
Implementation of Eavesdropping Protection Method over MPTCP

Using Data Scrambling and Path Dispersion

Toshihiko Kato1)2), Shihan Cheng1), Ryo Yamamoto1), Satoshi Ohzahata1) and Nobuo Suzuki2)

1) University of Electro-Communications, Tokyo, Japan

2) Advanced Telecommunication Research Institute International, Kyoto, Japan

e-mail: kato@net.lab.uec.ac.jp, chengshihan@net.lab.uec.ac.jp, ryo_yamamoto@net.lab.uec.ac.jp,

ohzahata@net.lab.uec.ac.jp, nu-suzuki@atr.jp

Abstract—In order to utilize multiple communication interfaces

installed mobile terminals, Multipath Transmission Control

Protocol (MPTCP) has been introduced recently. It can

establish an MPTCP connection that transmits data segments

over the multiple interfaces, such as 4G and Wireless Local Area

Network (WLAN), in parallel. However, it is possible that some

interfaces are connected to untrusted networks and that data

transferred over them is observed in an unauthorized way. In

order to avoid this situation, we proposed a method to improve

privacy against eavesdropping using the data dispersion by

exploiting the multipath nature of MPTCP. The proposed

method takes an approach that, if an attacker cannot observe

the data on every path, he cannot observe the traffic on any path.

The fundamental techniques of this method is a per-byte data

scrambling and path dispersion. In this paper, we present the

result of implementing the proposed method within the Linux

operating system and its performance evaluation.

Keywords- Multipath TCP; Eavesdropping; Data Dispersion;

Data Scrambling.

I. INTRODUCTION

Recent mobile terminals are equipped with multiple
interfaces. For example, most smart phones have interfaces
for 4G Long Term Evolution (LTE) and WLAN. In the next
generation (5G) network, it is studied that multiple
communication paths provided multiple network operators are
commonly involved [1]. In this case, mobile terminals will
have more than two interfaces.

However, the traditional TCP establishes a connection
between a single IP address at one end, and so it cannot utilize
multiple interfaces at the same time. In order to cope with this
issue, MPTCP [2] is being introduced in several operating
systems, such as Linux, Apple OS/iOS [3] and Android [4].
MPTCP is an extension of TCP. Conventional TCP
applications can use MPTCP as if they were working over
traditional TCP and are provided with multiple byte streams
through different interfaces.

MPTCP is defined in three Request for Comments (RFC)
documents by the Internet Engineering Task Force. RFC
6182 [5] outlines architecture guidelines. RFC 6824 [6]
presents the details of extensions to support multipath
operation, including the maintenance of an MPTCP
connection and subflows (TCP connections associated with an
MPTCP connection), and the data transfer over an MPTCP
connection. RFC 6356 [7] presents a congestion control
algorithm that couples the congestion control algorithms
running on different subflows.

When a mobile terminal uses multiple paths, some of them
may be unsafe such that an attacker is able to observe data
over them in an unauthorized way. For example, a WLAN
interface is connected to a public WLAN access point, data
transferred over this WLAN may be disposed to other nodes
connected to it. One way to prevent the eavesdropping is the
Transport Layer Security (TLS). Although TLS can be
applied to various applications including web access, e-mail,
and ftp, however, it requires at least one end to maintain a
public key certificate, and so it will not be used in some kind
of communication, such as private server access and peer to
peer communication.

As an alternative scheme, we proposed a method to
improve confidentiality against eavesdropping by exploiting
the multipath nature of MPTCP [8][9]. Even if an unsafe
WLAN path is used, another path may be safe, such as LTE
supported by a trusted network operator. So, the proposed
method is based on an idea that, if an attacker cannot observe
the data on every path, he cannot observe the traffic on any
path [10]. In order to realize this idea, we adopted a byte based
data scrambling for data segments sent over multiple subflows.
This mixes up data to avoid its recognition through illegal
monitoring over an unsafe path. Although there are some
proposals to use multiple TCP connections to protect
eavesdropping [11]-[14], all of them depend on the encryption
techniques. The proposed method is dependent on the
exclusive OR (XOR) calculation that is much lighter in terms
of processing overhead.

In this paper, we show the result of implementation of the
proposed method and the result of performance evaluation.
We adopted a kernel debugging mechanism in the Linux
operating system so as to modify the Linux kernel as least as
possible. We conducted performance evaluation through
Ethernet and WLAN using off-the-shelf PCs and access point.

The rest of this paper is organized as follows. Section II
explains the details of the proposed method. Section III shows
how to implement the proposed method within the MPTCP
software in the Linux operating system. Section IV gives the
results of the performance evaluation. In the end, Section V
concludes this paper.

II. DETAILS OF PROPOSED METHOD

Figure 1 shows the overview of the proposed method.
When an application sends data, it is stored in the send socket
buffer in the beginning. The proposed method scrambles the
data by calculating XOR of a byte with its preceding 64 bytes
in the sending byte stream. Then, the scrambled data is sent

108Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

mailto:%7d@net.is.uec.ac.jp

through multiple subflows associated with the MPTCP
connection. Since some data segments are transmitted
through trusted subflows, an attacker monitoring only a part
of data segments cannot obtain all of sent data and so cannot
descramble any of them. When receiving data segments, they
are reordered in the receive socket buffer by MPTCP. The
proposed method descrambles them in a byte-by-byte basis
just before an application reads the received data.

Figure 2 shows the details of data scrambling. In order to
realize this scrambling, the data scrambling module maintains

the send scrambling buffer, whose length is 64 bytes. It is a
shift buffer and its initial value is HMAC of the key of this
side, with higher bytes set to zero. The key used here is one
of the MPTCP parameters, exchanged in the first stage of
MPTCP connection establishment. When a data comes from
an application, each byte (bi in the figure) is XORed with the
result of XOR of all the bytes in the send scrambling buffer.
The obtained byte (Bi) is the corresponding sending byte.
After calculating the sending byte, the original byte (bi) is
added to the send scramble buffer, forcing out the oldest
(highest) byte from the buffer. The send scrambling buffer
holds recent 64 original bytes given from an application. By
using 64 byte buffer, the access to the original data is protected
even if there are well-known byte patterns (up to 63 bytes) in
application protocol data.

Figure 3 shows the details of data descrambling, which is
similar with data scrambling. The data scrambling module
also maintains the receive scramble buffer whose length is 64
bytes. Its initial value is HMAC of the key of the remote side.
When an in-sequence data is stored in the receive socket
buffer, a byte (Bi that is scrambled) is applied to XOR
calculation with the XOR result of all the bytes in the receive
scramble buffer. The result is the descrambled byte (bi),
which is added to the receive scramble buffer.

By using the byte-wise scrambling and descrambling, the
proposed method does not increase the length of exchanged
data at all. The separate send and receive control enables two
way data exchanges to be handled independently. Moreover
the proposed method introduces only a few modification to
the original MPTCP.

III. IMPLEMENTATION

A. Use of Kernel Probes

Since MPTCP is implemented inside the Linux operating
system, the proposed method also needs to be realized by
modifying operating system kernel. However, modifying an
operating system kernel is a hard task, and so we decided to
use a debugging mechanism for the Linux kernel, called
kernel probes [15].

Among kernel probes methods, we use a way called
"JProbe" [9]. JProbe is used to get access to a kernel function's
arguments at runtime. It introduces a JProbe handler with the
same prototype as that of the function whose arguments are to
be accessed. When the probed function is executed, the
control is first transferred to the user-defined JProbe handler.
After the user-defined handler returns, the control is
transferred to the original function [15].

In order to make this mechanism work, a user needs to
prepare the following;

 registering the entry by struct jprobe and
 defining the init and exit modules by functions

register_jprobe() and unregister_jprobe

()[16].

In the Linux kernel, function tcp_sendmsg() is called
when an application sends data to MPTPCP (actually TCP,
too) [17]. As stated in Section II, the scrambling will be done
at the beginning of this function. So, we define a JProbe

Send socket
buffer

Data Scrambling

original MPTCP

trusted path
untrusted

path

Receive socket
buffer

Data
Descrambling

original MPTCP

trusted path
untrusted

path
 (a) Sending data (b) Receiving data

Figure 1. Overview of proposed method [8].

sending data

XOR　　　　・・・

send scramble buffer

scrambled sending data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

sending data

send scramble buffer

(a) Scrambling

(b) Adding sending byte to scramble buffer

bi

bi

Bi

bi

Figure 2. Processing of data scrambling [8].

scrambled received data

XOR　　　　・・・

receive scramble buffer

received data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

received data

receive scramble buffer

(a) Descrambling

(b) Adding received byte to scramble buffer

bi

Bi

bi

bi

Figure 3. Processing of data descrambling [8].

109Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

handler for function tcp_sendmsg() for scrambling data
to be transferred.

In order for an application to read received data, it calls

function tcp_recvmsg() in MPTCP. In contrast to data
scrambling, the descrambling procedure needs to be done at
the end of this function. So, we introduce a dummy kernel
function and export its symbol just before the returning points

of function tcp_recvmsg(). We then define a JProbe
handler for descrambling in this dummy function.

By adopting this approach, we can program and debug
scrambling/descrambling independently of the Linux kernel
itself.

B. Modification of Linux opeating system

We modified the source code of the Linux operating
system in the following way. We believe that this is a very
slight modification that requires to us to rebuild the kernel
only once.

 Introduce a dummy function in tcp_recvmsg().
As described above, we defined a dummy function named

dummy_recvmsg(). It is defined in the source file

“net/ipv4/tcp.c” as shown in Figure 4. It is a function

just returning and inserted before function tcp_recvmsg()

releases the socket control. The prototype declaration is done

in the source file “include/net/tcp.h”.
 Maintain control variables within socket data structure.

In order to perform the scrambling/descrambling, the
control variables, such as a scramble buffer, need to be
installed within the Linux kernel. The TCP software in the
kernel uses a socket data structure to maintain internal control
data on an individual TCP / MPTCP connection [17]. This is
controlled by the following variable, as shown in Figure 4.

struct tcp_sock *tp = tcp_sk(sk);

This structure includes the MPTCP related parameters, such
as keys and tokens. The parameters are packed in an element
given blow.

struct mptcp_cb *mpcb;

So, we added the control variables for data scrambling in this
data structure. Figure 5 shows the control variables. The
details of those variables are given in the following.

 sScrBuf[64] and rScrBuf[64]: the send and
receive scramble buffers, used as ring buffers.

 sXor and rXor: the results of calculation of XOR for
all the bytes in the send and receive scramble buffers.

 sIndex and rIndex: the index of the last (newest)

element in sScrBuf[64] and rScrBuf[64].

 sNotFirst and rNotFirst: the flags indicating
whether the scrambling and descrambling are invoked
for the first time in the MPTCP connection, or not.

C. Implementation of scrambling

(1) Framework of JProbe handler
Figure 6 shows the framework of JProbe hander defined

for tcp_sendmsg(). Function jtcp_sendmsg() is a
main body of the JProbe hander. The arguments need to be
exactly the same with the hooked kernel function

tcp_sendmsg(), and it calls jprobe_return() just

before its returning. Data structure struct jprobe

mptcp_jprobe specifies its details.

Function mptcp_scramble_init() is the
initialization function invoked when the relevant kernel
module is inserted. In the beginning, it confirm that the
hander has the same prototype with the hooked function.
Then it defines the entry point and registers the JProbe handler.

Function mptcp_scramble_exit() is called when the
relevant kernel module is removed. It removes the entry point
and unregisters the hander from the kernel.

(2) Flowchart of data scrambling
The data scrambling procedure is implemented in

jtcp_sendmsg(). Figure 7 shows the flowchart for this

Figure 4. Dummy function in tcp_recvmsg().

Figure 5. Control variables for data scrambling/descrambling.

int tcp_recvmsg(struct sock *sk, struct msghdr *msg,

 size_t len, int nonblock,int flags, int *addr_len) {

 struct tcp_sock *tp = tcp_sk(sk);

dummy_recvmsg(sk, msg, len, nonblack, flags, addr_len);

 release_sock(sk);

 return copied;

} // dummy_recvmsg() inserted

EXPORT_SYMBOL(tcp_recvmsg);

void dummy_recvmsg(struct sock *sk, struct msghdr *msg,

 size_t len, int nonblock, int flags, int *addr_len)

{

 return;

} // Defining dummy_recvmsg()

EXPORT_SYMBOL(dummy_recvmsg);

struct mptcp_cb {

unsigned char sScrBuf[64], rScrBuf[64];

 unsigned char sXor, rXor;

 int sIndex, rIndex, sNotFirst, rNotFirst;

};

Figure 6. JProbe hander definition for tcp_sendmsg().

static const char procname[] = mptcp_scramble
int jtcp_sendmsg(struct sock *sk, struct msghdr *msg,

 size_t size) {

 struct tcp_sock *tp = tcp_sk(sk);

 . . .

 jprobe_return();

 return 0;

} // (i) JProbe handler

static struct jprobe mptcp_jprobe = {

 .kp = {.symbol_name = "tcp_sendmsg",},

 .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int mptcp_scramble_init(void) {

 int ret = -ENOMEM;

 BUILD_BUG_ON(__same_type(tcp_sendmsg, jtcp_sendmsg) == 0);

 if(!proc_create(procname, S_IRUSR, init_net.proc_net, 0))

 return ret;

 ret = register_jprobe(&mptcp_jprobe);

 if (ret) {

 remove_proc_entry(procname, init_net.proc._net);

 retrun ret;

 }

 return 0;

} // (iii) Init function

module_init(mptcp_scramble_init);

static __exit void mptcp_scramble_exit(void) {

 remove_proc_entry(procname, init_net.proc._net);

 unregister_jprobe(&mptcp_jprobe);

} // (iv) Exit function

module_exit(mptcp_scramble_exit);

110Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

procedure. When jtcp_sendmsg() is called, it is checked
whether this function is invoked for the first time or not. If it
is the first invocation over a specific MPTCP connection,

sScrBuf[] is initialized to the value of the local key

maintained in the struct mptcp_cb structure. Then,

XOR of all the bytes in sScrBuf[] is calculated and saved

in sXor, and sIndex is set to 63.

The argument containing data (msg) is a list of data blocks,
and so individual blocks are handled sequentially. For each
data block, a byte-by-byte basis calculation is performed in
the following way. First, the XOR of the focused byte and

sXor is saved in temporal variable x. Then, sIndex is
advanced by one under modulo 64. Thirdly, the XOR of

sXor, sScrBuf[sIndex] and the original byte are
calculated and saved in sXor. It should be noted that the value

in sScrBuf[sIndex] at this stage is the oldest value in the
send scramble buffer. Fourthly, the original byte is stored in

sScrBuf[sIndex],which means that the send scramble
buffer is updated. At last, the byte in the message block is

replaced by the value of x.

D. Implementation of descrambling

The data descrambling is implemented similarly with
scrambling. We developed the JProbe handler for function

dummy_recvmsg() in the same way with the approach

given in Figure 6. The flowchart of descrambling procedure
is shown in Figure 8. This is similar with the flowchart shown
in Figure 7. In the first part of the flowchart, it should be noted

that rScrBuf[] is set to the remote key, which is the local
key in the sender side. In this case, the data block is a
descrambled data. Therefore, in the byte-by-byte basis part,

the original value (x in the figure) is used to calculate rXor

and is stored in rSrcBuf[rIndex].

IV. EXPERIMENT

We implemented the proposed method over the Linux
operating system (Ubuntu 16.04 LTS). We evaluated it in the
experimental configuration shown in Figure 9. Two
Panasonic Let’s note PCs are used as a client and a server.
The processor types are Intel UPU U1300 with 1.06GHz and
Intel Pentium M with 1.50 GHz. The client PC is connected
with an access point (Buffalo Air Station G54) through
WLAN and Ethernet. On the other hand, the server PC is
connected with the access point through Ethernet. We used
802.11g with 2.4 GHz as WLAN and 100base-T as Ethernet.
The WLAN interface does not use any encryption. We
suppose that the Ethernet link is a trusted network and the
WLAN link without any encryption is an untrusted network.
A MacBook Air with macOS High Sierra is used as an
attacker. It runs Wireshark to capture packets sent over
WLAN.

Figure 7. Flowchart of data scrambling.

jtcp_sendmsg
 tcp_socket_struct: tp
 data_block: msg

tp->mpcb.
sNotFirst == 0 ?

Copy tp->mpcb.mptcp_local_key to tp->mpcb->sScrBuf.
Calculate XOR of sScrBuf[0] through [63] and substitute it for

tp->mpcb.sXor.
Substitute 63 for tp->mpcb.sIndex.
Set tp->mpcb.sNotFirst to 1.

Yes

No

reach end of
data_block ?

No

reach end of byte ?

No

Yes

Yes

end of jtcp_sendmsg

Remember XOR of a byte in msg and tp->mpcb.sXor in variable x.
Increment tp->mpcb.sIndex by one under modulo 64.
Substitute XOR of tp->mpcb.sXor, tp->mpcb.sScrBuf[tp->mpcb.sIndex]

and the byte in msg, for tp->mpcb.sXor.
Save the byte in msg in tp->mpcb.sSrcBuf[tp->mpcb.sIndex].
Substitute x for the byte in msg.
Focus on the next byte in msg.

Figure 8. Flowchart of data descrambling.

jdummy_recbmsg
 tcp_socket_struct: tp
 data_block: msg

tp->mpcb.
rNotFirst == 0 ?

Copy tp->mpcb.mptcp_remote_key to tp->mpcb->rScrBuf.
Calculate XOR of rScrBuf[0] through [63] and substitute it for

tp->mpcb.rXor.
Substitute 63 for tp->mpcb.rIndex.
Set tp->mpcb.rNotFirst to 1.

Yes

No

reach end of
data_block ?

No

reach end of byte ?

No

Yes

Yes

end of jtcp_sendmsg

Remember XOR of a byte in msg and tp->mpcb.rXor in variable x.
Increment tp->mpcb.rIndex by one under modulo 64.
Substitute XOR of tp->mpcb.rXor, tp->mpcb.rScrBuf[tp->mpcb.rIndex]

and x, for tp->mpcb.rXor.
Save x in tp->mpcb.rSrcBuf[tp->mpcb.rIndex].
Substitute x for the byte in msg.
Focus on the next byte in msg.

111Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

The network setting is as follows.
 Since the access point works as a bridge, the client and

the server are connected to the same subnetwork,
192.168.0.0/24.

 The Ethernet and WLAN interfaces in the client are
assigned with IP addresses 192.160.0.1 and 192.168.0.3,
respectively. The Ethernet interface in the server is
assigned with IP address 192.168.0.2. The ESSID of the
WLAN is “MPTCP-AP.”

 In order to use two interfaces at the client, the IP routing
tables are set for individual interfaces, by use of the ip
command in the following way (for the Ethernet

interface enp4s1).

 ip rule add from 192.168.0.1 table

1

 ip route add 192.168.0.0/24 dev

enp4s1 scope link table 1

 The JProbe handlers for jtcp_sendmsg() and

jdummy_recvmsg() are built as kernel modules.

They are inserted and removed using insmod and

rmmod Linux commands without rebooting the system.

 In the experiment, we used iperf for sending data from
the client to the server, using Ethernet and WLAN.

 In the attacker, the Wireshark network analyzer is
invoked for monitoring a WLAN interface with the
monitor mode set to effective.

Figure 10 shows a result of the attacker’s monitoring of
iperf communication over WLAN in the conventional
communication. In the iperf communication, an ASCII digit
sequence “0123456789” is sent repeatedly. If the attacker can
monitor the WLAN, the content is disposed as shown in this
figure. Figure 11 shows a monitoring result by the attacker
over the WLAN link when the data scrambling is performed.
This figure shows the monitoring result for the first data
segment over the WLAN link, which is the same with Figure
10. The original data is a repetition of “0123456789” but the
data is scrambled in the result here. So, it can be said that the
attacker cannot understand the content, even the WLAN link
is not encrypted.

As for the throughput of iperf communication, we
executed ten times evaluation runs. The results are as follows.
Without scrambling: 89.92 Mbps average, 1.19 Mbps STD.
With scrambling: 86.04 Mbps average, 1.69 Mbps STD.
Since the processor types used in the experiment are rather old,
the processing of scrambling and descrambling provided some
overhead. But we believe that the throughput reduction is
small.

V. CONCLUSIONS

This paper described the results of implementation and
evaluation of a method to improve privacy against
eavesdropping over MPTCP communications, which we
proposed in the previous papers. The proposed method here
is based on the not-every-not-any protection principle, that is,
if an attacker cannot observe the data over trusted path such
as an LTE network, he cannot observe the traffic on any path.
Specifically, the proposed method uses the byte oriented data
scrambling and the data dispersion over multiple paths.

In the implementation of the proposed method, we took an
approach to avoid the modification of the Linux kernel as
much as possible. The modification is as follows. The control

Figure 9. Experiment configuration.

Client

Attacker

Hub/
Access point

Server

Figure 10. Capturing result when no scrambling is performed.

112Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

parameters are inserted in the socket data structure, and the

dummy function for the last part of tcp_recvmsg()
function. The main part of scrambling and descrambling is
implemented by use of the kernel debugging routine called
JProbe handler, which is independent of the kernel.

Through the experiment, we confirmed that the data
transferred over unencrypted WLAN link cannot be
recognized when the data scrambling is performed. As for the
performance, the throughput of the scrambled communication
is just a little smaller than the conventional communication
exposed to unauthorized access.

ACKNOWLEDGMENT

This research was performed under the research contract
of “Research and Development on control schemes for
utilizations of multiple mobile communication networks,” for
the Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] NGNM Alliance, “NGMN 5G White Paper,”
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN_5G_White_Paper_V1_0.pdf, Feb. 2015, [retrieved: Jul.,
2018].

[2] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51-57, Apr. 2014.

[3] AppleInsider Staff, “Apple found to be using advanced Multipath TCP
networking in iOS 7,” http://appleinsider.com/articles/13/09/20/apple-
found-to-be-using-advanced-multipath-tcp-networking-in-ios-7,
[retrieved: Jul, 2018].

[4] icteam, “MultiPath TCP – Linux Kernel implementation, Users::
Android,” https://multipath-tcp.org/pmwiki.php/Users/Android,
[retrieved: Jul., 2018].

[5] A. Ford, C.Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF RFC 6182, Mar.
2011.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF RFC 6824,
Jan. 2013.

[7] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, Oct. 2011.

[8] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Protecting Eavesdropping over Multipath TCP Communication Based
on Not-Every-Not-Any Protection,” in Proc. SECURWARE 2017, pp.
82-87, Sep. 2017.

[9] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Proposal and Study on Implementation of Data Eavesdropping
Protection Method over Multipath TCP Communication Using Data
Scrambling and Path Dispersion,” International Journal On Advances
in Security, 2018 no. 1&2, pp. 1-9, Jul., 2018.

[10] C. Pearce and S. Zeadally, “Ancillary Impacts of Multipath TCP on
Current and Future Network Security,” IEEE Internet Computing, vol.
19, iss. 5, pp. 58-65, Sept.-Oct. 2015.

[11] J. Yang and S. Papavassiliou, “Improving Network Security by
Multipath Traffic Dispersion,” in Proc. MILCOM 2001, pp. 34-38, Oct.
2001.

[12] M. Nacher, C. Calafate, J. Cano, and P. Manzoni, “Evaluation of the
Impact of Multipath Data Dispersion for Anonymous TCP
Connections,” In Proc. SecureWare 2007, pp. 24-29, Oct. 2007.

[13] A. Gurtov and T. Polishchuk, “Secure Multipath Transport For Legacy
Internet Applications,” In Proc. BROADNETS 2009, pp. 1-8, Sep.
2009.

[14] L. Apiecionek, W. Makowski, M. Sobczak, and T. Vince, “Multi Path
Transmission Control Protocols as a security solution,” in Proc. 2015
IEEE 13th International Scientific Conference on Informatics, pp. 27-
31, Nov. 2015.

[15] LWN.net, “An introduction to KProbes,” https://lwn.net/Articles/
132196/, [retreieved: Jul., 2018].

[16] GitHubGist, “jprobes example: dzeban / jprobe_etn_io.c,”
https://gist.github.com/dzeban/a19c711d6b6b1d72e594, [retreieved:
Jul., 2018].

[17] S. Seth and M. Venkatesulu, “TCP/IP Architecture, Desgn, and
Implementation in Linux,” John Wiley & Sons, 2009.

Figure 11. Capturing result when scrambling is performed.

113Copyright (c) IARIA, 2018. ISBN: 978-1-61208-661-3

SECURWARE 2018 : The Twelfth International Conference on Emerging Security Information, Systems and Technologies

