
Secure Cooperation of Untrusted Components

Roland Wismüller and Damian Ludwig
University of Siegen, Germany

E-Mail: {roland.wismueller, damian.ludwig}@uni-siegen.de

Abstract—A growing number of computing systems, e.g., smart
phones or web applications, allow to compose their software of
components from untrusted sources. For security reasons, such
a system should grant a component just the permissions it really
requires, which implies that permissions must be sufficiently fine-
grained. This leads to two questions: How to know and to specify
the required permissions, and how to enforce access control in
a flexible and efficient way? We suggest a novel approach based
on the object capability paradigm with access control at the level
of individual methods, which exploits two fundamental ideas: we
simply use a component’s published interface as a specification
of its required permissions, and extend interfaces with optional
methods, allowing to specify permissions which are not strictly
necessary, but desired for a better service level. These ideas can
be realized within a static type system, where interfaces specify
both the availability of methods, as well as the permission to use
them. In addition, we support deep attenuation of rights with
automatic creation of membranes, where necessary. Thus, our
access control mechanisms are easy to use and also efficient, since
in most cases permissions can be checked when the component
is deployed, rather than at run-time.

Keywords—Software-components; security; typesystems.

I. INTRODUCTION

In today’s computer based systems, the software environ-
ment is often composed of components developed by an open
community. Prominent examples are web applications, and
smart phones with their app stores. A major problem in such
systems is the fact that the component’s sources and thus,
the components themselves may not be trusted [1]. In order to
ensure security in systems composed of untrusted components,
the Principle Of Least Authority (POLA) should be obeyed,
i.e., each component should receive just the permissions it
needs to fulfill its intended purpose [2]. The term ’authority’
denotes the effects, which a subject can cause. These effects
can be restricted via permissions, which control the subject’s
ability to perform actions. An appealing and popular approach
to implement POLA is the use of the object capability model
[3,4], where unforgeable object references are used as a
capability allowing to use the referenced object.

A good introduction to the object capability model and
POLA is provided in [5]. The general properties of capability
systems, as well as some common misconceptions about capa-
bilities are pointed out in [6], where the authors also show that
capabilities have strong advantages over access control lists
and can support both confinement and revocation. Murray [4]
discusses several common object capability patterns, including
membranes, which allow a deep attenuation of rights.

Based on the object-capability paradigm, several secure
languages have been devised. A pioneer in this area is the
work of Mark Miller [3] on the E language, which points

out the prerequisites for secure languages: memory safety,
object encapsulation, no ambient authority, no static mutable
state, and an API without security leaks. In addition to these
features, E provides method level access control, but requires
the programmer to manually implement security-enforcing
abstractions, like membranes. Based on E, Joe-E [7] restricts
Java such that access to objects is only possible via capabilities
that have been explicitly passed to a component. Joe-E also
supports immutable interfaces allowing to implement secure
plug-ins. It uses compile-time checking and secure libraries
to disable insecure features of Java like, e.g., reflection and
ambient authority. In a similar spirit, Emily [8] is a secure
subset of OCaml, whereas Maffeis et al. [1] specifically
address the problem of mutual isolation of (third-party) web
applications written in JavaScript. These language-based ap-
proaches share two fundamental problems: Since they restrict
the programming language, they not only confine interactions
between components, but also limit the programmer’s capabil-
ities within a component. Another drawback is that security
can only be guaranteed, if all components are distributed at the
source code level, which in practice is infeasible for reasons
of protecting intellectual property rights.

A feasible solution for the second problem is the use of a
Virtual Machine (VM) that enforces security. An example for
such an approach is Oviedo3, which includes a secure VM im-
plementing capability-based access control at the granularity
of methods [9]–[11]. However, Oviedo3 only provides basic
mechanisms for the management of access rights, i.e., adding
and removing the permission to execute a single method for a
single object reference, and must check all these permissions
at run-time. Thus, Oviedo3 is neither easy to use nor efficient.

To overcome the drawbacks of existing approaches, the goal
of our work is to provide a VM that

• allows components to be distributed and deployed in
binary form while still providing security,

• enables fine-grained access control without putting a
relevant annotation or implementation burden on the
components’ programmers,

• minimizes the number of required run-time checks by
performing most checks when a component is deployed.

In this paper, we suggest an easy to use approach that
eliminates the shortcomings of existing capability systems
and secure high-level languages, and addresses the special
needs for the secure cooperation of untrusted components.
In Section II, we present a component model, where each
component specifies its minimal and desired permissions in
a natural way using interfaces. We then outline the basics of

103Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

a type system that allows fine-grained access restrictions and
optional methods (Section III). Finally, we introduce concepts
for a virtual machine and a secure, strongly-typed byte code,
that allows static type checking at deployment time and the
automatic creation of membranes (Section IV). We conclude
the paper by giving an outlook to our future work (Section V).

II. COMPONENT MODEL

Our work is based on the established definition of a software
component, as given by Szyperski: “A software component is a
unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can
be deployed independently and is subject to composition by
third parties” [12]. We assume that components are distributed
as compiled byte code for a VM, rather than source code. Their
internal structure is not relevant, however, we require that a
component defines a purely object oriented interface, i.e., to
its environment it appears to be composed of classes. One
of these classes, the principal class, is the starting point for
defining the component’s interface.

Under these conditions, at run-time a component can be
viewed as a collection of objects. Thus, secure interaction
between components can be implemented by an extended
object capability model, where the type of a reference imposes
additional access restrictions.

In this run-time model, we can exactly determine the
interface that a component C requires from its environment
(by determining the types of all references and values that
C can receive), as well as the interface it provides to the
environment (i.e., the types of all references and values that
C returns) by just examining the type of C’s principal class.
Now, a central idea of our approach is to view these interfaces
also as a specification of the required (requested) and provided
(granted) permissions of a component. E.g., if a method m is
in C’s required interface, then C requires the permission to
invoke m. As an extension, we also allow optional methods
in component interfaces. In this way, the type of the principal
class explicitly defines
• Tin : the minimum and maximum permissions that C

requests from its environment, where C will use optional
methods, if they are available, but does not require them
for its correct operation, and

• Tout : the minimum and maximum permissions that
C grants to its environment, where for each optional
method, C may decide at run-time whether or not to
provide it.

As an example, consider a calendar component that holds
objects implementing an interface Appointment. Users can
create new appointments or get a list of all stored ones. The
public interface of this component could look like shown in
Listing 1 (assuming String is a built-in type).

As the component has no input (we omitted the parameters
of createAppointment() for simplicity), Calendar
does not request any permissions from its environment, so
Tin = ∅. In contrast, it grants permission to use the stored

LISTING 1. CALENDAR INTERFACE

component interface Calendar {
interface Appointment {
int startTime();
int endTime();
String location();
String subject();

}
void createAppointment(...);
Appointment[] getAppointments();

}

appointments via the Appointment interface, which results
in Tout = {Calendar,Appointment}.

A calendar client displaying the appointments stored in a
calendar may have a component interface similar to Listing 2.

LISTING 2. CALENDAR CLIENT INTERFACE

component interface CalendarClient {
interface CalendarProvider {
Event[] getAppointments();

}
interface Event {
int startTime();
int endTime();
optional String subject();

}
void displayEvents();
void setProvider(CalendarProvider c);

}

This interface specifies the permissions the client needs
from a CalendarProvider: it must be able to call the
getAppointments() method, which returns an array of
objects of type Event. On an Event, the client must
be able to call startTime() and endTime(), and it
will use subject(), if available. Thus, for the calendar
client component we have Tout = {CalendarClient}
and Tin = {CalendarProvider,Event}. Since we use
structural typing for component interfaces, a reference to the
Calendar component can be passed to setProvider(),
as Appointment provides all the methods required by
Event.

Client ClientCalendar

Appointment

Calendar

Appointment

startTime()
endTime()

Figure 1. Full access to Appointment (left) versus restricted permissions
(right).

In this example, the calendar client will not be able to

104Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

TABLE I. INTENDED SEMANTICS OF COMPONENT INTERFACE TYPES.

Status of method m Assertion that referenced Permission to call
in interface type T object has method m method m
m is not in T no no

m is optional in T no yes
m is required T yes yes

call the location() method on events received from any
CalendarProvider, because it is not part of the Event
interface. Formally, a component C can invoke method m
on an object o from another component, only if o can be
assigned to a reference of some type T ∈ Tin(C), which
allows to call m. Especially, a component can only execute
the operations explicitly specified in its published interface.
This means that everything the component can do is explicitly
visible in its published interface, so the user can decide not to
install the component or to only provide it with a reference to a
restricted calendar object. Traditionally, this requires to man-
ually program a membrane for the Calendar component,
such that the objects returned by getAppointments()
do not have a subject() method (see Figure 1). In our
model, the same effect can be achieved by just casting the
Calendar reference to a more restricted interface, where
the subject() method is missing. In Figure 1, the client
has access to Calendar through a membrane. The calendar
membrane’s getAppointments() method in turn returns
membranes for the Appointment objects, that only allow
two methods to be called.

In principle, if the Calendar component declared the
subject() method in Appointment as optional, it also
could decide at runtime whether or not to expose this method
to the client invoking getAppointments(), based, e.g., on
some authentication procedure. However, we believe that this
decision should be left to the user assembling the components.

Note that a component’s published interface (what it pre-
tends to do) may differ from its actually implemented inter-
face, e.g., a component may try to call a method not declared in
its published interface. However, because the component will
always be used via its published interface, such a deviation
will result in a type error at run-time. We will briefly present
our type system in the next section.

III. TYPE SYSTEM

As outlined before, we interpret a component’s interface
type as a specification of access permissions for methods.
In addition, we retain the traditional interpretation, which
asserts that all objects implementing the interface will offer the
specified methods. We achieve both goals by using optional
methods, as shown in Table I.

As the main goal of our type system is security, it must
enforce the access restrictions given in Table I in such a way
that no component can amplify its rights by type conversions,
i.e., down-casting. Whenever possible, we ensure this property
statically, i.e., at the time a component is deployed, rather than
by using run-time checks. In addition, we avoid delayed type
failures: once a component C is deployed and a reference to
C’s primary object has successfully been assigned to a variable

of some component interface type I , all methods in I can be
invoked without type errors. Finally, the type system supports
an easy attenuation of rights by just up-casting a reference,
without the need to manually code a membrane.

For safety and security reasons, we allow the VM to load
a component, only if the component’s code is well-typed.
According to Cardelli [13], this means that the code will not
exhibit any unchecked run-time errors (although controlled
exceptions are allowed). The main question in this context
is: when can we allow to assign a reference from a variable r
of type S to a variable r′ of type T , when at least one of these
types is a component interface type? The important restriction
here is that we must not allow r′ to gain more permissions
than r via down-casting.

Assume that there exists a method m that is optional in S,
but required in T . Table I shows that there are no security
concerns in this situation, since both S and T allow to call
m. However, since T asserts that the referenced object has
method m, we must check this condition at run-time when
assigning r to r′. We can assign r : S to r′ : T without a
run-time type check, if and only if
• there is no optional method in S that is requred in T ,
• each required method of T is also present in S,
• each method of S can be assigned to its corresponding

method in T without run-time check, i.e., all its argu-
ments and results can be assigned without check (this
avoids delayed type failures).

A different situation arises if there exists a method m that
is optional in T , but is not present in S. In this case, Table I
shows that T actually allows to call m (if the referenced object
o provides that method), while S does not. Thus, we actually
can assign r : S to r′ : T , if after this assignment r′ references
an object that does not provide m. We ensure this by using
a coercion semantics, where the result of the assignment is a
reference to a membrane for o that does not provide method
m. Vice versa, this means that we can assign r : S to r′ : T
without introducing a membrane, if and only if
• each method of T is also declared in S, and
• all methods of S can be assigned to the corresponding

method of T without a need for a membrane.
This type systems enables the construction of a secure VM,

which can decide at deployment time for which assignments
in a component’s code a run-time check is required and/or a
membrane must be introduced.

IV. COSMA

The Component Oriented Secure Machine Architecture
(COSMA) is a secure VM based on the outlined type system.
It comes with a specification for an object oriented byte code,
called Component Intermediate Language. The structure of
this byte code reflects that of a component: The entry point
for a component’s code always is its principal class, which
logically contains all other classes. Method implementations
are structured into basic blocks. Such a block is a sequence
of instructions and is the only admissible target of a branch

105Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

instruction. Instructions do not allow direct access to the mem-
ory. Instead, they use typed operands to access abstract storage
locations. There is also no visible call stack, but a high-level
method call instruction, where lists of operands are passed for
arguments and results. This ensures that a malicious program
cannot forge references (e.g., by abusing an untyped stack),
which is the major requirement for a secure object-capability
system. Since the byte code does not contain any names except
the obligatory method names for component interfaces, it also
protects the component developer’s intellectual property rights.

We need a secured byte code, since secure high-level
languages “can still be attacked from below” [14]. In order
to prevent such attacks, we must use “computers on which
only capability-secure programs are allowed” [14]. Thus, new
programs can only be loaded into COSMA as components
represented in our byte code.

When a component is deployed into the VM, it is associated
with a new context that serves as a trust (or protection)
unit. Within this context, the component’s principal class
is instantiated, and a reference (capability) to this principal
object is returned and gets casted to the component’s published
interface. Initially, this reference is the only way to interact
with the component. When an object in a context X creates
another object, the new object also is associated with X . Thus,
a context comprises all objects that are (transitively) created by
the principal object of a loaded component. COSMA ensures
that references can point to objects in a different context, only
if they have a component interface type and thus are subject
to the security restrictions outlined in Section III. References
with “normal” class or interface types are also supported, but
can only point to objects in the local context. Thus, we do not
restrict the code’s expressiveness within a component.

During deployment, a component’s complete byte code is
checked for consistency, which includes type checking. Since
the byte code does not allow any untyped data accesses,
this can be done on a per-instruction basis, without a need
for a complex verification of instruction sequences, as it is
necessary, e.g., in Java byte-code [15]. Based on the type
information available in the component’s code, COSMA au-
tomatically generates the code for all required membranes,
relieving the programmer from this burden. At run-time,
membranes are automatically inserted via coercion semantics
when permissions are “casted away”. Thus security constraints
are enforced mainly statically, leaving only a few run-time
checks.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new concept for the secure
cooperation of untrusted components. This involves a com-
ponent model, where each component declares its required
and granted permissions via a self-explanatory public inter-
face. This interface can then be used to connect it to other
components. Components are distributed in a secure byte code
with high-level instructions that preserves typing information,
but still protects intellectual property rights. The corresponding
VM implements a type system ensuring that a component

cannot gain more permissions than those explicitly mentioned
in its public interface. Type checking is done at deployment
time, with some additional run-time checks, where necessary.
Coercion semantics is used to automatically insert membranes.

At present we have a fully operational implementation of
the type system and the VM, as well as a compiler translating
a minimalistic language into our byte code. A formal specifi-
cation of the type system, including subtyping and coercion,
is also available, along with the semantics of the implemented
instructions and a formal proof that no instruction sequence
can amplify a component’s permissions.

In the current implementation all components are executed
by the same VM, thus, security of the connections is not an
issue. In the future, the model can be extended to distributed
systems using remote method invocation, provided that the
communication link between the VMs uses a secure protocol
ensuring authentication and integrity.

We are currently working on another compiler for a more
mature, Java-like programming language, that enables us to
execute more realistic programs. This will allow us to compare
our implementation to other approaches. Especially, we will
evaluate its performance against plain Java, so we can assess
the costs for the run-time checks and the indirection caused
by the use of membranes. Our long term goal is to provide
a complete programming system that can be used to develop
and deploy component-based software in an easy and secure
way.

REFERENCES

[1] S. Maffeis, J. C. Mitchell, and A. Taly, “Object Capabilities and Isolation
of Untrusted Web Applications,” in Proc. of IEEE Symp. Security and
Privacy. Oakland, CA, USA: IEEE, May 2010, pp. 125–140.

[2] M. S. Miller and J. S. Shapiro, “Paradigm Regained: Abstraction
Mechanisms for Access Control,” in Advances in Computing Science
- ASIAN 2003. Progamming Languages and Distributed Computation,
ser. LNCS, vol. 2896. Springer, 2003, pp. 224–242.

[3] M. S. Miller, “Robust composition: Towards a unified approach to
access control and concurrency control,” Ph.D. Thesis, Johns Hopkins
University, Baltimore, Maryland, May 2006.

[4] T. Murray, “Analysing object-capability security,” in Proc. of the Joint
Workshop on Foundations of Computer Security, Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of Security,
Pittsburgh, PA, USA, Jun. 2008, pp. 177–194.

[5] M. S. Miller, B. Tulloh, and J. S. Shapiro, “The Structure of Authority:
Why Security Is not a Separable Concern,” in Proc. 2nd Intl. Conf.
on Multiparadigm Programming in Mozart/Oz. Charleroi, Belgium:
Springer, 2004, pp. 2–20.

[6] M. S. Miller, K. P. Yee, and J. Shapiro, “Capability Myths Demolished,”
Systems Research Laboratory, Johns Hopkins University, Technical
Report SRL2003-02, 2003, http://srl.cs.jhu.edu/pubs/SRL2003-02.pdf
[retrieved: 7, 2018].

[7] A. Mettler, D. Wagner, and T. Close, “Joe-E: A Security-Oriented Subset
of Java,” in Network and Distributed Systems Symposium. Internet
Society, Jan. 2010, pp. 357–374.

[8] M. Stiegler, “Emily: A High Performance Language for Enabling
Secure Cooperation,” in Fifth Intl. Conf. on Creating, Connecting and
Collaborating through Computing C5’07. Kyoto, Japan: IEEE, Jan.
2007, pp. 163–169.

[9] D. A. Gutierrez et al., “An Object-Oriented Abstract Machine as the
Substrate for an Object-Oriented Operating System,” in Object-Oriented
Technology ECOOP, Workshop Reader, ser. LNCS, vol. 1357. Jyvskyl,
Finland: Springer, Jun. 1997, pp. 537–544.

106Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

[10] M. A. D. Fondon, D. A. Gutierrez, L. T. Martinez, F. A. Garcia,
and J. M. C. Lovelle, “Capability-based protection for integral object-
oriented systems,” in Proc. Computer Software and Applications Confer-
ence COMPSAC ’98. Vienna, Austria: IEEE, Aug. 1998, pp. 344–349.

[11] M. A. D. Fondon et al., “Integrating capabilities into the object model to
protect distributed object systems,” in Proc. Intl. Symp. on Distributed
Objects and Applications. Edinburgh, GB: IEEE, Sep. 1999, pp. 374–
383. [Online]. Available: http://dx.doi.org/10.1109/DOA.1999.794067

[12] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley, 2002.

[13] L. Cardelli, “Typeful Programming,” in Formal Description of Program-
ming Concepts, E. Neuhold and M. Paul, Eds. Springer, 1991, pp.
431–507.

[14] M. Stiegler, “The E Language in a Walnut,” 2000,
http://www.skyhunter.com/marcs/ewalnut.html [accessed: 7, 2018].

[15] X. Leroy, “Java bytecode verification: Algorithms and formalizations,”
Journal of Automated Reasoning, vol. 30, no. 3, pp. 235–269, May
2003. [Online]. Available: https://doi.org/10.1023/A:1025055424017

107Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

