ensuring code and data 
isolation of the CBL. To mitigate this problem, we adopt a 
MPU-enabled memory access control to prevent 
unauthorized access to those memory regions during booting. 
Moreover, this approach can be applied in protecting code 
and data memory even after the firmware (i.e., kernel) 
loading. Due to this reason, the CBL then initializes a MPU 
according to a predefined policy to protect itself and its 
related data sections, which are colored in grey during 
booting sequences and firmware verification as illustrated in 
Figure 3. 

When a Central Processing Unit (CPU) tries to execute a 
code (i.e., instruction pointer) or access read/write a memory 
region (e.g., stack), an MPU [10] can enforce these accesses 
to code and data memory with pre-configured settings. For 
example, the header, keys, signature, and flash registers can 
be only accessed by instructions defined in the CBL with a 
read permission. Moreover, addresses of currently fetched 
instructions by a CPU core are also checked for validating 
code regions. It is necessary to define what interrupt handlers 
can perform hardware processing for booting code; an MPU 
needs to know which addresses of Static Random Access 

Memory (SRAM) are allocated to the CBL. These 
considerations can be made as MPU rules. 

. . . . . .
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Figure 1. Memory construction for firmware verification 
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Figure 2. Generation of security materials 

C. Firmware Verification 

If it is confirmed that a CBL is not compromised and an 
MPU is activated as intended, a CBL can verify a firmware’s 
security state in terms of confidentiality, authenticity, and 
integrity. The following phases describe how a CBL verifies 
a firmware only using a One-Time Programmable (OTP) 
memory under the monitoring of MPU as shown in Figure 3. 

i) The CBL tries to obtain a CRK from an OTP memory. 
An illegal access to a CRK in the OTP memory violates the 
MPU rules, so that a memory fault can be detected by an 
MPU. After that the CBL unwraps a FEK based on the AES 
cryptographic algorithm with the CRK. If the FEK turns out 
to be available, the CBL can decrypt the protected firmware. 
The above process is effective to avert firmware cloning. 

ii) The CBL calculates a digest value of firmware, which 
can be compared to the original one in an OTP memory for 
checking the integrity of decrypted firmware. Further, the 
firmware digest and an ECDSA public key are utilized to 
compute a new signature of the decrypted firmware 
according to the ECDSA. If the generated signature is equal 
to the contained one (see an ECDSA signature in Figure 1), 
the CBL accepts that the decrypted firmware is authentic. As 
a result, the CBL can copy the decrypted firmware to a 
particular memory space for a working firmware and 
delegates its control to the working firmware. 

In the aforementioned phases, validation of CRK, FEK, 
and ECDSA public key can be confirmed by a simple hash 
comparison using an OTP memory. Moreover, the security 
state of updated firmware can be verified in the same way as 
above by adding a newly computed ECDSA signature of a 
new version of firmware into a differencing data package 
encoded by the VCDIFF standard [11]. 
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Figure 3. Firmware verification with MPU-enabled bootloader protection 

IV. DESIGN EXTENSIONS 

This section describes architectural extensions of the 
proposed protected firmware verification in the following 
three perspectives. 

A. Kernel Level Support 

Any privileged task can unexpectedly unlock the 
memory-mapped registers including flash, MPU, etc. Despite 
this weakness, some operating systems allow that every task 
is executed with a privileged mode only. For this reason, it is 
required that kernel separates user mode tasks from system 
modules and interrupt service routines (ISR). This required 
feature can be new to some operating systems but is effective 
to prevent user mode tasks from accessing privileged 
instructions. Besides, code and stack regions of each task, 
interrupt handler, and kernel modules must be monitored by 
an MPU and memory access violation must be handled as 
well in an appropriate manner. This MPU-enabled memory 
protection mechanism can guarantee that, a privileged/user 
task and an interrupt handler can be restricted from removing 
or modifying boot related memory regions, even after a 
firmware is loaded. 

B. Secure Memory Loader 

Booting codes can be built and activated in a dedicated 
mask ROM. In this case, we can replace the custom 
bootloader on flash with special codes, which is called a 
Secure Memory Loader (SML). One effective way to 
improve the execution reliability of security-sensitive codes 
for the protected firmware verification is to reduce the size of 
the CBL by excluding booting functionalities. If the SML 
can be precisely defined and limited, more secure and correct 
invocation of SML and cryptographic computations are 
within the realm of possibility. Removing or overwriting a 
SML is beyond the scope of this paper. However, an external 
verifier would be a better option rather than using an OTP 
memory for coping with this vulnerable situation. 

C. Trustworthy Remote Entity 

Custom bootloader’s code and data can be attested by a 
remote verifier to provide an extension option for increased 
security confirmation if bootstrapping a device must be 

completed through a trusted server. Besides, a CRK can be 
received via an end-to-end encrypted network session 
between a device and a server but this alternative approach 
would cause more delays than using an OTP memory. After 
the firmware are loaded, if a memory access violation occurs 
against the MPU policy, a remote server can exclusively 
handle such system fault by taking some countermeasures 
such as remote wipe, network isolation, device recovery, and 
firmware update. 

V. CONCLUSIONS 

In this paper, we have suggested a new design approach 
for protected firmware verification with respect to memory 
construction, its cryptographic operations, and memory 
access control. Further extensions as discussed in Section IV 
will be addressed with respect to implementation and 
feasibility in our future work. 
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