
Attack Maze for Network Vulnerability Analysis
Computing the Maximum Possible Incursion and Intuitive Metrics

Stanley Chow
STHC Creative Technologies

Ottawa, Canada
e-mail: stanley.chow@pobox.com

Abstract— Even a well administered computer network will be
vulnerable to attacks. There have been many proposals in the
literature to address the problem of Network-Vulnerability
Analysis. One approach is to generate an attack graph (a
logical graph representation of all possible sequences of
vulnerabilities) using some formal model. Attack graphs suffer
from scalability issues as the size of the network or the number
of services and vulnerabilities increase. This paper presents a
new approach that treats the network as a maze, which the
attacker has to solve. We then use the classical way to solve
mazes in computer games – remembering where we have been
by dropping things at each node. We present a graph-based
algorithm to solve this maze and compute the Maximum
Possible Incursion (MPI) for a given set of attackers or
compromises. The developed simple breadth-first algorithm
provides performance improvements over previous approaches
(less than a minute to analyze a network with over 10,000
nodes). We also present a methodology to capture mission
dependency, which represents how a mission relies on the
underlying network. Finally, we compute an extensible set of
security metrics that identify the current network status in
multiple dimensions (e.g. Confidentiality, Integrity, and
Availability). We also discuss future work to enumerate the
specific attack paths that could be used to generate corrective
recommendations.

Keywords- Network security; vulnerability analysis; scalable;
vulnerability; exploit; maximum incursion; cyber security;
metric; security metric; mission dependency.

I. INTRODUCTION
Cyber security has become more complex – the early

generations of malware exploited a single vulnerability in a
single computer system. Subsequently, worms and other
malware propagate through a whole network. Recently, we
have seen Stuxnet [1] and other sophisticated malware that
use multiple vulnerabilities. Not only are malware getting
more sophisticated, in many incidents, the attackers are
known to have used a chain of vulnerabilities to gain access.
There are many examples of such chains documented in
various security advisories and so on.

Before we can analyze the possible chains of
vulnerabilities, it is necessary to identify all the
vulnerabilities present on each node. More generally, we
need to identify the total attack surface of each node. Since
there are many vulnerability scanners [2], and many agencies
maintain databases of vulnerabilities, this paper assumes that
all vulnerabilities are already known. It can also be difficult

to capture the necessary network information, but this paper
deals only with the analysis problem.

The problem of analyzing the many possible chains of
vulnerabilities has attracted much attention. Most approaches
ask: Can this node attack that node? One major approach is
the attack graph introduced in 1998 [3]. Attack graphs are
logical representations of all the ways an attacker could
reach any target node in a given network. Although useful,
attack graphs suffer from scalability in memory and
performance issues as the network grows in number of
nodes, services, vulnerabilities, etc. There are techniques in
the literature that attempt to address the scalability of attack
graphs in order to perform well for realistic-sized networks
[4, 5]. This scalability problem is due to capturing all
possible attack paths in the attack graph, so CPU time and
memory usage grow rapidly with the size of the network.
Another approach constructs an access graph of nodes in the
network, where each directed edge in the graph represents a
possible access along the edge [6].

We analyze the vulnerabilities for a different goal.
Instead of calculating attack paths between specific nodes,
we want to know exactly what privileges the attacker can
possibly achieve – the Maximum Possible Incursion on each
node. Clearly, this computation is specific to the particular
class of attackers and must be recomputed for each class.
Our approach, the Attack Maze, is similar to an access graph,
but computes the MPI (Maximum Possible Incursion)
directly. This means we do not record all possible Attack
Paths, only the resultant incursion at each node – this is
enough to achieve good scalability even for large networks.

Formal methods rely on accurately capturing all the
intricacies of all the data – any missing data cannot be part of
the inference chain. Some data are difficult to handle in
formal systems, examples include: the privilege of a userid
may be already in an LDAP (Lightweight Directory Access
Protocol) directory and may change frequently – the
difficulty is due to the unpredictable changes to the LDAP
entry; the firewall may have rules that are dependent on
time/data or even user – the difficulty is due to the sheer
number of combinations that are possible and some dynamic
rules that may include factors/variables not captured in the
formal model, many transactions will depend on business
logic (be it decision tree, decision tables, database look up or
complex programmatic logic) - the difficulty is that many
factors/variables may not be captured and that logic may be
ill suited for the formal system. Since our approach is not
based on a formal model, there is no need to precisely
capture all details into the model; instead, the conditions can

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

be embedded in code that is able to query LDAP, etc. (we do
not allow arbitrary code - we require the code to respect
monotonicity, see Step 5.d of the algorithm.)

The proposed approach also takes into account mission
dependency. That is, given a mission that depends on some
nodes of the network and given the current network status,
what are the potential impacts on this mission? Some
examples of mission dependency work in the cyber arena
include [7, 8] and in the civil infrastructure area [9, 10].

We use the concept of capabilities to encapsulate what
functions are exported by the network. Each mission can
then use these capabilities without knowing the details of
how they are implemented (e.g. which nodes provide email
service).

We also present a suite of metrics that can be easily
computed from the MPI. These metrics can be calculated at
the levels of node, capability and mission, and have intuitive
meaning to the owners of the node, capability or mission.

 These ideas are implemented in a prototype using
Python3 scripts. Our experiments show that even the simple
algorithms perform very well – a well maintained network
with few vulnerable nodes can be analyzed very quickly and
even a network with many vulnerable nodes takes only
minutes.

II. ATTACK MAZE

A. Approach
Our approach is quite close to how an attacker tries to

penetrate a network – find initial points of entry, then launch
attacks from the compromised nodes to access more nodes
and gain more privileges, repeat until no new privilege is
possible. Along the way, the attacker keeps track of what
access has already been achieved on each node, and only
“better” accesses are of real interest. Eventually, all possible
compromises on all nodes will be found. We define a node to
be anything that is addressable (possibly with multiple
addresses), so network printers, desktops, laptops, servers,
proxies, are all nodes. We also generalize firewalls that
control which nodes can access across zone boundaries.

B. Status
The key idea of the proposed algorithm is that we attach

multiple statuses to each node. Each status-type records one
particular type of privilege that the attacker can achieve at
the node. The exact details of the statuses are expected to
change with different applications (this paper presents some
common statuses). Note that this algorithm does not rely on
any specific status.

Each status-type should be at least a partial order – that
is, the different levels of privilege should form a tree or
hierarchy (as opposed to a complete order where the
privilege forms a linear chain). We define levels(s) to be the
number of levels in the hierarchy. The partial ordering of
each status-type will induce a partial order on the whole
node, that is, for nodes n1 and n2:

n1 > n2 iff s(n1) > s(n2) for all status-types s

Note that there are two kinds of status-types:

• Status types that document increasing privilege,

o None, anonymous shell, chroot jail, full
user shell, root shell

o None, write on /tmp only, write on ~/ only,
write on anywhere

o None, write file as anonymous, write file
as user, write file as root

• Status types that document decreasing capability:

o None (or Normal), 50% capacity, Non-
functional (for example, measuring the
capacity of a Domain Name Server)

o Normal, some transaction over 100
millisecond, all transactions over 1 second
(for example, measuring the throughput of
a Web server)

C. Attack Step
We start by looking at the following attack step:

Node A uses exploit E to attack node T
We will refer to node A as the attacker, exploit E as the

exploit vector, and node T as the target or the victim (a target
is the intended victim of the attack, whereas a victim is after
the attack succeeds). Each attack step will have pre-
conditions and post-conditions. In this design, we explicitly
limit pre-conditions to be dependent only on the combination
{A, E, T} and the post-conditions are limited to status-fields
of the victim. In other words, the pre-conditions for a
particular vector E may be dependent on the statuses of A,
and the statuses of T; whereas the post-conditions can only
be statuses of T. Intuitively, when node A launches an attack,
the attack may use all the privileges already gained at A as
well as the privledges already gained at T. After the attack
succeeds, the privilege gained must be at T. Note that no
other nodes may be a part of the pre-conditions nor the post-
conditions.

For example, we allow pre-conditions such as status-type
“UserAccount” must be at least “user shell account” and
status-type “UserpPiv” must be at least “can execute
arbitrary program” – as long as the requirement is only on A
or T. This is inherent in the definiton of status-type.

Most formal models do not restrict free variable like
“user has FTP access on some server” (e.g., MulVAL [11]
uses Datalog/Prolog logic rules so there is no problem with
using another variable that will bind to another node). We
explicitly disallow them in the pre-conditions, but allow
them in the programatic code with some restrictions. As will
be seen in Section E, this ensures the efficiency of the
algorithm.

The restriction on pre-conditions does limit the kinds of
attack steps that can be modeled; but we allow the
programatic code to check for the same conditions –
although this check must be consistent, repeatable and
respects the monotonicity (a node can only increase its
possible attacks when its statuses go up). This monotonicity

59Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

ensures that we never have to backtrack. With this
relaxation, we can easily handle attack vectors that require
multiple intermediate nodes to cooperate. This means the
resultant lost of expressive power is only nominal and the
vast majority of real attacks can be modeled exactly and
easily.

D. Solving the Attack Maze
To solve the maze, we start with the attacker(s) and try

all possible victims (by recursively trying all possible attack
steps on all possible targets). This ensures that we will
traverse all possible attack paths from all attackers; along the
way, we track only the maximum incursion at each victim.
We use the naïve breadth-first algorithm described as
follows:

Step 1. Start with just the nodes, initializing each
node to have None (the lowest state) for each status-
type. Intuitively, this is a sea of islands that any
attacker has to hop to get anywhere, and the
attacker starts with no access to anything.

Step 2. Initialize newWorkList to be the set of
nodes that the attacker is assumed to have
compromised - all their own machines (in their own
domains) plus our machines that has been
compromised.) This is an input to the Attack Maze
computation. The statuses for the attacker(s) are set
to the maximum privileges achieved. Intuitively,
this represents the initial set of accesses that the
attacker has.

Step 3. Check newWorkList, if it is empty, then we
are done. If it is not-empty, copy newWorkList to
workList, set newWorkList to empty.

Step 4. Removing an attacker Node A from
workList. (If workList is empty, got to Step 3.)
Intuitively, we will attempt to launch attacks from
this node.

Step 5. Go through every node T in the system as
a possible target from attacker A. (After running
through every node, go to Step 4 for the next
attacker.) Check if node A can attack node T:

a. Node T has a vulnerability V

b. The vulnerability V must have an exploit E

c. Node A can reach the address/port on node
T needed to exploit E

d. Node A meets the pre-conditions of exploit
E (note, this is the place for the non-local
checks that must respect node
monotonicity)

Step 6. If all the conditions (in Step 5)

a. are not met, this attack step is not possible.
Go to Step 4 for the next target.

b. are met, then this attack step succeeds. The
post-conditions of exploit E are merged

into the statuses of node T. That is, we
record the maximum of each status-type
(since each status-type must be a partial
order, there will be a maximum). If any
status is increased as a result, add node T
to newWorkList.

E. Analysis of performance
For analysis of performance, we will use:

• n – number of nodes

• s – 𝑙𝑒𝑣𝑒𝑙𝑠(𝑠!
! i)

• v – number of actual vulnerabilities or exploits

 Since each node can only be added to the workList with
an increase in status, and since the statuses are monotonic,
each node can only be on the workList s times. Each time a
node is on the workList, the algorithm will examine all
possible attacks from that node, so the total work will be
O(s*n*n*v) and since s and v are independent of the
network, they can be subsumed into the coefficients, so the
total work is O(n2). Note that this is for the algorithm, but we
allow (in step Step 5.d) the pre-condition check to do
arbitrary computation. In our prototype, we did not rely on
this.

We make several observations on aspects that are often
difficult:

• Exactness – within the accuracy of our status-fields
(and extended pre-condition checks), we compute the exact
MPI (Maximal Possible Incursion). This is true even if the
pre-conditions are not completely formalized (i.e. embedded
in code).

• Multiples paths getting to a node – we handle each
possible step, but the effects of the steps are merged at the
node. This means we compute the MPI without enumerating
all possible paths, we only enumerate all possible steps.

• Cycles in attack paths – each complete cycle is
handled; no extra processing is caused by multiple cycles.
This is all implicit in the merging of status at nodes.

F. Practical performance
In the preceding analysis, the number of times a node can

be put onto the WorkList is bound by s, the number of steps
in the statuses. In practice, the loop (Step 4) iterates in
lockstep with each link in an attack chain; that is, we start at
the attacker(s) and follow all attack paths/chains
simultaneously, one link per iteration. Therefore, the number
of iterations is usually equal to the length of the longest
attack path (counting in nodes, which is 1 more than the
length in links). Even though this is only changing the
constants and does not affect big-O, it does mean we can
freely add more status-types without significantly affecting
run-time.

Some optimizations that do not change the big-O, but can
save significant time, are possible. For example, in step Step
5.c, instead of trying every node, we could try just the
reachable nodes (either grouped by subnets or by nodes). It is

60Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

also possible to precompute the attack surface of each node
so that step Step 5.b becomes trivial. With these types of
optimizations, the algorithm can hope to get close to O(n) on
average, although O(n2) is still the worst case. Note that, as
we show later, n (the total number of nodes) is a poor
predictor of performance; different types of node can have
different impact – by factor of thousands.

G. Prototype
Our Python3 prototype is intended as a light weight,

flexible, easy to use experimental test bed. The system is
controlled by a control file (usually filetype “.maze”) that
controls every aspect of operation – the input data, the
processing, the options, the output, the debugging. The
control files processing (around 1K lines of Python)
implements many facilities: nested includes, comments,
timing, conditional jumps, setting of variables (such as the
debug level), printing out data, sequencing operations.

We implemented a Data Model that includes firewalls,
zone, nodes, vulnerability, etc. The Data Model is also
around 1K lines of Python. The Attack Maze and the
metrics total another 1K lines of Python.

The Attack Maze code has several parts:
• Status – code to handle definition of status-type
• Maze – algorithm to solve the maze
• Rules – the specific attack steps implemented

as Python functions.
The rules are just individual attack steps. For example,

this rule from MulVAL [11]:
accessFile(P, H, Access, Path) :-
 execCode(P, H, Owner), filePath(H, Owner, Path).

says “if an attacker P can access machine H with Owner’s
privilege, then he can have arbitrary access to files owned
by Owner”. Our equivalent Python code is show below in
Figure 1:

have_priv=lookup_status(dfd_node.statuses, "Privilege")
if (have_priv > 1): ## have root priv

is there any desired data on this machine?
 dfd_data = lookup_host_properties(dfd_node.host,

“Data_Bind”)
 if (0 < len(dfd_data)):

 ## yes, so this succeeds
updated=updateStatus(1,"GotData",

dfd_node.statuses)
Figure 1. Python code example

In Figure 1, dfd_node is the target. We first lookup it’s
status of Privilege into have_priv, then check whether root
privilege has been achieved. If it has, then, we lookup
whether it has any data binding (MulVAL [11] term for data
that the attacker wants). If both conditions are met, then the
post-condition of GotData is set to record that this node will
leak that data.

H. Examples
For our sample network , we start with the example from

[11] and add the watering-hole attack from [12]. The
network is the usual 2-firewall with DMZ. (DeMilitarized
Zone.) Connectivity is shown in blue. For simplicity, each
zone is assumed to be flat – any node can talk to any other
node. The attack, which is from the Internet, takes 3 steps
and is shown in red.

While running the algorithm, the workList will be: on
iteration 1 {Attacker}, on iteration 2 {WebServer}, on
iteration 3 {FileServer}, and, finally, on iteration 4
{Workstation}. So, a chain of 3 steps needs 4 iterations, as
expected. We also include a node WorkSafe that is like
WorkStation but without the vulnerabilities. In a well
maintained network, most of the node will be of the
WorkSafe variety (in a primitive way, the proportion of
WorkSafe nodes serves as a measure of the security of the
network.)

Figure 2. Test network

I. Timings
Our prototype implemented a “clone” directive to clone

many copies of a node to test the scalability. Since we
expect different behaviours for different types of nodes, we
set up a number of scenarios listed in Table 1:

• Victim – vary the number of victims (cloning
WorkStation up to 9K times)

• Innocent – vary the number of innocent
bystanders (clone WorkSafe)

• Intermediate – vary the number of attack path
intermediate nodes (clone WebServer)

• 3 X 1K – a fix 1K of each Victim/WorkStation,
Innocent/WorkSafe, Intermediate/WebServer

Workstation

Internet

internal

Attacker

CAN-2003-0252

Step	2a

Root	Writable,	Step	3

DMZ
Web	Server

File	server

CVE-2002-0392

Step	1

61Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

Table 1. SCALABILITY CASES
Scenrio WorkStation WorkSafe WebServer
Victim 1…9K 10 1
Innocent 10 1…9K 1
Intermediate 5 10 1…9K
3 X 1K 1K 1K 1K

The timings are done on an Dell XPS laptop with Intel
i5-4210U CPU at 1.7GHz, 8GiB memory, Ubuntu 14.04
LTS, Python version 3.4.3a and times are reported in
seconds of CPU time. Note that the memory usage for all
cases was under 0.5 GiB and entirely in main memory, the
script is single threaded, so multi-process is irrelevant. The
data points are average of several runs.

Figure 3. Scalability timing

In Figure 3, the green triangles are the number of
vulnerable Web Servers (the intermediate stop in the attack
path), the red squares are “safe” work stations (not in any
attack path), and the blue diamonds are the WorkStations
(victims). Not surprisingly, the timings all fit O(n2) very well
with R2 values well above 0.99. On the other hand, the
coefficients are quite different – 1e-5, 3e-6, 3e-9
respectively, or in ratio 3K:1K:1; this means “safe” nodes
take practically no time, so a large well maintained network
can be analysed in seconds. The victim nodes take more
time, but even 10K victims take only a few minutes. The
intermediate nodes are the most time consuming – 10K
intermediates take around 20 minutes.

We also ran a case of 1K intermediates, 1K victims, 1K
safes, for a total of 3K nodes (to be exact, we make that
many clones of each type, but the network includes firewalls
and other house keeping nodes, so the actual number of
nodes is 3,026). It took around 40 seconds. This shows that
even without any optimizations, it is entirely feasible for a
network of realistic size.

III. MISSION DEPENDENCY
To quote from [13] “It is critical that the [Department of

Defense] develop better cognizance of Cyber Network
Mission Dependencies”. Some proposals, such as [14] are
elaborate and somewhat difficult to construct. For example, a
mission commander may know a particular mission needs
email, but unlikely (may be even not allowed) to know
which nodes are actually involving in provding email.

Our contribution is to define the concept of a capability
which can be exported and used. The exporter is responsible
to define how the capability is implemented, for example, in
terms of nodes that are required. The user merely has to use
the capability without knowing which nodes are involved.

This fits the real world situation quite nicely. For
example, corporate IT may provide email, File Server, Print
Server etc. while different groups may provide Sales Data,
Inventory Data. A branch office IT can simply make use of
these capabilities, and the system can resolve the
dependencies. If the nodes that implement email are replaced
or renamed, the users do not need to know (and probably
will not know)!

This concept can extend to physical infrastructure like
cables, buildings. It is also possible to capture redundancy
requirements into the implementation of each capability. For
example, the email capability requires just one of two nodes
to be working (along with DNS capability).

IV. METRICS
There are different kinds of metrics for Situation

Awareness: the patch status of each node, the attack surface
of each node, where are the critical assets, active attacks in
progress, etc., see [15] for a survey. Eigenvalues have been
proposed as a mechanism for computing metrics, but they
generally are not intuitive – a localized change can affect the
metrics of nodes far away, for no clear reason. Even the sign
of the change may be unpredictable.

We are interested in quantitative measures that are
intuitive for questions like:

• How much damage can an attacker do? (For
different classes of attackers)

• Which particular assets are vulnerable (to that
class of attackers)?

• Is my particular mission safe – according to my
requirements of the nodes and Confidentiality,
Integrity, and Availability?

• Why did this metric go up? Because this
particular attack path has been prevented by this
particular patch.

• Assuming a new exploit, what will happen to
the different missions?

To answer our kinds of questions, we start by solving the
Attack Maze (for that class of attacker), so we know the MPI
(Maximum Possible Incursion) at each node. Note that the
status-types should be defined for the metrics. For example,

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

0	 5000	 10000	

VicIms	

Bystanders	

Intermediates	

Poly.	(VicIms)	

62Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

in Figure 1. Python code example, the metric GotData
records whether a node can access that particular data.
Presumably, this particular fact is used in the metric
calculation.

We then proceed to calculate metrics. We have several
kinds of metrics:

• Self-metric – these metrics describe only what
has happened to a node, ignoring other nodes.

• Other-metric – these metrics consider what this
node can do to other nodes (give the MPI).

• Mission-metrics – these metrics are for
missions, knowing the implementations of each
capability, and the self-metric and other-metric
of each underlying node.

A. Metric Routine supplied by user
We rely on the users to compute metrics from the MPI.

That is, the user provides a routine to compute a metric for a
node given the MPI. This allows users to link metrics to
resources that are monitored:

• One group may have sales data that needs to be
confidential, so they define a metric
Sales_Confidential that is 0 or 1.

• Another group, say HR, may have salary data
that also needs to be confidential, they define
Salary_Confidential that is 0.0 to 1.0 depending
on the difficulty of accessing that data (the
evaluation routine will need attack models and
other information that is not in the prototype,
but there is no limit in principle).

• Another group may want a Web site to be
available to the public, so they define
Site_Available that is 0.0 to 1.0 depending on
the state of DDoS (Distributed Denial of
Service) attacks and how many servers are still
up.

• A mission may define a metric Mission_Up
from 0.0 to 1.0 to mean the percentage of
capabilities and nodes are up. Of course, it does
not need to be linear – the routine can set it
arbitrarily.

B. Self-metric
Self-metrics are easily calculated – just invoke the

associated user routine for each node. The meaning is
explicitly narrow – the metric Sale_Confidential on a node
means only whether attacker on the node itself can access
the sales data.

The key is that the self-metrics form a “summary” for
what a node can do, and we use self-metrics as the basis of
mission-metrics.

C. Mission-metric
Mission-metrics are also computed by routines supplied

by the user. These routines start with the self-metric for each

node (that is needed for the mission), and produces metric
for the mission. In our prototype, we favor the use of the
“max” function. That is, the metric Sale_Confidential for
the mission is just the max of the metric for each node. That
is, the sales data is confidential in the mission if and only if
it is confidential for each node.

D. Example
metric Confidentiality: max
 GotData, No_Data=0.0, Got_Data=1.0
end metric Confidentiality

posture WorstC: max, "itemgetter('Confidentiality')"

Figure 4. Sample Metrics

This defines a metric Confidentiality that is 0.0 if the data
is not compromised, or 1.0 if it is. Recall that this metric is
computed for each node.

The posture (or mission-metric) WorstC is computed by
taking each node, using Python itemgetter to get the
Confidentiality metric, then take the max over all the nodes.
In other words, this posture is indicative of whether a data
leak is possible.

V. CONCLUSION AND FUTURE WORK
When solving the attack maze, it is relative simple to

remember each (successful) attack step; that makes it
possible to enumerate each possible attack path. The attack
paths can be used to generate recommendations for securing
the network. For example, it may be that there are many
paths, but all the paths share a single link, in which case,
patching a single machine may block all the paths.
Essentially, we are trying to partition the network so that the
attackers cannot get to the assets.

The attack maze can also be solved backward as well –
that can tell us what privileges are required to get to a
particular asset.

The capabilities concept can be expaned to deal with
redundancy – n out of m, 75% capacity, etc.

ACKNOWLEDGMENT
This work was initiated by the author while on contract at

Defence Research and Development Canada. We are grateful
to Dr. Natalie Nakhla for helpful reviews and discussions.

REFERENCES
[1] R. Langner, "Stuxnet: Dissecting a cyberwarfare weapon," IEEE

Security & Privacy, vol. 9, no. 3, pp. 49-51, 2011.
[2] T. N. SecurityTM, "Nessus Open Source Vulnerability Scanner

Project," ed, 2005.
[3] C. Phillips and L. P. Swiler, "A graph-based system for network-

vulnerability analysis," in Proceedings of the 1998 workshop on New
security paradigms, 1998, pp. 71-79: ACM.

[4] P. Ammann, D. Wijesekera, and S. Kaushik, "Scalable, graph-based
network vulnerability analysis," in Proceedings of the 9th ACM

63Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

Conference on Computer and Communications Security, 2002, pp.
217-224: ACM.

[5] X. Ou, W. F. Boyer, and M. A. McQueen, "A scalable approach to
attack graph generation," in Proceedings of the 13th ACM conference
on Computer and communications security, 2006, pp. 336-345: ACM.

[6] P. Ammann, J. Pamula, R. Ritchey, and J. d. Street, "A host-based
approach to network attack chaining analysis," in Computer Security
Applications Conference, 21st Annual, 2005, pp. 10 pp.-84: IEEE.

[7] P. A. Porras, M. W. Fong, and A. Valdes, "A mission-impact-based
approach to INFOSEC alarm correlation," in International Workshop
on Recent Advances in Intrusion Detection, 2002, pp. 95-114:
Springer.

[8] G. Jakobson, "Mission cyber security situation assessment using
impact dependency graphs," in Information Fusion (FUSION), 2011
Proceedings of the 14th International Conference on, 2011, pp. 1-8:
IEEE.

[9] A. Antelman, J. J. Dempsey, and B. Brodt, "Mission dependency
index-a metric for determining infrastructure criticality,"
Infrastructure Reporting and Asset Management, pp. 141-46, 2008.

[10] P. R. Garvey and C. A. Pinto, "Introduction to functional dependency
network analysis," in The MITRE Corporation and Old Dominion,
Second International Symposium on Engineering Systems, MIT,
Cambridge, Massachusetts, 2009.

[11] X. Ou, S. Govindavajhala, and A. W. Appel, "MulVAL: A Logic-
based Network Security Analyzer," in USENIX security, 2005.

[12] D. Kindlund, "Holyday watering hole attack proves difficult to detect
and defend against," ISSA J, vol. 11, pp. 10-12, 2013.

[13] A. Schulz, M. Kotson, and J. Zipkin, "Cyber Network Mission
Dependencies," ed: MIT Lincoln Laboratory, Tech. Rep, 2015.

[14] W. Heinbockel, S. Noel, and J. Curbo, "Mission Dependency
Modeling for Cyber Situational Awareness."
https://ist.gmu.edu/~csis/noel/pubs/2016_NATO_IST_148.pdf

[15] U. Franke and J. Brynielsson, "Cyber situational awareness–a
systematic review of the literature," Computers & Security, vol. 46,
pp. 18-31, 2014.

64Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

