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Abstract—Critical infrastructures (CIs) have become more and
more interconnected in the recent past. Disturbances in one affect
many others and consequences tend to become unpredictable due
to manifold interdependencies and cascading effects. A decent
amount of various stochastic models has been developed to
capture this uncertainty and aid the management of security
and risk. However, these models are not frequently used in
practice, not to the least because many experts feel that there
is a gap between theory and practice. In this article, we illustrate
how to apply such a model by investigating the situation of a
water provider that is part of an entire network of CIs step
by step and describe the results of the analysis. While the data
used is for illustration purpose only and describes the situation
of a fictitious water provider, the assignments are based on
several discussions with experts from the field. Besides pure
damage prevention, simulations of incident propagation may be
of independent interest for trust management and reputation.

Keywords–critical infrastructure; dependencies; stochastic
model; risk propagation; water supply.

I. INTRODUCTION

Critical infrastructures such as power or water providers,
food systems, health care and transportation networks satisfy
the basic needs of society. Each of them is crucial for the
functionality of a society and significantly contributes to the
economic welfare of people as well as their security. During
the last years, mutual dependencies among CIs have become
stronger; e.g., a hospital depends on electricity, water, food
supply and working transportation lines. The increasing sensi-
tivity of this network of connected CIs has been illustrated
in the past by incidents such as the disruption of electric
power in California in 2001 [1], the power outage in Italy
in 2003 [2] or the hacking attack on the Ukrainian power
grid in 2015 [3], only to name a few. The dependencies are
getting more complex in nature, i.e., a water provider does
not only need electricity for the pumps but also to keep
the monitoring systems, e.g., Supervisory Control and Data
Acquisition (SCADA) systems or Industrial Control Systems
(ICSs), running. This increasing complexity makes it even
harder to predict the consequences of a limited availability of
one CI on other connected CIs. This is the main reason why
we apply a stochastic model to investigate the consequences
of interdependencies on the impact of a risk. Since electricity
is a commonly fundamental provider for many CIs built on
top, we pick the water supply as one example of these, to
illustrate how incidents like the reported ones could affect a
water provider depending on electricity (amongst others). More

complex examples like hospitals are conceptually similar yet
substantially more complex to describe, and are thus outside
the scope of this current work.

Incidents of interest for simulation can be of various kind,
including natural events, but also man-made unwanted inter-
ventions like cyber-attacks or human error. Especially cyber-
attacks have recently (in 2016) been moved into the center
of attention by the EU Directive 2016/1148 on cyber security
[4]. The consequences of cyber incidents primarily relate to
matters of privacy breaches and communication infrastructures,
yet extend up to potential dangers of damaging infrastructures
through cyber-attacks causing malicious configurations to vital
parts of the system (such as the Stuxnet worm did). We stress
that this kind of incident is its own kind of challenge to de-
scribe in the terms of the model that we study, yet no different
in the simulation. To ease matters in the following, we thus
confine ourselves to physical events and dependencies, leaving
aspects of cyber-dependencies as straightforward adaptions.

Related Work

The increasing interest in interconnections and dependen-
cies between CIs (and the effects on other utility providers)
yields a growing number of publications investigating these
dependencies. Various methods are used, including Hierarchi-
cal Holographic Modeling (HHM) [5], a multi-graph model
for random failures [6] or input-output models [7]. Due to
the unpredictability of consequences, stochastic models gained
a lot of attention. A Interdependent Markov Chain (IDMC)
model is used to describe cascading failures in interdependent
infrastructures in power systems [8], where every infrastruc-
ture is described by one discrete-time Markov chain and the
interdependencies between these chains are represented by de-
pendencies between the corresponding transition probabilities.

A stochastic model that allows different degrees of failure
while still being easy to implement is introduced in [9]. To
some extent, simulation methods are available, e.g., [10], and
allow comparing of different models for specific situations.
Motivated by recent incidents, there is also a growing interest
in the resilience of critical infrastructures [11]. An overview on
models on interdependent CIs is presented in [12], while [13]
gives an extensive overview on different models on cascading
effects in power systems and presents a comparison of the
various approaches.

When it comes to the domain of water supply and water
providers as CIs, the amount of research seems to be more
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limited. In the context of the water sector, some research has
been focusing on the security weaknesses of ICSs and SCADA
systems and how to find good practices for water providers
[14]. Further, effects of an Advanced Persistent Threat (APT)
on a water utility provider have been investigated in [15] and
[16] due to the increasing number of incidents based on such
complex attack strategies. However, there is only little research
specifically looking into the situation of a water provider
depending on and influencing CIs in its vicinity.

Paper Outline

The remainder of this article is organized as follows: Sec-
tion II describes the considered use case, Section III analyses
the use case, which is further discussed in Section IV and
Section V provides concluding remarks.

II. THE SITUATION OF A WATER PROVIDER

We describe the situation of a hypothetical water provider
that we are going to analyze in the next section. Therefore,
we are using information which is obtained from discussions
with experts from a real-life water provider. The main goal
is to illustrate how to analyze the consequences of a risk
scenario affecting a CI that is part of a entire network of
interdependent CIs. We investigate a utility organization that
provides water to more than one hundred municipalities in
its surrounding region. The main focus lies on availability
of drinking water as well as on the water quality. In order
to ensure a sustainable water quality, the provider supports
water processing and sewage cleaning by an ICS. For our use
case, we assume the existence of a well and a river head, each
supported by a pump that conveys the water to the plant where
it is further treated (e.g., undesired chemicals are removed or
minerals added). A further source of water is a mountain spring
nearby. Due to the geography of the landscape transportation
paths are short and the number of necessary lines is low. A
number of reservoirs are available to ensure supply with water
needed to extinguish fire.

Further, the water provider depends on an transportation
system, in particular on roads, e.g., to be able to check wells
and springs. As any other CI, a water provider crucially
depends on electricity (e.g., electric pumps). An internal power
plant contributes approximately 30% of the required energy
while the rest comes from external providers. Redundancy in
the system and an existing emergency power supply help to
mitigate this dependency on an electricity provider. In case of
a (temporary) interruption of electricity, the utility provider is
able to guarantee supply with drinking water up to three days
due to available emergency power.

On the other hand, the water provider is important for a
number of other infrastructures. In particular, it supplies drink-
ing water to hospitals and grocery stores but also cooling water
for hospitals and industrial companies. The actual importance
of each of these connections can only be assessed by the CIs
that depend on the water provider, which requires discussions
with the corresponding experts and thus goes beyond the scope
of our use case. A visualization of the use case is given in
Figure 1.

Based on a desktop research and discussions with experts,
the following risks have been identified as the most significant
ones for a water provider:

• R1: flooding

• R2: extreme weather conditions

• R3: leakage of hazardous material (water contamina-
tion)

In order to analyze the effects of a realization of one of
these risks, we performed a qualitative risk assessment with
experts from the water domain. The next section presents the
results of this assessment together with a discussion on the
consequences of such an incident.

III. MODEL-BASED ANALYSIS OF AN INCIDENT

The situation of the fictitious water provider described
above will be analyzed in this section to illustrate how a
practical risk analysis based on a theoretical model can be
conducted. Based on the stochastic dependency model between
CIs [9], consequences of an incident are simulated and the
results are then visualized and discussed. All the assessments
and estimates given in this paper are of illustrative use only,
since it is not possible to disclose the water provider’s original
sensitive data. However, the data used is based on discussions
with experts of the field to be as realistic as possible.

The model we apply is aligned with standard risk as-
sessment methods like ISO31000, and considers a set of
interdependent assets, being individual parts of a CI; a water-
provider in our case. The water provider maintains a list of
assets, each of which can be affected by a certain risk scenario.
Each asset carries, among others, the following information:

• Criticality: How important is the asset for the overall
function of the CI (a related question is that on the im-
portance of the CI itself for other depending CIs or the
society itself. Such assessments are outside the scope
of this article, yet briefly sketched in Section IV to
illustrate a possible post-processing of the simulation
that we will describe later).

• Dependencies: How critical is the asset for the func-
tionality of other related assets? E.g., how important
is the mountain spring or well for the water plant
(i.e., how much of the water supply is covered by the
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Figure 1. Visualization of Water Use Case
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spring, how much is covered by the well, etc.)? How
important (e.g., for control and signalling matters)
would the company communication or office network
be for the service as such, if an outage by a cyber
incident or attack occurs?

• Status indicator: In normal operation, the assets would
all be in working state, but can be in several other
states, too (e.g., maintenance). For the risk assessment,
the status can be related to the impact when the
asset is affected. We shall use the scale {1, 2, 3}
to express increasing degrees of affection, ranging
from status 1 =“working” up to the worst case
status 3 =“outage”, with the intermediate status level
expressing anyhow limited functionality. More status
levels are of course admissible, yet not used hereafter
for the sake of simplicity.

Remark 1: It is important to stress that we use the general
term “asset” as a link to standard risk management literature.
As such, the term is appropriate for risk management within a
CI. Adopting a more high-level perspective, such as national
authorities may have, their view is on a whole network of
CIs, such as power providers, hospitals and water suppliers,
with those again depending on each other and so forth. From
this high level perspective, a CI is itself an “asset” to the
country/nation itself, and we can synonymously exchange the
terms CI and asset. Since our focus in this work is on risk
management from a single CI provider’s perspective, we will
hereafter use the term assets.

The simulation model will assume a certain incident to
“just occur”, which in the first place affects some assets by
putting them from functional into affected or even outage
state. The simulation then uses the dependency information
to update the status of related (dependent) assets accordingly,
where each asset may undergo individually different status
changes, depending on the importance of the other asset (e.g.,
a mild affection may occur if the failed asset provides only a
small part of the supply, or a severe affection may occur if an
asset vitally depends on another yet failed asset). This reveals
cascading effects, i.e., indirect impacts of a realization of a
risk scenario.

The status transitions are generally probabilistic to cover
cases of deterministic dependency (e.g., such as a pump con-
tinuously depending on electricity supply), and probabilistic
dependencies (e.g., such as water supplies can temporarily be
covered from backup water reservoirs). The main duty of the
modeling then boils down into two major tasks:

1) Enumerate all assets and identify their interdependencies
as detailed as possible. Hereafter, we let the arrow nota-
tion A → B denote a dependency of asset B on asset
A (cf. Figure 1, e.g., where the pump B depends on the
water A, and similar).

2) Use this information to specify probabilities for status
changes in a dependent asset B, if the provider asset A
has a status 6= 1 (i.e., any abnormal condition, not in
normal working state).

The first of these two steps is typically a matter of compil-
ing information that is already known and available to the CI
provider. The actual difficulty is the specification of transition

probabilities in step two of the above. We believe that this is
a general issue in any probabilistic model (not only applying
to [9] but also to many others of the references). Nonetheless,
the remainder of this work will discuss both aspects in order
of appearance.

A. Identification of Dependencies

In the beginning, it is necessary to identify all dependencies
between the different components of the system. This is not
limited to visible (physical) connections but also includes
logical connections as in the case of a control system. During
the upcoming analysis, it is necessary to assess every link
between two components. If the network is large, it may be
handy to classify dependencies according to their properties
and assign values to every class of connection. In our small
example, we refrain from categorizing the connections but
rather assess every single connection.

B. Expert Assessment of Risks

Once the various components and the interdependencies
have been identified, we focus on the assessment of the
considered risks and its consequences of a realization in the
network. The risk assessments are based on discussions with
domain experts that rate each risk as “negligible”, “low”,
“medium”, “high” or “very high” while the recovery time is
either rated as “short”, “medium” or “long”. The assessments
are given in Table I.

TABLE I. OVERALL LIKELIHOOD ASSESSMENT FOR RISKS

Risk Occurrence Failure Impairment
R1: flooding medium negligible negligible
R2: extreme weather

conditions
medium negligible medium

R3: leakage of
hazardous material

low negligible medium

A flooding may affect single sites (e.g., a well), but is not
critical for the overall functionality for the water supply as re-
cent incidents like the flooding in central Europe in 2013 have
shown. Still, single wells and springs may be used only partly
as water may be contaminated by particles (germs, bacteria
and others) induced by the flood. Depending on the degree
of contamination, water can be boiled to make it drinkable.
However, if this is not enough to ensure drinking water quality,
the water needs to be purified technically which is a costly and
time-consuming process. A realization of risk R1 may thus
yields a limited operation of wells and springs. The risk of
an extreme weather situation needs to be considered in further
detail based on the type of weather condition. Heavy rain is not
a severe problem in our case, since the main source of the water
provider is groundwater. It might cause smaller damage to the
infrastructure, but will not interrupt water supply. As another
extreme, droughts need to be considered, since they are likely
to become more frequent in the future. Various sources may
dry up, such as rivers or wells, so we may assume (here) that
at least some sources like ground water remain available. The
drought implies an increased water consumption and yields to
peak consumptions that in turn challenge the infrastructure.
The peaks will cause additional costs for the provider but are
not considered here any further since this does not affect other
parts of the system. As a realization of R2, we assume an
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extraordinarily dry period, causing the well to produce only
limited outcome while groundwater is still available; due to
the drought, water consumption increases significantly at the
same time. The realization of this risk may thus be similar as
in the previous case which is why we combine the analysis
with that of risk R1.

The assessments related to leakage of hazardous material
are challenging as the impact of such an event highly depends
on the extent of the leakage. E.g., a bounded contamination is
not a severe issue as long as the water network is close-meshed
(i.e., there is enough redundancy in the network). Nevertheless,
if groundwater or several wells are affected, water purification
may take several months. Similarly as for the risk of flooding,
the amount of hazardous material that has leaked matters a
lot. For our use case, we assume that a limited amount affects
some parts of the countryside used for water extraction so
that a realization of risk R3 affects the mountain spring. As
contamination is a serious problem, we assume the spring
switches into the worst state 3.

For our illustrative example, we here assume a scenario
where communication is limited due to some internal prob-
lems. After some time, a realization of risk R2 (an extremely
dry period of time) or of risk R3 (a contamination) yields
to limited availability of the river source. In the remainder we
model the consequences this event has on the other components
of the water network. Note that the respective risks, say outages
or resource shortages, may also be triggered by cyber-events,
e.g., if a hacker switches off the pump or configures the
systems towards reduced or zero supply volumes. As such,
cyber events may constitute their own risks, but may also be
reasons for risk scenarios to “kick in”.

C. Discussions of Consequences of an Incident

While the simulation is able to describe the propagation
of the consequences of an incident, the analysis of the overall
impact on a specific CI requires knowledge about the effect of
a failure of one single component. In particular, it is necessary
to estimate how likely it is that a problem or a failure in one
component affects the dependent components. These values
can be estimated from two sources of information: data from
past incidents and expert knowledge. The first source is of
limited use when working with critical infrastructures since
only few data is known (and even less is publicly available).
As for the second source, experts may struggle or be reluctant
to estimate precise values, despite their profound knowledge
about the infrastructure. Systematic approaches like the Delphi
method can help with this issue [17].

Aware of this problem, we avoid asking for exact estimates
but rather look for an assessment on a qualitative scale, as
is typically recommended in risk management (e.g., by the
German Federal Office for Information Security (BSI) [18]).
However, this yields to the problem of estimating a whole
distribution (namely, all the likelihoods of changing to any
of the possible states) from a few qualitative values. In this
section, we show one way to approach this problem without
pretending an accuracy that cannot be achieved in real life.

In order to determine the transmission probability tij , a CI
needs to answer the following question:

If your provider is in state i, how likely is it that this
will put you into state j?

Since this is usually hard to answer, we replace it by two
simpler questions, namely

1) “If your provider is in state i, what is the most likely state
j that you will end up with upon this incident?”

2) “How certain are you about your assessment?”

The answers can be chosen from a set of predefined values,
namely the number of states {1, . . . , k} for 1) and a set
of possible confidence levels for 2). If the expert is unsure
about the consequences, we still assume that he has an idea
about the intensity of the consequences, i.e., if the expected
consequences will be very bad or close to negligible. Because
of this, we assume that in the case of uncertain assignments
similar values as the predicted one are also possible.

This additional assignment of an assurance value is of
twofold benefit. First, it takes pressure form the expert and
allows him to choose the answer “I don’t know” (represented
by the statement that he is totally unsure about the prediction).
Second, this information can be incorporated into the analysis
by assigning some likelihood to neighboring values. We pro-
pose the following heuristic on an ordered scale of severity:

• If confidence is high (“totally sure”), assign all likeli-
hood to the predicted value j from question 1 above.

• If confidence is medium (“somewhat unsure”), assign
likelihood to direct neighbors j − 1 and j + 1 (as far
as they exist on the scale) such that these are half as
likely as the predicted value j.

• If confidence is low (“totally unsure”), assign the same
likelihood to all possible values, i.e., choose a uniform
distribution over all potential outcomes.

So, for the case of three possible states and the levels of
assurance (i.e., the possible answers to question 2) form above)
be “totally sure”, “somewhat unsure” and “totally unsure”
we take the uncertainty about the assessment into account as
follows: if the expert chooses “totally sure”, we assign the
likelihood to the proposed status and all other states have
a probability of zero. If he chooses “somewhat unsure”, we
assign some likelihood to the two neighboring states (i.e., the
next smaller and the next larger integer). If we can assume a
symmetric situation where a deviation to both sides is equally
likely, one approach is to assign to both neighbors half the
likelihood of the predicted value. Finally, if the expert chooses
“totally unsure”, we assume a uniform distribution over all
possible states, representing the situation where we do not have
any information at all. The described mapping from a predicted
value and a level of uncertainty is explicitly given in Table II.
In this table, a triple (p1, p2, p3) represents the distribution over
the three possible states, so state k is assumed with probability
pk (k = 1, 2, 3). These estimated distributions then build up
the rows of the transition matrices.

As it is quite difficult in practice to make predictions
that are totally sure, we incorporate a small chance of an
error even for these assessments. That is, we always assign
a small probability ε to the states nearest to the predicted
one, as exemplified in Table III. This makes the model more
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TABLE II. DISTRIBUTION OVER THE CI’S POSSIBLE NEXT STATE BASED
ON THE EXPERT’S ASSIGNMENT

prediction totally sure somewhat unsure totally unsure
1 (1,0,0) (2/3, 1/3, 0) (1/3,1/3,1/3)
2 (0,1,0) (1/4, 2/4, 1/4) (1/3,1/3,1/3)
3 (0,0,1) (0, 2/3, 1/3) (1/3,1/3,1/3)

realistic and takes some pressure from the experts performing
the assessment.

TABLE III. DISTRIBUTION OVER POSSIBLE NEXT STATE WITH POTENTIAL
ERROR

prediction totally sure somewhat unsure totally unsure
1 (1− ε, ε, 0) (2/3, 1/3, 0) (1/3,1/3,1/3)
2 (ε/2, 1− ε, ε/2) (1/4, 2/4, 1/4) (1/3,1/3,1/3)
3 (0, ε, 1− ε) (0, 2/3, 1/3) (1/3,1/3,1/3)

In the upcoming analysis we will consider the cases
ε = 1%. We discussed several scenarios with experts from
the field to understand the dependencies between the different
assets. The assessments are given in Tables IV, V and VI. We
measure the impact on a three-tier scale “negligible” (state
1), “medium” (state 2) and “high” (state 3) while the experts’
confidence in the provided prediction is described as “totally
sure”, “somewhat unsure” or “totally unsure”. Note that these
assessments are made for one specific connection and neither
contain information about potential substitutes (e.g., if several
pumps are available) nor the option of repair or recovery. It
is only concerned about the nature of a specific dependence
between two assets.

D. Simulation of Incidents

The input to the simulation is a network graph of connected
critical infrastructures, where each component of the CI is in
one specific state. This graph essentially resembles the picture
in Figure 1, and augments each node with a matrix indicating
the status change probabilities for each dependency and over
time. The time aspect accounts for the fact that short-term
outages of a provider may have different impact than long-
term outages. E.g., if a power supply goes off, then emergency
power supplies may cover for a limited time, thus causing no
immediate service interruption. Consequently, the likelihood

TABLE IV. SHORT TERM IMPACT ASSESSMENT

Link Problem Prediction Confidence
pump → limitation negligible totally sure
water plant failure negligible totally sure
mountain spring → limitation negligible totally sure
water plant failure negligible totally sure
communication → limitation medium somewhat unsure
water plant failure negligible totally sure
water reservoir → limitation negligible totally sure
water plant failure negligible totally sure
well → limitation negligible totally sure
well pump failure negligible somewhat unsure
communication → limitation medium somewhat unsure
well pump failure negligible totally sure
river → limitation negligible totally sure
river pump failure negligible somewhat unsure
power grid → limitation negligible totally sure
river pump failure negligible totally sure
river pump → limitation negligible totally sure
water reservoir failure negligible totally sure

TABLE V. MEDIUM TERM IMPACT ASSESSMENT

Link Problem Prediction Confidence
pump → limitation negligible totally sure
water plant failure negligible somewhat unsure
mountain spring → limitation negligible totally sure
water plant failure negligible somewhat unsure
communication → limitation negligible totally sure
water plant failure negligible totally sure
water reservoir → limitation negligible totally sure
water plant failure negligible somewhat unsure
well → limitation medium somewhat unsure
well pump failure high somewhat unsure
communication → limitation negligible totally sure
well pump failure negligible totally sure
river → limitation medium somewhat unsure
river pump failure high somewhat unsure
power grid → limitation negligible totally sure
river pump failure negligible totally sure
river pump → limitation negligible totally sure
water reservoir failure negligible somewhat unsure

TABLE VI. LONG TERM IMPACT ASSESSMENT

Link Problem Prediction Confidence
pump → limitation negligible totally sure
water plant failure medium somewhat unsure
mountain spring → limitation negligible totally sure
water plant failure medium somewhat unsure
communication → limitation negligible totally sure
water plant failure negligible totally sure
water reservoir → limitation negligible totally sure
water plant failure medium somewhat unsure
well → limitation medium somewhat unsure
well pump failure high totally sure
communication → limitation negligible totally sure
well pump failure negligible totally sure
river → limitation medium somewhat unsure
river pump failure high totally sure
power grid → limitation negligible totally sure
river pump failure high totally sure
river pump → limitation negligible totally sure
water reservoir failure medium somewhat unsure

for a pump, having an emergency supply, to go into outage
state 3 if the electricity goes off is zero for the first couple of
hours, and changes to 1 if the emergency generator runs out of
fuel, unless the original power supply has been fixed. However,
the same pump is vitally dependent on its water source, and
if this runs dry, the pump will immediately go into outage
state 3. Therefore, the simulation will need a state transition
probability matrix per dependency A→ B and depending on
the time scale.

The simulation prototype we developed [19] embodies
this by taking three such matrices, one for short-term, one
for medium-term and one for long-term effects in which the
probabilities tij = Pr(B is in state j|A switches into state i)
describe the transition regime.

While the general model allows a recovery (i.e., switching
back into a better status), this is not yet implemented in the
current version of the prototype.

IV. RESULTS OF THE ANALYSIS

In a nutshell, the simulation delivers at least three output
artifacts:

1) Textual sequence of events with time stamps, and showing
the status of all assets at the given time (such lists
are usually extensive and are thus not presented here
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Figure 2. Example simulated time line for a water plant and its components

for space reasons). They are the basic data to compute
further information for the risk management, such as the
following:

2) Time-lines showing the evolution of the impact on differ-
ent assets over time. Figure 2 shows an example for nine
components in Figure 1.

3) Information about chances on when to expect status
changes. Figures 3 and 4 show examples, with explana-
tions to them and the preceding points following below.

Given a set of simulated scenarios, we can average the final
states per asset to reflect the likelihood of this part of the CI (or
CI network) to become affected (in a degree expressed by the
state). For visualization, we apply color codes, ranging from
green (symbolizing a working state) to red (symbolizing an
outage), alerting about the criticality of the current condition.
Numerically, the simulation results can be summarized as a
table that lists the number of components which are on average
in any of the possible states. We use OMNeT++ as a tool to
support the visualization and execution of our simulation.

Various additional outputs are possible, such as plots of
time-lines relating to a single simulation run. This would
display the times when a CI asset changes its state, and would
show the temporal “evolution” of the cascading impacts. Figure
2 shows an example result for one simulation run.

If numerous simulations are conducted, we can compile the
resulting state transition times into an empirical distribution,
to learn the expected, median, mode or other characteristic
feature of the time when an asset goes into malfunctioning
state. E.g., we can measure the expected time until an outage
of an asset. Figures 3 and 4 display examples of such a
simulation output. Based on this data, we can easily compute
the average, i.e., expected, time for a transition from working
(1) → outage (3), for the asset “water plant” to be slightly
less than five days (with and without the uncertainty of ε
artificially added to the expert assessment; cf. Table III). In
our example, introduction of a small uncertainty yielded to a
different empirical distribution of the transition times. If this
difference is significant needs to be checked in detail and is
beyond the scope of this work but it indicates that potential
errors need to be taken into account (just as the concept of
trembling hand equilibrium does for game theory) and should
not be ignored when analyzing cascading effects.

Usually, the state itself is not exactly a measure of real
impact, and needs conversion into a measurable number for
management matters. The simulation output will thus in most
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Figure 3. Simulated histogram of 1 → 2 state change times
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Figure 4. Simulated histogram of 1 → 3 state change times

cases undergo a post-processing that translates the status into
a set of facts about what this status actually means, based on
the criticality of the asset.

As for the case of a water utility provider, the degree of
damage could depend on the number of affected customers, the
time needed to fix the issue, the amount of resources needed to
cover the outage, and so forth. Table VII displays an example
of such a classification using artificial numbers (for obvious
reasons of real data’s sensitivity, as already pointed out above)
to characterize criticality levels in numeric ranks. In general,
criticality levels may also have different meaning for individual
scenarios; e.g., if a pump or water tower fails for one day, the
criticality may be higher than if water is contaminated, since
in the latter case, households can be advised to boil the water
before drinking it, whereas if the pump fails, the household
would be cut off from water supply completely.

Knowing which parts of the CI network fail at which times
and for how long it is a simple matter to apply conditions as
exemplified in Table VII to determine the criticality level for
this single round of simulation.

Repeating this procedure for many times and recording the
relative frequencies of occurrence for all criticality levels, we
end up with probabilities for each criticality level as pi :=
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TABLE VII. DETAILED DESCRIPTIONS OF CRITICALITY LEVELS

Incident scenario
Criticality level 1 #1 #2 #3 ...

No. of affected households < 1000 1001...5000 ... ...
duration of problem < 1 day 1...7 days ... ...

costs to fix it (per hour) 100 150 ... ...
...

...
...

. . .
Criticality level 2 1 2 3 ...

No. of affected households
duration of problem

costs to fix it (per hour)
...

Pr( criticality level i). These likelihoods quantify the odds for
running into a certain amount of trouble in a given scenario.
Partitioning the range [0, 1] into a fixed set of levels, say in
thirds, we can convert these probabilities into warning levels.
That is, if criticality level 2 occurred in a fraction of 60%
of the simulated runs, p2 ≈ 0.6 falls into 1/3 < p2 < 2/3,
giving middle warning level (e.g., yellow alert). Likewise, if
criticality level 1 occurred in 90% of the simulation runs, then
criticality level 1 has warning level 3 (red alert) in the final
output.

It must be kept in mind that the simulation cannot provide
any detailed information about the likelihood for an incident
as such to occur; the simulation starts straight away from the
given scenario that is assumed to have happened.

V. CONCLUSION

A major challenge in the simulation of critical infrastruc-
tures is the expert assessment of probabilities for a stochastic
simulation. In this context and for the example given in this
article, it is important to specify dependencies on a local
level only, meaning that the opinion must be formed with
consideration on only directly dependent assets, and not the
overall CI, since this is the purpose of the simulation. We
stress that these dependencies are not constrained in nature
and physical and cyber-aspects of a CI can be unified under
the same modeling framework. Thus, simulation methods like
the described one aid even a holistic cyber-physical view
on incident propagation in a CI, if dependencies between
physical assets (e.g., a hospital) and cyber assets (e.g., the
telecommunication network on which the hospital relies for
emergency communication and signalling) are included in one
model.

An independent difficulty lies in assessing the temporal
aspects like the meaning of short-term, medium term and
long-term impacts. Certainly, these need to be distinguished,
but good heuristics or models to support experts in these
regards are rarely available. Polling multiple experts here
creates the additional challenge of unifying opinions from
different domains, say from experts on the physical matter
(like water), vs. people specialized in cyber-security (none
of which is necessarily skilled in the other’s domain). Ag-
gregating such different assessments into a single value for
a simulation is a matter of opinion pooling and subject of
supplementary research related to ours (e.g., [20]–[23]). As for
future research, it is thus required to develop models that help

parameterizing other models. Matters of describing system
dynamics are well understood, but helping experts cast their
domain knowledge into reasonable figures for a simulation is
a challenge on its own. The main contribution of this work
is the almost complete picture of the work flow, not least
to display the difficulties besides the potential of simulation-
based risk analysis in critical infrastructures. While many
sophisticated methods of modeling exist, matters of using
such models have received significantly less attention. Our
discussion, though based on a concrete example and method,
covers issues of wider applicability. Extending and studying
possibilities to make stochastic models more useful is, in our
view, an important and promising direction of future research.
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