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Abstract—In order to utilize multiple communication interfaces 

installed mobile terminals, Multipath Transmission Control 

Protocol (MPTCP) has been introduced recently.  It can 

establish an MPTCP connection that transmits data segments 

over the multiple interfaces, such as 4G and Wireless Local Area 

Network (WLAN), in parallel.  However, it is possible that some 

interfaces are connected to untrusted networks and that data 

transferred over them is observed in an unauthorized way.  In 

order to avoid this situation, we proposed a method to improve 

privacy against eavesdropping using the data dispersion by 

exploiting the multipath nature of MPTCP.  The proposed 

method takes an approach that, if an attacker cannot observe 

the data on every path, he cannot observe the traffic on any path.  

The fundamental techniques of this method is a per-byte data 

scrambling and path dispersion.  In this paper, we present the 

result of implementing the proposed method within the Linux 

operating system and its performance evaluation.   

Keywords- Multipath TCP; Eavesdropping; Data Dispersion; 

Data Scrambling.   

I. INTRODUCTION 

Recent mobile terminals are equipped with multiple 
interfaces.  For example, most smart phones have interfaces 
for 4G Long Term Evolution (LTE) and WLAN.  In the next 
generation (5G) network, it is studied that multiple 
communication paths provided multiple network operators are 
commonly involved [1].  In this case, mobile terminals will 
have more than two interfaces.   

However, the traditional TCP establishes a connection 
between a single IP address at one end, and so it cannot utilize 
multiple interfaces at the same time.  In order to cope with this 
issue, MPTCP [2] is being introduced in several operating 
systems, such as Linux, Apple OS/iOS [3] and Android [4].  
MPTCP is an extension of TCP.  Conventional TCP 
applications can use MPTCP as if they were working over 
traditional TCP and are provided with multiple byte streams 
through different interfaces.   

MPTCP is defined in three Request for Comments (RFC) 
documents by the Internet Engineering Task Force.  RFC 
6182 [5] outlines architecture guidelines.  RFC 6824 [6] 
presents the details of extensions to support multipath 
operation, including the maintenance of an MPTCP 
connection and subflows (TCP connections associated with an 
MPTCP connection), and the data transfer over an MPTCP 
connection.  RFC 6356 [7] presents a congestion control 
algorithm that couples the congestion control algorithms 
running on different subflows.   

When a mobile terminal uses multiple paths, some of them 
may be unsafe such that an attacker is able to observe data 
over them in an unauthorized way.  For example, a WLAN 
interface is connected to a public WLAN access point, data 
transferred over this WLAN may be disposed to other nodes 
connected to it.  One way to prevent the eavesdropping is the 
Transport Layer Security (TLS).  Although TLS can be 
applied to various applications including web access, e-mail, 
and ftp, however, it requires at least one end to maintain a 
public key certificate, and so it will not be used in some kind 
of communication, such as private server access and peer to 
peer communication.   

As an alternative scheme, we proposed a method to 
improve confidentiality against eavesdropping by exploiting 
the multipath nature of MPTCP [8][9].  Even if an unsafe 
WLAN path is used, another path may be safe, such as LTE 
supported by a trusted network operator.  So, the proposed 
method is based on an idea that, if an attacker cannot observe 
the data on every path, he cannot observe the traffic on any 
path [10].  In order to realize this idea, we adopted a byte based 
data scrambling for data segments sent over multiple subflows.  
This mixes up data to avoid its recognition through illegal 
monitoring over an unsafe path.  Although there are some 
proposals to use multiple TCP connections to protect 
eavesdropping [11]-[14], all of them depend on the encryption 
techniques.  The proposed method is dependent on the 
exclusive OR (XOR) calculation that is much lighter in terms 
of processing overhead.   

In this paper, we show the result of implementation of the 
proposed method and the result of performance evaluation.  
We adopted a kernel debugging mechanism in the Linux 
operating system so as to modify the Linux kernel as least as 
possible.  We conducted performance evaluation through 
Ethernet and WLAN using off-the-shelf PCs and access point.   

The rest of this paper is organized as follows.  Section II 
explains the details of the proposed method.  Section III shows 
how to implement the proposed method within the MPTCP 
software in the Linux operating system.  Section IV gives the 
results of the performance evaluation.  In the end, Section V 
concludes this paper.   

II. DETAILS OF PROPOSED METHOD 

Figure 1 shows the overview of the proposed method.  
When an application sends data, it is stored in the send socket 
buffer in the beginning.  The proposed method scrambles the 
data by calculating XOR of a byte with its preceding 64 bytes 
in the sending byte stream.  Then, the scrambled data is sent 
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through multiple subflows associated with the MPTCP 
connection.  Since some data segments are transmitted 
through trusted subflows, an attacker monitoring only a part 
of data segments cannot obtain all of sent data and so cannot 
descramble any of them.  When receiving data segments, they 
are reordered in the receive socket buffer by MPTCP.  The 
proposed method descrambles them in a byte-by-byte basis 
just before an application reads the received data.   

Figure 2 shows the details of data scrambling.  In order to 
realize this scrambling, the data scrambling module maintains 

the send scrambling buffer, whose length is 64 bytes.  It is a 
shift buffer and its initial value is HMAC of the key of this 
side, with higher bytes set to zero.  The key used here is one 
of the MPTCP parameters, exchanged in the first stage of 
MPTCP connection establishment.  When a data comes from 
an application, each byte (bi in the figure) is XORed with the 
result of XOR of all the bytes in the send scrambling buffer.  
The obtained byte (Bi) is the corresponding sending byte.  
After calculating the sending byte, the original byte (bi) is 
added to the send scramble buffer, forcing out the oldest 
(highest) byte from the buffer.  The send scrambling buffer 
holds recent 64 original bytes given from an application.  By 
using 64 byte buffer, the access to the original data is protected 
even if there are well-known byte patterns (up to 63 bytes) in 
application protocol data.   

Figure 3 shows the details of data descrambling, which is 
similar with data scrambling.  The data scrambling module 
also maintains the receive scramble buffer whose length is 64 
bytes.  Its initial value is HMAC of the key of the remote side.  
When an in-sequence data is stored in the receive socket 
buffer, a byte (Bi that is scrambled) is applied to XOR 
calculation with the XOR result of all the bytes in the receive 
scramble buffer.  The result is the descrambled byte (bi), 
which is added to the receive scramble buffer.   

By using the byte-wise scrambling and descrambling, the 
proposed method does not increase the length of exchanged 
data at all.  The separate send and receive control enables two 
way data exchanges to be handled independently.  Moreover 
the proposed method introduces only a few modification to 
the original MPTCP.   

III. IMPLEMENTATION 

A.  Use of Kernel Probes 

Since MPTCP is implemented inside the Linux operating 
system, the proposed method also needs to be realized by 
modifying operating system kernel.  However, modifying an 
operating system kernel is a hard task, and so we decided to 
use a debugging mechanism for the Linux kernel, called 
kernel probes [15].   

Among kernel probes methods, we use a way called 
"JProbe" [9].  JProbe is used to get access to a kernel function's 
arguments at runtime.  It introduces a JProbe handler with the 
same prototype as that of the function whose arguments are to 
be accessed.  When the probed function is executed, the 
control is first transferred to the user-defined JProbe handler.  
After the user-defined handler returns, the control is 
transferred to the original function [15].   

In order to make this mechanism work, a user needs to 
prepare the following;  

 registering the entry by struct jprobe and  
 defining the init and exit modules by functions 

register_jprobe() and unregister_jprobe 

()[16].     

In the Linux kernel, function tcp_sendmsg() is called 
when an application sends data to MPTPCP (actually TCP, 
too) [17].  As stated in Section II, the scrambling will be done 
at the beginning of this function.  So, we define a JProbe 
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Figure 1.  Overview of proposed method [8].   
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Figure 2.  Processing of data scrambling [8].   
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Figure 3.  Processing of data descrambling [8]. 
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handler for function tcp_sendmsg() for scrambling data 
to be transferred.   

In order for an application to read received data, it calls 

function tcp_recvmsg() in MPTCP.  In contrast to data 
scrambling, the descrambling procedure needs to be done at 
the end of this function.  So, we introduce a dummy kernel 
function and export its symbol just before the returning points 

of function tcp_recvmsg().  We then define a JProbe 
handler for descrambling in this dummy function.   

By adopting this approach, we can program and debug 
scrambling/descrambling independently of the Linux kernel 
itself.   

B. Modification of Linux opeating system 

We modified the source code of the Linux operating 
system in the following way.  We believe that this is a very 
slight modification that requires to us to rebuild the kernel 
only once.   

 Introduce a dummy function in tcp_recvmsg().   
As described above, we defined a dummy function named 

dummy_recvmsg().  It is defined in the source file 

“net/ipv4/tcp.c” as shown in Figure 4.  It is a function 

just returning and inserted before function tcp_recvmsg() 

releases the socket control.  The prototype declaration is done 

in the source file “include/net/tcp.h”.   
 Maintain control variables within socket data structure.  

In order to perform the scrambling/descrambling, the 
control variables, such as a scramble buffer, need to be 
installed within the Linux kernel.  The TCP software in the 
kernel uses a socket data structure to maintain internal control 
data on an individual TCP / MPTCP connection [17].  This is 
controlled by the following variable, as shown in Figure 4.   

struct tcp_sock *tp = tcp_sk(sk); 

This structure includes the MPTCP related parameters, such 
as keys and tokens.  The parameters are packed in an element 
given blow.   

struct mptcp_cb *mpcb; 

So, we added the control variables for data scrambling in this 
data structure.  Figure 5 shows the control variables.  The 
details of those variables are given in the following.   

 sScrBuf[64] and rScrBuf[64]: the send and 
receive scramble buffers, used as ring buffers.   

 sXor and rXor: the results of calculation of XOR for 
all the bytes in the send and receive scramble buffers.   

 sIndex and rIndex: the index of the last (newest) 

element in sScrBuf[64] and rScrBuf[64].   

 sNotFirst and rNotFirst: the flags indicating 
whether the scrambling and descrambling are invoked 
for the first time in the MPTCP connection, or not.   

C. Implementation of scrambling 

(1) Framework of JProbe handler 
Figure 6 shows the framework of JProbe hander defined 

for tcp_sendmsg().  Function jtcp_sendmsg() is a 
main body of the JProbe hander.  The arguments need to be 
exactly the same with the hooked kernel function 

tcp_sendmsg(), and it calls jprobe_return() just 

before its returning.  Data structure struct jprobe 

mptcp_jprobe specifies its details.   

Function mptcp_scramble_init() is the 
initialization function invoked when the relevant kernel 
module is inserted.  In the beginning, it confirm that the 
hander has the same prototype with the hooked function.  
Then it defines the entry point and registers the JProbe handler.  

Function mptcp_scramble_exit() is called when the 
relevant kernel module is removed.  It removes the entry point 
and unregisters the hander from the kernel.   

(2) Flowchart of data scrambling 
The data scrambling procedure is implemented in 

jtcp_sendmsg().  Figure 7 shows the flowchart for this 

 

Figure 4. Dummy function in tcp_recvmsg().   

 

Figure 5.  Control variables for data scrambling/descrambling.   

int tcp_recvmsg(struct sock *sk, struct msghdr *msg,

    size_t len, int nonblock,int flags, int *addr_len) {

  struct tcp_sock *tp = tcp_sk(sk);

  . . . . 

dummy_recvmsg(sk, msg, len, nonblack, flags, addr_len);

  release_sock(sk);

  return copied;

  . . . . 

} // dummy_recvmsg() inserted

EXPORT_SYMBOL(tcp_recvmsg);

void dummy_recvmsg(struct sock *sk, struct msghdr *msg,

     size_t len, int nonblock, int flags, int *addr_len)

{

  return;

} // Defining dummy_recvmsg()

EXPORT_SYMBOL(dummy_recvmsg);

struct mptcp_cb {

 . . . .
unsigned char sScrBuf[64], rScrBuf[64];

  unsigned char sXor, rXor;

  int sIndex, rIndex, sNotFirst, rNotFirst;

};

 

Figure 6.  JProbe hander definition for tcp_sendmsg().   

static const char procname[] =  mptcp_scramble 
int jtcp_sendmsg(struct sock *sk, struct msghdr *msg, 

       size_t size) {

  struct tcp_sock *tp = tcp_sk(sk);

  . . .

  jprobe_return();

  return 0;

} // (i) JProbe handler

static struct jprobe mptcp_jprobe = {

  .kp = {.symbol_name = "tcp_sendmsg",},

         .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int mptcp_scramble_init(void) {

  int ret = -ENOMEM; 

  BUILD_BUG_ON(__same_type(tcp_sendmsg, jtcp_sendmsg) == 0);

  if(!proc_create(procname, S_IRUSR, init_net.proc_net, 0))

    return ret;

  ret = register_jprobe(&mptcp_jprobe);

  if (ret) {

    remove_proc_entry(procname, init_net.proc._net);

    retrun ret;

  }

  return 0;

}  // (iii) Init function

module_init(mptcp_scramble_init);

static __exit void mptcp_scramble_exit(void) {

  remove_proc_entry(procname, init_net.proc._net);

  unregister_jprobe(&mptcp_jprobe);

}  // (iv) Exit function

module_exit(mptcp_scramble_exit);
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procedure.   When jtcp_sendmsg() is called, it is checked 
whether this function is invoked for the first time or not.  If it 
is the first invocation over a specific MPTCP connection, 

sScrBuf[] is initialized to the value of the local key 

maintained in the struct mptcp_cb structure.  Then, 

XOR of all the bytes in sScrBuf[] is calculated and saved 

in sXor, and  sIndex is set to 63.   

The argument containing data (msg) is a list of data blocks, 
and so individual blocks are handled sequentially.  For each 
data block, a byte-by-byte basis calculation is performed in 
the following way.  First, the XOR of the focused byte and 

sXor is saved in temporal variable x.  Then, sIndex is 
advanced by one under modulo 64.  Thirdly, the XOR of 

sXor, sScrBuf[sIndex] and the original byte are 
calculated and saved in sXor.  It should be noted that the value 

in sScrBuf[sIndex] at this stage is the oldest value in the 
send scramble buffer.  Fourthly, the original byte is stored in 

sScrBuf[sIndex],which means that the send scramble 
buffer is updated.  At last, the byte in the message block is 

replaced by the value of x.   

D. Implementation of descrambling 

The data descrambling is implemented similarly with 
scrambling.  We developed the JProbe handler for function 

dummy_recvmsg() in the same way with the approach 

given in Figure 6.  The flowchart of descrambling procedure 
is shown in Figure 8.  This is similar with the flowchart shown 
in Figure 7.  In the first part of the flowchart, it should be noted 

that rScrBuf[] is set to the remote key, which is the local 
key in the sender side.  In this case, the data block is a 
descrambled data.  Therefore, in the byte-by-byte basis part, 

the original value (x in the figure) is used to calculate rXor 

and is stored in rSrcBuf[rIndex].   

IV. EXPERIMENT 

We implemented the proposed method over the Linux 
operating system (Ubuntu 16.04 LTS).  We evaluated it in the 
experimental configuration shown in Figure 9.  Two 
Panasonic Let’s note PCs are used as a client and a server.  
The processor types are Intel UPU U1300 with 1.06GHz and 
Intel Pentium M with 1.50 GHz.  The client PC is connected 
with an access point (Buffalo Air Station G54) through 
WLAN and Ethernet.  On the other hand, the server PC is 
connected with the access point through Ethernet.  We used 
802.11g with 2.4 GHz as WLAN and 100base-T as Ethernet.  
The WLAN interface does not use any encryption.  We 
suppose that the Ethernet link is a trusted network and the 
WLAN link without any encryption is an untrusted network.  
A MacBook Air with macOS High Sierra is used as an 
attacker.  It runs Wireshark to capture packets sent over 
WLAN.   

 

Figure 7.  Flowchart of data scrambling.   

jtcp_sendmsg
    tcp_socket_struct: tp
    data_block: msg

tp->mpcb.
sNotFirst == 0 ?

Copy tp->mpcb.mptcp_local_key to tp->mpcb->sScrBuf.
Calculate XOR of sScrBuf[0] through [63] and substitute it for 
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Set tp->mpcb.sNotFirst to 1.
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Remember XOR of a byte in msg and tp->mpcb.sXor in variable x.
Increment tp->mpcb.sIndex by one under modulo 64.
Substitute XOR of tp->mpcb.sXor, tp->mpcb.sScrBuf[tp->mpcb.sIndex] 

and the byte in msg, for tp->mpcb.sXor.
Save the byte in msg in tp->mpcb.sSrcBuf[tp->mpcb.sIndex].  
Substitute x for the byte in msg.
Focus on the next byte in msg.

 

Figure 8.  Flowchart of data descrambling.   

jdummy_recbmsg
    tcp_socket_struct: tp
    data_block: msg

tp->mpcb.
rNotFirst == 0 ?

Copy tp->mpcb.mptcp_remote_key to tp->mpcb->rScrBuf.
Calculate XOR of rScrBuf[0] through [63] and substitute it for 

tp->mpcb.rXor.
Substitute 63 for tp->mpcb.rIndex.
Set tp->mpcb.rNotFirst to 1.

Yes

No

reach end of 
data_block ?

No

reach end of byte ?

No

Yes

Yes

end of jtcp_sendmsg

Remember XOR of a byte in msg and tp->mpcb.rXor in variable x.
Increment tp->mpcb.rIndex by one under modulo 64.
Substitute XOR of tp->mpcb.rXor, tp->mpcb.rScrBuf[tp->mpcb.rIndex] 

and x, for tp->mpcb.rXor.
Save x in tp->mpcb.rSrcBuf[tp->mpcb.rIndex].  
Substitute x for the byte in msg.
Focus on the next byte in msg.
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The network setting is as follows. 
 Since the access point works as a bridge, the client and 

the server are connected to the same subnetwork, 
192.168.0.0/24.   

 The Ethernet and WLAN interfaces in the client are 
assigned with IP addresses 192.160.0.1 and 192.168.0.3, 
respectively.  The Ethernet interface in the server is 
assigned with IP address 192.168.0.2.  The ESSID of the 
WLAN is “MPTCP-AP.” 

 In order to use two interfaces at the client, the IP routing 
tables are set for individual interfaces, by use of the ip 
command in the following way (for the Ethernet 

interface enp4s1). 

 ip rule add from 192.168.0.1 table 

1 

 ip route add 192.168.0.0/24 dev 

enp4s1 scope link table 1 

 The JProbe handlers for jtcp_sendmsg() and 

jdummy_recvmsg() are built as kernel modules.  

They are inserted and removed using insmod and 

rmmod Linux commands without rebooting the system.   

 In the experiment, we used iperf for sending data from 
the client to the server, using Ethernet and WLAN.   

 In the attacker, the Wireshark network analyzer is 
invoked for monitoring a WLAN interface with the 
monitor mode set to effective.   

Figure 10 shows a result of the attacker’s monitoring of 
iperf communication over WLAN in the conventional 
communication.  In the iperf communication, an ASCII digit 
sequence “0123456789” is sent repeatedly.  If the attacker can 
monitor the WLAN, the content is disposed as shown in this 
figure.  Figure 11 shows a monitoring result by the attacker 
over the WLAN link when the data scrambling is performed.  
This figure shows the monitoring result for the first data 
segment over the WLAN link, which is the same with Figure 
10.  The original data is a repetition of “0123456789” but the 
data is scrambled in the result here.  So, it can be said that the 
attacker cannot understand the content, even the WLAN link 
is not encrypted.   

As for the throughput of iperf communication, we 
executed ten times evaluation runs.  The results are as follows.   
Without scrambling: 89.92 Mbps average, 1.19 Mbps STD. 
With scrambling: 86.04 Mbps average, 1.69 Mbps STD.   
Since the processor types used in the experiment are rather old, 
the processing of scrambling and descrambling provided some 
overhead.  But we believe that the throughput reduction is 
small.   

V. CONCLUSIONS 

This paper described the results of implementation and 
evaluation of a method to improve privacy against 
eavesdropping over MPTCP communications, which we 
proposed in the previous papers.  The proposed method here 
is based on the not-every-not-any protection principle, that is, 
if an attacker cannot observe the data over trusted path such 
as an LTE network, he cannot observe the traffic on any path.  
Specifically, the proposed method uses the byte oriented data 
scrambling and the data dispersion over multiple paths.   

In the implementation of the proposed method, we took an 
approach to avoid the modification of the Linux kernel as 
much as possible.  The modification is as follows.  The control 

 

Figure 9.  Experiment configuration.   
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Figure 10.  Capturing result when no scrambling is performed.   
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parameters are inserted in the socket data structure, and the 

dummy function for the last part of tcp_recvmsg() 
function.  The main part of scrambling and descrambling is 
implemented by use of the kernel debugging routine called 
JProbe handler, which is independent of the kernel.   

Through the experiment, we confirmed that the data 
transferred over unencrypted WLAN link cannot be 
recognized when the data scrambling is performed.  As for the 
performance, the throughput of the scrambled communication 
is just a little smaller than the conventional communication 
exposed to unauthorized access.   
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Figure 11.  Capturing result when scrambling is performed.   
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