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Abstract— Even a well administered computer network will be 
vulnerable to attacks. There have been many proposals in the 
literature to address the problem of Network-Vulnerability 
Analysis. One approach is to generate an attack graph (a 
logical graph representation of all possible sequences of 
vulnerabilities) using some formal model. Attack graphs suffer 
from scalability issues as the size of the network or the number 
of services and vulnerabilities increase. This paper presents a 
new approach that treats the network as a maze, which the 
attacker has to solve.  We then use the classical way to solve 
mazes in computer games – remembering where we have been 
by dropping things at each node. We present a graph-based 
algorithm to solve this maze and compute the Maximum 
Possible Incursion (MPI) for a given set of attackers or 
compromises. The developed simple breadth-first algorithm 
provides performance improvements over previous approaches 
(less than a minute to analyze a network with over 10,000 
nodes). We also present a methodology to capture mission 
dependency, which represents how a mission relies on the 
underlying network. Finally, we compute an extensible set of 
security metrics that identify the current network status in 
multiple dimensions (e.g. Confidentiality, Integrity, and 
Availability).  We also discuss future work to enumerate the 
specific attack paths that could be used to generate corrective 
recommendations. 

Keywords- Network security; vulnerability analysis; scalable; 
vulnerability; exploit; maximum incursion; cyber security; 
metric; security metric; mission dependency. 

I.  INTRODUCTION 
Cyber security has become more complex – the early 

generations of malware exploited a single vulnerability in a 
single computer system. Subsequently, worms and other 
malware propagate through a whole network. Recently, we 
have seen Stuxnet [1] and other sophisticated malware that 
use multiple vulnerabilities. Not only are malware getting 
more sophisticated, in many incidents, the attackers are 
known to have used a chain of vulnerabilities to gain access. 
There are many examples of such chains documented in 
various security advisories and so on. 

Before we can analyze the possible chains of 
vulnerabilities, it is necessary to identify all the 
vulnerabilities present on each node. More generally, we 
need to identify the total attack surface of each node. Since 
there are many vulnerability scanners [2], and many agencies 
maintain databases of vulnerabilities, this paper assumes that 
all vulnerabilities are already known. It can also be difficult 

to capture the necessary network information, but this paper 
deals only with the analysis problem. 

The problem of analyzing the many possible chains of 
vulnerabilities has attracted much attention. Most approaches 
ask: Can this node attack that node? One major approach is 
the attack graph introduced in 1998 [3]. Attack graphs are 
logical representations of all the ways an attacker could 
reach any target node in a given network. Although useful, 
attack graphs suffer from scalability in memory and 
performance issues as the network grows in number of 
nodes, services, vulnerabilities, etc. There are techniques in 
the literature that attempt to address the scalability of attack 
graphs in order to perform well for realistic-sized networks 
[4, 5]. This scalability problem is due to capturing all 
possible attack paths in the attack graph, so CPU time and 
memory usage grow rapidly with the size of the network. 
Another approach constructs an access graph of nodes in the 
network, where each directed edge in the graph represents a 
possible access along the edge [6]. 

We analyze the vulnerabilities for a different goal. 
Instead of calculating attack paths between specific nodes, 
we want to know exactly what privileges the attacker can 
possibly achieve – the Maximum Possible Incursion on each 
node. Clearly, this computation is specific to the particular 
class of attackers and must be recomputed for each class. 
Our approach, the Attack Maze, is similar to an access graph, 
but computes the MPI (Maximum Possible Incursion) 
directly. This means we do not record all possible Attack 
Paths, only the resultant incursion at each node – this is 
enough to achieve good scalability even for large networks.  

Formal methods rely on accurately capturing all the 
intricacies of all the data – any missing data cannot be part of 
the inference chain. Some data are difficult to handle in 
formal systems, examples include: the privilege of a userid 
may be already in an LDAP (Lightweight Directory Access 
Protocol) directory and may change frequently – the 
difficulty is due to the unpredictable changes to the LDAP 
entry; the firewall may have rules that are dependent on 
time/data or even user – the difficulty is due to the sheer 
number of combinations that are possible and some dynamic 
rules that may include factors/variables not captured in the 
formal model, many transactions will depend on business 
logic (be it decision tree, decision tables, database look up or 
complex programmatic logic)  - the difficulty is that many 
factors/variables may not be captured and that logic may be 
ill suited for the formal system. Since our approach is not 
based on a formal model, there is no need to precisely 
capture all details into the model; instead, the conditions can 
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be embedded in code that is able to query LDAP, etc. (we do 
not allow arbitrary code - we require the code to respect 
monotonicity, see Step 5.d of the algorithm.) 

The proposed approach also takes into account mission 
dependency. That is, given a mission that depends on some 
nodes of the network and given the current network status, 
what are the potential impacts on this mission? Some 
examples of mission dependency work in the cyber arena 
include [7, 8] and in the civil infrastructure area [9, 10].  

We use the concept of capabilities to encapsulate what 
functions are exported by the network. Each mission can 
then use these capabilities without knowing the details of 
how they are implemented (e.g. which nodes provide email 
service).  

We also present a suite of metrics that can be easily 
computed from the MPI. These metrics can be calculated at 
the levels of node, capability and mission, and have intuitive 
meaning to the owners of the node, capability or mission. 

 These ideas are implemented in a prototype using 
Python3 scripts. Our experiments show that even the simple 
algorithms perform very well – a well maintained network 
with few vulnerable nodes can be analyzed very quickly and 
even a network with many vulnerable nodes takes only 
minutes. 

II. ATTACK MAZE 

A. Approach 
Our approach is quite close to how an attacker tries to 

penetrate a network – find initial points of entry, then launch 
attacks from the compromised nodes to access more nodes 
and gain more privileges, repeat until no new privilege is 
possible. Along the way, the attacker keeps track of what 
access has already been achieved on each node, and only 
“better” accesses are of real interest. Eventually, all possible 
compromises on all nodes will be found. We define a node to 
be anything that is addressable (possibly with multiple 
addresses), so network printers, desktops, laptops, servers, 
proxies, are all nodes. We also generalize firewalls that 
control which nodes can access across zone boundaries. 

B. Status 
The key idea of the proposed algorithm is that we attach 

multiple statuses to each node. Each status-type records one  
particular type of privilege that the attacker can achieve at 
the node. The exact details of the statuses are expected to 
change with different applications (this paper presents some 
common statuses). Note that this algorithm does not rely on 
any specific status. 

Each status-type should be at least a partial order – that 
is, the different levels of privilege should form a tree or 
hierarchy (as opposed to a complete order where the 
privilege forms a linear chain). We define levels(s) to be the 
number of levels in the hierarchy. The partial ordering of 
each status-type will induce a partial order on the whole 
node, that is, for nodes n1 and n2: 

n1 > n2 iff s(n1) > s(n2) for all status-types s 
 
Note that there are two kinds of status-types: 

• Status types that document increasing privilege, 

o None, anonymous shell, chroot jail, full 
user shell, root shell 

o None, write on /tmp only, write on ~/ only, 
write on anywhere 

o None, write file as anonymous, write file 
as user, write file as root 

• Status types that document decreasing capability:  

o None (or Normal), 50% capacity, Non-
functional (for example, measuring the 
capacity of a Domain Name Server) 

o Normal, some transaction over 100 
millisecond, all transactions over 1 second  
(for example, measuring the throughput of 
a Web server) 

C. Attack Step 
We start by looking at the following attack step: 

Node A uses exploit E to attack node T 
We will refer to node A as the attacker, exploit E as the 

exploit vector, and node T as the target or the victim (a target 
is the intended victim of the attack, whereas a victim is after 
the attack succeeds). Each attack step will have pre-
conditions and post-conditions. In this design, we explicitly 
limit pre-conditions to be dependent only on the combination 
{A, E, T} and the post-conditions are limited to status-fields 
of the victim. In other words, the pre-conditions for a 
particular vector E may be dependent on the statuses of A, 
and the statuses of T; whereas the post-conditions can only 
be statuses of T. Intuitively, when node A launches an attack, 
the attack may use all the privileges already gained at A as 
well as the privledges already gained at T. After the attack 
succeeds, the privilege gained must be at T. Note that no 
other nodes may be a part of the pre-conditions nor the post-
conditions.  

For example, we allow pre-conditions such as status-type 
“UserAccount” must be at least “user shell account” and 
status-type “UserpPiv” must be at least “can execute 
arbitrary program” – as long as the requirement is only on A 
or T. This is inherent in the definiton of status-type. 

Most formal models do not restrict free variable like 
“user has FTP access on some server” (e.g., MulVAL [11] 
uses Datalog/Prolog logic rules so there is no problem with 
using another variable that will bind to another node). We 
explicitly disallow them in the pre-conditions, but allow 
them in the programatic code with some restrictions. As will 
be seen in Section E, this ensures the efficiency of the 
algorithm.  

The restriction on pre-conditions does limit the kinds of 
attack steps that can be modeled; but we allow the 
programatic code to check for the same conditions – 
although this check must be consistent, repeatable and 
respects the monotonicity (a node can only increase its 
possible attacks when its statuses go up). This monotonicity 

59Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies



ensures that we never have to backtrack. With this 
relaxation, we can easily handle attack vectors that require 
multiple intermediate nodes to cooperate. This means the 
resultant lost of expressive power is only nominal and the 
vast majority of real attacks can be modeled exactly and 
easily. 

D. Solving the Attack Maze 
To solve the maze, we start with the attacker(s) and try 

all possible victims (by recursively trying all possible attack 
steps on all possible targets). This ensures that we will 
traverse all possible attack paths from all attackers; along the 
way, we track only the maximum incursion at each victim. 
We use the naïve breadth-first algorithm described as 
follows: 

Step 1. Start with just the nodes, initializing each 
node to have None (the lowest state) for each status-
type. Intuitively, this is a sea of islands that any 
attacker has to hop to get anywhere, and the 
attacker starts with no access to anything. 

Step 2. Initialize newWorkList to be the set of 
nodes that the attacker is assumed to have 
compromised - all their own machines (in their own 
domains) plus our machines that has been 
compromised.) This is an input to the Attack Maze 
computation. The statuses for the attacker(s) are set 
to the maximum privileges achieved. Intuitively, 
this represents the initial set of accesses that the 
attacker has. 

Step 3. Check newWorkList, if it is empty, then we 
are done. If it is not-empty, copy newWorkList to 
workList, set newWorkList to empty. 

Step 4. Removing an attacker Node A from 
workList. (If workList is empty, got to Step 3.) 
Intuitively, we will attempt to launch attacks from 
this node.  

Step 5. Go through every node T in the system as 
a possible target from attacker A. (After running 
through every node, go to Step 4 for the next 
attacker.) Check if node A can attack node T: 

a. Node T has a vulnerability V 

b. The vulnerability V must have an exploit E 

c. Node A can reach the address/port on node 
T needed to exploit E 

d. Node A meets the pre-conditions of exploit 
E (note, this is the place for the non-local 
checks that must respect node 
monotonicity) 

Step 6. If all the conditions (in Step 5) 

a. are not met, this attack step is not possible. 
Go to Step 4 for the next target. 

b. are met, then this attack step succeeds. The 
post-conditions of exploit E are merged 

into the statuses of node T. That is, we 
record the maximum of each status-type 
(since each status-type must be a partial 
order, there will be a maximum). If any 
status is increased as a result, add node T 
to newWorkList. 

E. Analysis of performance 
For analysis of performance, we will use: 

• n – number of nodes 

• s – 𝑙𝑒𝑣𝑒𝑙𝑠(𝑠!
! i) 

• v – number of actual vulnerabilities or exploits 

 Since each node can only be added to the workList with 
an increase in status, and since the statuses are monotonic, 
each node can only be on the workList s times. Each time a 
node is on the workList, the algorithm will examine all 
possible attacks from that node, so the total work will be 
O(s*n*n*v) and since s and v are independent of the 
network, they can be subsumed into the coefficients, so the 
total work is O(n2). Note that this is for the algorithm, but we 
allow (in step Step 5.d) the pre-condition check to do 
arbitrary computation. In our prototype, we did not rely on 
this. 

We make several observations on aspects that are often 
difficult: 

• Exactness – within the accuracy of our status-fields 
(and extended pre-condition checks), we compute the exact 
MPI (Maximal Possible Incursion). This is true even if the 
pre-conditions are not completely formalized (i.e. embedded 
in code). 

• Multiples paths getting to a node – we handle each 
possible step, but the effects of the steps are merged at the 
node. This means we compute the MPI without enumerating 
all possible paths, we only enumerate all possible steps. 

• Cycles in attack paths – each complete cycle is 
handled; no extra processing is caused by multiple cycles. 
This is all implicit in the merging of status at nodes. 

F. Practical performance 
In the preceding analysis, the number of times a node can 

be put onto the WorkList is bound by s, the number of steps 
in the statuses. In practice, the loop (Step 4) iterates in 
lockstep with each link in an attack chain; that is, we start at 
the attacker(s) and follow all attack paths/chains 
simultaneously, one link per iteration. Therefore, the number 
of iterations is usually equal to the length of the longest 
attack path (counting in nodes, which is 1 more than the 
length in links). Even though this is only changing the 
constants and does not affect big-O, it does mean we can 
freely add more status-types without significantly affecting 
run-time. 

Some optimizations that do not change the big-O, but can 
save significant time, are possible. For example, in step Step 
5.c, instead of trying every node, we could try just the 
reachable nodes (either grouped by subnets or by nodes). It is 
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also possible to precompute the attack surface of each node 
so that step Step 5.b becomes trivial. With these types of  
optimizations, the algorithm can hope to get close to O(n) on 
average, although O(n2) is still the worst case. Note that, as 
we show later, n (the total number of nodes) is a poor 
predictor of performance; different types of node can have 
different impact – by factor of thousands. 

G. Prototype 
Our Python3 prototype is intended as a light weight, 

flexible, easy to use experimental test bed. The system is 
controlled by a control file (usually filetype “.maze”) that 
controls every aspect of operation – the input data, the 
processing, the options, the output, the debugging. The 
control files processing (around 1K lines of Python) 
implements many facilities: nested includes, comments, 
timing, conditional jumps, setting of variables (such as the  
debug level), printing out data, sequencing operations. 

We implemented a Data Model that includes firewalls, 
zone, nodes, vulnerability, etc. The Data Model is also 
around 1K lines of Python. The Attack Maze and the 
metrics total another 1K lines of Python. 

The Attack Maze code has several parts: 
• Status – code to handle definition of status-type 
• Maze – algorithm to solve the maze 
• Rules – the specific attack steps implemented 

as Python functions. 
The rules are just individual attack steps. For example, 

this rule from MulVAL [11]:  
accessFile(P, H, Access, Path) :- 
   execCode(P, H, Owner), filePath(H, Owner, Path). 

says “if an attacker P can access machine H with Owner’s 
privilege, then he can have arbitrary access to files owned 
by Owner”. Our equivalent Python code is show below in 
Figure 1: 
 

have_priv=lookup_status(dfd_node.statuses, "Privilege") 
if (have_priv > 1): ## have root priv 

## is there any desired data on this machine? 
 dfd_data = lookup_host_properties(dfd_node.host, 

“Data_Bind”) 
 if (0 < len(dfd_data)): 

      ## yes, so this succeeds 
updated=updateStatus(1,"GotData", 

dfd_node.statuses) 
Figure 1. Python code example 

 
In Figure 1, dfd_node is the target. We first lookup it’s 
status of Privilege into have_priv, then check whether root 
privilege has been achieved. If it has, then, we lookup 
whether it has any data binding (MulVAL [11] term for data 
that the attacker wants). If both conditions are met, then the 
post-condition of GotData is set to record that this node will 
leak that data. 

H. Examples 
For our sample network , we start with the example from 

[11] and add the watering-hole attack from [12]. The 
network is the usual 2-firewall with DMZ. (DeMilitarized 
Zone.) Connectivity is shown in blue. For simplicity, each 
zone is assumed to be flat – any node can talk to any other 
node. The attack, which is from the Internet, takes 3 steps 
and is shown in red. 

While running the algorithm, the workList will be: on 
iteration 1 {Attacker}, on iteration 2 {WebServer}, on 
iteration 3 {FileServer}, and, finally, on iteration 4 
{Workstation}. So, a chain of 3 steps needs 4 iterations, as 
expected. We also include a node WorkSafe that is like 
WorkStation but without the vulnerabilities. In a well 
maintained network, most of the node will be of the 
WorkSafe variety (in a primitive way, the proportion of 
WorkSafe nodes serves as a measure of the security of the 
network.) 

 

 
Figure 2. Test network 

I. Timings 
Our prototype implemented a “clone” directive to clone 

many copies of a node to test the scalability. Since we 
expect different behaviours for different types of nodes, we 
set up a number of scenarios listed in Table 1: 

• Victim – vary the number of victims (cloning 
WorkStation up to 9K times) 

• Innocent – vary the number of innocent 
bystanders (clone WorkSafe) 

• Intermediate – vary the number of attack path 
intermediate nodes (clone WebServer) 

• 3 X 1K – a fix 1K of each Victim/WorkStation, 
Innocent/WorkSafe, Intermediate/WebServer 

Workstation 

Internet 

internal 

Attacker 

CAN-2003-0252 

Step	2a 

Root	Writable,	Step	3 

DMZ 
Web	Server 

File	server 

CVE-2002-0392 

Step	1 
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Table 1. SCALABILITY CASES 
Scenrio WorkStation WorkSafe WebServer 
Victim 1…9K 10 1 
Innocent 10 1…9K 1 
Intermediate 5 10 1…9K 
3 X 1K 1K 1K 1K 
 

The timings are done on an Dell XPS laptop with Intel 
i5-4210U CPU at 1.7GHz, 8GiB memory, Ubuntu 14.04 
LTS, Python version 3.4.3a and times are reported in 
seconds of CPU time. Note that the memory usage for all 
cases was under 0.5 GiB and entirely in main memory, the 
script is single threaded, so multi-process is irrelevant. The 
data points are average of several runs. 

Figure 3. Scalability timing 
 

In Figure 3, the green triangles are the number of 
vulnerable Web Servers (the intermediate stop in the attack 
path), the red squares are “safe” work stations (not in any 
attack path), and the blue diamonds are the WorkStations 
(victims). Not surprisingly, the timings all fit O(n2) very well 
with R2 values well above 0.99. On the other hand, the 
coefficients are quite different – 1e-5, 3e-6, 3e-9 
respectively, or in ratio 3K:1K:1; this means “safe” nodes 
take practically no time, so a large well maintained network 
can be analysed in seconds. The victim nodes take more 
time, but even 10K victims take only a few minutes. The 
intermediate nodes are the most time consuming – 10K 
intermediates take around 20 minutes. 

We also ran a case of 1K intermediates, 1K victims, 1K 
safes, for a total of 3K nodes (to be exact, we make that 
many clones of each type, but the network includes firewalls 
and other house keeping nodes, so the actual number of 
nodes is 3,026). It took around 40 seconds. This shows that 
even without any optimizations, it is entirely feasible for a 
network of realistic size. 

III. MISSION DEPENDENCY 
To quote from [13] “It is critical that the [Department of 

Defense] develop better cognizance of Cyber Network 
Mission Dependencies”. Some proposals, such as [14] are 
elaborate and somewhat difficult to construct. For example, a 
mission commander may know a particular mission needs 
email, but unlikely (may be even not allowed) to know 
which nodes are actually involving in provding email. 

Our contribution is to define the concept of a capability 
which can be exported and used. The exporter is responsible 
to define how the capability is implemented, for example, in 
terms of nodes that are required. The user merely has to use 
the capability without knowing which nodes are involved. 

This fits the real world situation quite nicely. For 
example, corporate IT may provide email, File Server, Print 
Server etc. while different groups may provide Sales Data, 
Inventory Data. A branch office IT can simply make use of 
these capabilities, and the system can resolve the 
dependencies. If the nodes that implement email are replaced 
or renamed, the users do not need to know (and probably 
will not know)! 

This concept can extend to physical infrastructure like 
cables, buildings. It is also possible to capture redundancy 
requirements into the implementation of each capability. For 
example, the email capability requires just one of two nodes 
to be working (along with DNS capability). 

IV. METRICS 
There are different kinds of metrics for Situation 

Awareness: the patch status of each node, the attack surface 
of each node, where are the critical assets, active attacks in 
progress, etc., see [15] for a survey. Eigenvalues have been 
proposed as a mechanism for computing metrics, but they 
generally are not intuitive – a localized change can affect the 
metrics of nodes far away, for no clear reason. Even the sign 
of the change may be unpredictable. 

We are interested in quantitative measures that are 
intuitive for questions like: 

• How much damage can an attacker do? (For 
different classes of attackers) 

• Which particular assets are vulnerable (to that 
class of attackers)? 

• Is my particular mission safe – according to my 
requirements of the nodes and Confidentiality, 
Integrity, and Availability? 

• Why did this metric go up? Because this 
particular attack path has been prevented by this 
particular patch. 

• Assuming a new exploit, what will happen to 
the different missions? 

To answer our kinds of questions, we start by solving the 
Attack Maze (for that class of attacker), so we know the MPI 
(Maximum Possible Incursion) at each node. Note that the 
status-types should be defined for the metrics. For example, 
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in Figure 1. Python code example, the metric GotData 
records whether a node can access that particular data. 
Presumably, this particular fact is used in the metric 
calculation. 

We then proceed to calculate metrics. We have several 
kinds of metrics: 

• Self-metric – these metrics describe only what 
has happened to a node, ignoring other nodes. 

• Other-metric – these metrics consider what this 
node can do to other nodes (give the MPI). 

• Mission-metrics – these metrics are for 
missions, knowing the implementations of each 
capability, and the self-metric and other-metric 
of each underlying node. 

A. Metric Routine supplied by user 
We rely on the users to compute metrics from the MPI. 

That is, the user provides a routine to compute a metric for a 
node given the MPI. This allows users to link metrics to 
resources that are monitored: 

• One group may have sales data that needs to be 
confidential, so they define a metric 
Sales_Confidential that is 0 or 1. 

• Another group, say HR, may have salary data 
that also needs to be confidential, they define 
Salary_Confidential that is 0.0 to 1.0 depending 
on the difficulty of accessing that data (the 
evaluation routine will need attack models and 
other information that is not in the prototype, 
but there is no limit in principle). 

• Another group may want a Web site to be 
available to the public, so they define 
Site_Available that is 0.0 to 1.0 depending on 
the state of DDoS (Distributed Denial of 
Service) attacks and how many servers are still 
up. 

• A mission may define a metric Mission_Up 
from 0.0 to 1.0 to mean the percentage of 
capabilities and nodes are up. Of course, it does 
not need to be linear – the routine can set it 
arbitrarily. 

B. Self-metric 
Self-metrics are easily calculated – just invoke the 

associated user routine for each node. The meaning is 
explicitly narrow – the metric Sale_Confidential on a node 
means only whether attacker on the node itself can access 
the sales data.  

The key is that the self-metrics form a “summary” for 
what a node can do, and we use self-metrics as the basis of 
mission-metrics. 

C. Mission-metric 
Mission-metrics are also computed by routines supplied 

by the user. These routines start with the self-metric for each 

node (that is needed for the mission), and produces metric 
for the mission. In our prototype, we favor the use of the 
“max” function. That is, the metric Sale_Confidential for 
the mission is just the max of the metric for each node. That 
is, the sales data is confidential in the mission if and only if 
it is confidential for each node. 

D. Example 
metric Confidentiality: max 
 GotData, No_Data=0.0, Got_Data=1.0 
end metric Confidentiality 
 
posture WorstC: max, "itemgetter('Confidentiality')" 

Figure 4. Sample Metrics 
 

This defines a metric Confidentiality that is 0.0 if the data 
is not compromised, or 1.0 if it is. Recall that this metric is 
computed for each node. 

The posture (or mission-metric) WorstC is computed by 
taking each node, using Python itemgetter to get the 
Confidentiality metric, then take the max over all the nodes. 
In other words, this posture is indicative of whether a data 
leak is possible. 

V. CONCLUSION AND FUTURE WORK 
When solving the attack maze, it is relative simple to 

remember each (successful) attack step; that makes it 
possible to enumerate each possible attack path. The attack 
paths can be used to generate recommendations for securing 
the network. For example, it may be that there are many 
paths, but all the paths share a single link, in which case, 
patching a single machine may block all the paths. 
Essentially, we are trying to partition the network so that the 
attackers cannot get to the assets. 

The attack maze can also be solved backward as well – 
that can tell us what privileges are required to get to a 
particular asset. 

The capabilities concept can be expaned to deal with 
redundancy – n out of m, 75% capacity, etc. 
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