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Abstract—Modern cars include more and more features that first
emerged from the consumer electronics industry. Technologies
like Bluetooth and Internet-connected services found their way
into the vehicle industry. The secure implementation of these func-
tions presents a great challenge for the manufacturers because
products originating from the consumer industry can often not be
easily transferred to the safety-sensitive traffic environment due
to security concerns. However, common automotive interfaces like
the diagnostics port are now also used to implement new services
into the car. With dongles designed to read out certain vehicle
data and transfer it to the Internet via the cellular network, the
owner can access information about gas consumption or vehicle
location through a mobile phone app, even when he is away
from the car. This paper wants to emphasize new threats that
appear due to the ongoing interconnection in modern cars by
discussing the security of the diagnostics interface in combination
with the use of an Internet-connected dongle. Potential attack
vectors, as well as proof-of-concept exploits will be shown and
the implications of security breaches on the safe state of the
vehicle will be investigated.

Keywords– On-Board-Diagnostics; Cellular Network; Automo-
tive Security.

I. INTRODUCTION

The term ”On-Board-Diagnostics (OBD)-II-dongle” refers
to a group of aftermarket devices that can be connected through
the OBD-II interface to upgrade the functionality of new and
old cars, and can be installed by a customer without any
technical knowledge [1]. These dongles are usually available
at a low price and promise interesting features, like connecting
the vehicle to a smartphone through the Internet and letting the
owner monitor certain in-vehicle data like fuel consumption on
different tracks and the Global Positioning System (GPS) data
points to determine the cars’s position over time. The OBD-
II devices are available for every vehicle that implements an
OBD-II diagnostic port, which applies to almost every vehicle
which is participating in common traffic these days.

Even if the relatively easy improvement of cars’ features
through plugging in an OBD-II-dongle sounds tempting, the
devices can bring along particular risks and alter the security
of a vehicle in the long run. OBD-II-dongles use the same
protocols as repair shop tester software to read data from the
car’s bus systems. [2] After reading the device conditions,
the data is sent to a backend server on the Internet, which
acts as a database for the frontend application that interfaces
the user. If the device uses weak security measures, potential
vulnerabilities in the dongle’s firmware can open an insecure
gateway to the electronic infrastructure of the whole car [3]. In

further sections, this possible attack surface shall be described
and a possible exploit will be introduced.

In Section II, related work to this paper will be shown;
Section III will give a short overview over relevant automotive
diagnostic protocols, while Section IV will explain discovered
vulnerabilites of OBD-II-dongles, that have been investigated.
Section V will cover security threats that can follow from
installing an OBD-II-dongle, before Section VI will conclude
the results of this paper and give a short outlook to possible
future work in this field.

II. RELATED WORK

Investigating security vulnerabilities and introducing pos-
sible attacks is already being researched for a couple of years.
Especially exploiting weak in-vehicle protocols like Control
Area Network (CAN) is a pretty well-known topic [4]. Also,
attacks using a pirate Base Transceiver Station (BTS) in
cellular networks have already been introduced by Paget in
2010 [5]. The possibility to perform an over-the-air attack on
a specific telematics dongle, has been shown by Szijj et al.
in 2015 [6]. More recent work, especially including targeting
the standard OBD-II-interface through wireless signals, has
been conducted by Zhang et al. in 2016 [7]. This research
team also proposed an attack on OBD-II-dongles, but – unlike
this article – their investigation was focused on controlling
an OBD-II-dongle through a paired phone’s Bluetooth con-
nection. Besides attacks on dongles and the cellular network,
additionally, ways to exploit a repair shop tester, including the
diagnostic protocols that are also mentioned in this article, have
been published [8]. This paper will cover parts of the different
research areas mentioned above and propose a way to analyze
and exploit OBD-II-dongles and the interface’s diagnostic
protocols wirelessly, without the use of supplementary devices
like smartphones.

III. AUTOMOTIVE DIAGNOSTICS PROTOCOLS

After the first efforts to implement and unify a diagnosis
interface in passenger vehicles more than 20 years ago, some
standards regarding the hardware interface and the used proto-
cols have been developed. Even though early perceptions of the
capabilities of a diagnostic interface focused on the possibility
of gathering information on the cars’ emissions only, with the
ongoing progress in car manufacturing a lot more functionality
was realized through the OBD-II-connector. Therefore, also the
protocols that handle the diagnostic communication evolved
over time and are nowadays used for transferring complex data
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structures, for example during reprogramming an Electronic
Control Unit (ECU). The following two subsections will intro-
duce two important standards in the environment of automotive
diagnostics.

A. Diagnostics on Control Area Networks

The ISO-15765-2 standard introduces the network and
transport layer services of the Diagnostics over CAN proto-
col [9]. It describes the way data of different size can be
transmitted in a reliable way. Besides the transferring of single
frames – which are usually limited to a maximum length of 8
bytes in the CAN protocol – it especially specifies the handling
of larger payloads. The standard, often also referred to the
name ISO-TP, shows a dictate to enable the transmission of
messages with a payload up to 4096 bytes. This rise of capacity
is achieved by introducing a rule set for segmenting the data
into multiple frames and implementing a specific frame type
to indicate that a message is being segmented, the Segmented
Frame.

B. Unified Diagnostic Services

The previously described ISO-TP standard is widely used
for the transmission of data on the CAN bus and the Unified
Diagnostic Service (UDS) protocol (also called ISO-14229)
makes use of it [10]. The UDS protocol describes regulations
to enable a standardized communication between a diagnos-
tics tester and all ECUs present in the bus topology of a
car. It implements a request/response message model on the
ISO/OSI session layer and above. The model prescribes that
every request has to be answered with a positive or negative
frame according to the standard. Basically, a common request
consists of a source and destination address, a service id
that uniquely identifies the request and some request-specific
parameters. To indicate if the request was successful, only the
first byte of the response has to be examined. In the positive
case, it has to contain the value of the service id added to
0x40, if the response is negative the message starts with 0x7F.

Besides the structure of the messages, the UDS protocol
also describes a great amount of standard services. Some of
them can be used to read out specific data from an ECU
(ReadDataByIdentifier), but there also exist services that are
designed to write certain bytes in the ECU’s storage (Write-
DataByIdentifier). Furthermore, routines to control specific
functions inside the car are also defined by the standard. For
example, the routine ECUReset sends a reboot request to the
ECU with the address given in the destination address parame-
ter. So, an individual that gains access to the OBD-II-interface
under any circumstance can craft all standard messages by
gathering information through reading the publicly available
UDS-Standard. With this knowledge for example a reset of any
ECU is possible. Another remarkable command is in charge
of the control of the communication on the shared CAN-Bus
(CommunicationControl). This command can completely turn
of the reception and transmission functions of an ECU. This
feature is usually used during the flash procedure of the ECU
via the CAN-Bus. The whole traffic on the bus, except the
traffic between a repair shop tester and the ECU which has
to be flashed, gets disabled to speed up the flashing time by
providing the full bus bandwidth. An attacker can easily shut
down the communication of an ECU through this command.

IV. OBD-II DONGLE SECURITY

Multiple Internet-connected OBD-II-dongles have been
tested for security vulnerabilities that could be exploited by
an attacker to wirelessly inject malicious CAN frames into a
vehicle over the OBD-II connector.

While the backend infrastructure and the user web interface
for each of these dongles is made by the company responsible
for the distribution of these dongles, the hardware and firmware
are outsourced to different Original Equipment Manufactorers
(OEMs). Local distributors do not have access to the source
code of the firmware, and are unable to asses the security of
their product. Due to inability to communicate with the OEMs,
a blackbox security analysis has been conducted.
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Figure 1. Example block diagram of dongle hardware

Figure 1 shows the general block diagram of the hardware
found in the examined dongles. A primary microcontroller
is responsible for power management, event logging, and
firmware flashing. A secondary microcontroller communicates
with the car via CAN bus and other protocols. A Global
System for Mobile Communications (GSM) modem provides
Internet connectivity and a GPS receiver allows for location
tracking. Other sensors, like microphones, accelerometers and
gyroscopes are also present in some of the examined hardware.

A. GSM Vulnerabilities
The cellular modem is the prime attack entry point for an

attacker. These devices must be able to establish an Internet
connection over long stretches of roads that might not be
covered with 3G (or newer) cellular technology, which offers
a good security model. Because of this, automotive Internet-
connected hardware must support 2G cellular connectivity
(GSM with General Packet Radio Service (GPRS)/Enhanced
Data Rates for GSM Evolution (EDGE) Internet) which sup-
ports cryptographic authentication only of the Mobile Station
(MS) and not the BTS.
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Since the connection between the MS and the BTS is
vulnerable to a Man-in-the-Middle (MITM) attack in GPRS
and EDGE, authentication of the server must be done at the
application layer by the MS. All the analyzed OBD-II-dongles
fail to implement proper cryptographic authentication at the
application layer, possibly because of insufficient resources on
the embedded microcontroller used or disregard for security
from the developers.

In our tests, both OsmoNITB and YateBTS were used to
setup a pirate BTS and successfully hijack the connection from
a dongle as Paget already demonstrated [5]. This allowed for
the protocol to be reverse-engineered, which made it possible
to write a pirate backend server to further exploit the dongle.

In some cases, the backend server would reject the hijacked
connection, detecting that the dongle was not connected using
the legitimate Access Point Name (APN) (the dongle provider
would operate an APN themselves). In these situations, it is
still possible to analyze the protocol either by probing the
Universal Asynchronous Receiver Transmitter (UART) line
to the GSM modem with a logic analyzer and decoding the
Attention Commands (AT) and Point-to-Point-Protocol (PPP)
frames coming from the microcontroller, or connecting the
pirate BTS to the Internet using the Subscriber Identity module
(SIM) card from another dongle of the same distributor.

It is notable that strong cryptographic authentication could
have been achieved using a standard Hash Message Authen-
tication Code (HMAC) with a different key for each dongle,
which has low enough complexity to be implemented on the
low power hardware used.

B. Over-the-Air Updates
All examined dongles support Over-the-Air (OTA) updates

to replace the microcontroller firmware, fix bugs and add
features. These updates are usually initialized by a command
received from the backend server to which the dongle reacts
by downloading a firmware image over Hypertext Printing
Protocol (HTTP) from a simple web server. The downloaded
binary is flashed either in place by the running firmware, or by
a static bootloader which can’t be updated and has the ability
to revert the flashing process if something goes wrong.

Naturally, since no cryptographic authentication is imple-
mented at the application layer, it is trivial to provide a
customized firmware after the OTA update is triggered using
the pirate backend server.

Some dongles try to verify the integrity of the downloaded
binary by putting checksums and length fields in various
positions inside the firmware. In order to pass this verifica-
tion, a reverse-engineering of the firmware software has been
performed.

Different techniques were used for different dongles in
order to obtain the firmware for reverse-engineering it. When
it was possible to manually trigger an OTA update, simply
sniffing the connection as described earlier was sufficient to
extract the unencrypted firmware out of the Transmission
Control Protocol (TCP) stream, or to obtain the HTTP Uni-
form Resource Locator (URL) from which it was possible to
download different firmware versions.

In all dongles, the downloaded firmware is cached before
the actual flashing on a non-volatile memory outside the main
microcontroller. These memory chips work using the Serial

Peripherial Interface (SPI) protocol, the same used by Secure
Digital Memory Cards (SD-Cards), which made it easy to
read the content and find recently flashed firmwares and older
rollback versions to use in case of boot failure.

In some dongles, an obstacle for the reverse-engineering
was created by the presence of a static bootloader that handled
the flashing procedure. This bootloader resides in a distinct
location in the internal flash of the microcontroller, and can’t
be replaced via an OTA update. This means that it was not
possible to intercept it as described before. Moreover, debug
interfaces like Joint Test Action Group (JTAG) and Single Wire
Debug (SWD) were disabled on these dongles. However, the
bootloader could be dumped by getting the dongle to execute
a small piece of custom assembly code (8 bytes) that used the
original serial output routine. This exploit payload was small
enough to be fitted in the known firmware without changing the
length and only a checksum needed to be changed. The exploit
simply calls the write function in the standard C library to
dump the flash page containing the bootloader over an UART
line.

C. Attack Procedures
Once the reverse-engineering of the software, protocols and

hardware schematics was completed, a wide array of attacks
became possible. The first step for all attacks was hijacking
the victim’s GPRS connection. This can usually be done by
simply transmitting the pirate BTS signal with higher power
than the legitimate BTS. Sometimes, jamming the legitimate
BTS signal is also required (for example for devices supporting
3G connectivity).

After a temporary hijack of the Internet connection of the
victim’s dongle was achieved, a rogue Domain Name Service
(DNS) server was used to trick the dongle into connecting
to the pirate backend server. Now the pirate backend server
could spoof the commands required to change the dongle
configuration.

The dongles configuration includes the Internet Protocol
(IP)-address of the backend server, which could be changed to
the attacker’s server IP-address. At this point, even when the
GSM hijacking was interrupted, the dongle would still try to
connect to the attacker’s server.

The attacker’s backend server could be used to trigger OTA
updates which allow the attacker to flash exploited firmwares
on both microcontrollers. This means the attacker had full
access to the microcontroller responsible for interaction with
the car, and could send any desired command on all the
interfaces supported by the victim’s dongle.

V. SECURITY THREATS

A. Surveillance
During the research on the investigated dongles, many

possible ways to spy on an user were discovered. With the inte-
grated sensors on the dongle, very accurate movement profiles
can be created. An internal microphone of one investigated
dongle could be used to eavesdrop on a driver.

B. Denial of Service
With the equipped CAN transceiver on the dongle, many

sophisticated denial of service attacks on the car’s internal net-
work are possible. The simplest denial of service is a general
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or broadcasted ECUReset UDS command. This will reset all
ECUs of the vehicle because the internal gateway distributes a
broadcast command. With the possibility of modifying the don-
gle’s firmware, ECU-targeted, conditional or persistent attacks
are also possible. The Diagnostic communication over CAN
(DoCAN) protocol with extended addressing allows an attacker
to reset one specific ECU. It is possible to trigger a reset when
certain conditions are met, for example if the accelerometer
of the dongle is detecting high centrifugal forces. Also the
reset of an airbag ECU based on the detection of brake force
is possible. A persistent denial of service can be achieved
with CommunicationControl commands or with setting ECUs
in special modes, like the programming mode. An attacker
can advice an ECU to be completely silent on the bus. Some
of this mode changes are persistent. At least the erasure of
some program parts on an ECU, which is usually performed
from a repair shop tester during the flash procedure, leads to
a persistent denial of service. A so-called smart device can
increase the attack impact by specific conditions in dangerous
situations of a car.

C. Distributed Denial of Service
Through persistent modification of a dongle’s firmware, it

is possible to hijack the communication and hide the MITM-
attack for the dongle’s operator. In this way, attackers can
infect many dongles and start a distributed denial of service
attack at a specific time. A distributed attack will create a
much higher public visibility for such an attack, and can
easily harm the image of a car manufacturer or a dongle
operator. More advanced firmware modifications allow an
attacker also to collect specific information about the host
vehicle of an attacked dongle. It is possible to read out the
Vehicle Identification Number (VIN), the vehicle manufacturer
and even information about installed equipment. This allows
extremely fine-grained attacks.

D. Malicious ECU reconfiguration
Usually car manufactures use the same ECU design for

multiple car variants and sometimes even for different car
models. For this reason, the firmware of an ECU has to be
highly configurable. In this research, multiple ways to change
the configuration of an ECU were discovered. For example,
the functions for releasing airbags can be reconfigured. Such
configurations can be done trough repair shop testers. Any
authentication secrets can be extracted from the binary of the
firmware, but also a security session hijack is possible. With a
custom firmware on a GSM-OBD-II-dongle, the challenge can
be caught and passed over GSM to a control server. There, a
second software part can simulate a car and receive the proper
response from an original repair shop tester. In this way, a
dongle can get security access through a MITM-attack on a
remote simulated repair shop tester connection.

E. Malicious ECU reprogramming
The signature processes of investigated ECUs did not show

any weaknesses so far, but if an attacker is able to sign it’s
own firmware or bypass the verification process, he can also
ship this firmware through an infected OBD-II-dongle. The
dongle can independently flash this firmware to a specific
ECU. Without any further work, an attacker is always able
to downgrade a firmware to a previous and correctly signed

version. Sometimes car manufacturers release new firmware
versions because of security patches. By flashing an obsolete
firmware, an attacker can reopen a fixed security vulnerability,
which could be exploited in a second step.

VI. CONCLUSION AND FUTURE WORK

While the vulnerabilities of the OBD-II-connector have
been known for a long time, car manufacturers only had
to worry about illicit modifications made by the car owners
themselves, since access to the OBD-II-interface required for
the attacker to be physically inside the car. More recently, a
wide array of OBD-II-dongles appeared on the market, and
many of them implement wireless connectivity with uncertain
security. Zhang et al. demonstrated how Bluetooth OBD-II-
dongles can be exploited by an attacker who has access to
the victim’s smartphone [7]. This paper showed how GSM-
OBD-II-dongles are vulnerable to attacks from a relatively long
range, and allow the attacker to obtain a persistent access to
the OBD-II-connector over the Internet.

As more and more OBD-II-enabled devices are presented
to the public, it is impossible to trust that all of them will
maintain a good security architecture. Instead, it would be
advisable that car manufacturers start treating the OBD-II-
connector as a highly dangerous attack surface. It was shown
that since the CAN bus interface on the OBD-II-connector
is used by repair shops to make modifications to the car
configuration, it is also possible for a remote attacker to realize
the same operations through an insecure Internet-connected
OBD-II-device. In a more secure car architecture, the OBD-
II-connector would be used only for the standard diagnostic
OBD-II PIDs, which shouldn’t include operations critical for
security and safety.

In the future, one approach to extend the work conducted
could be trying to automate parts of a security investigation.
Even if the results of the research on different OBD-II-dongles
delivered new insights on the security of the interface, it
would save time and the outcome would be more compa-
rable, when some steps of the security analysis could be
done automatically. Therefore, knowledge about previously
discussed vulnerabilities has to be taken into account and
specific test scenarios have to be created. In the end, a custom-
built framework for performing penetrations tests on OBD-II-
dongles will be the major goal. Also if certain parts – like
the reverse-engineering of the device’s hardware – need to be
realized manually, a partly-automated tool to guide the security
researcher regarding the execution of prearranged test cases
could possibly improve the investigation process by saving
time. By automating chosen test procedures and therefore
uniforming the structure of their output, the test results will
also be more standardized, which helps with interpreting and
evaluating the accomplished findings.

Besides the attempt of automating the present investigation
process of OBD-II-dongles, also applying and extending the
discoveries already made to other in-vehicle systems, that
are connected to the Internet, could be a valid proceeding.
For example infotainment systems can implement a WiFi-
Access-Point, to which passengers can connect to. Because
these systems usually provide Internet access through their
own GSM connection, they are possibly vulnerable to similar
attacks based on a pirate BTS, like the one shown in this
paper. Basically every connected device that is present in a
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modern car is worth analyzing in regards to security. As the
number of such devices will grow and vehicles will get intra-
and inter-networked, lots of different areas of research in this
domain will need emphasized attention and could possibly be
a follow-up for the presented investigations.
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