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Abstract— Clinical trials are essential for advancements in the 

medical field. The study subjects of clinical trials agree that the 

data may be used within the scope of the clinical trial and they 

trust the study center to not misuse the data. Limiting access 

and anonymizing the data is usually the only way of offering 

privacy to the subjects. Currently, the collected data may only 

be used within the scope of the respective study, and in the case 

of external entities evaluating the data, potential privacy risks 

occur. To improve the situation, we investigated the 

applicability of Differential Privacy approaches for clinical 

trials by looking into differentially private queries as well as 

differentially private Machine-Learning approaches. Different 

configurations have been tested for two Differential Privacy 

mechanisms. The Laplacian Mechanism is much more 

influenced by the chosen epsilon compared to the Functional 

Mechanism implemented in this study. However, both 

mechanisms trade accuracy for privacy. In summary, both 

queries and Machine Learning can be made secure by applying 

differential privacy approaches, but the implementation and 

configuration overhead is still likely to exceed the capacity of 

clinical trials, especially the smaller ones. 

Keywords-Differential Privacy; Clinical Trial; Sensor Data; 

Machine Learning; Privacy Preservation; Data Security. 

I.  INTRODUCTION 

There is an increasing number of companies collecting 
massive amounts of data about virtually every aspect of our 
lives. The availability of big data can be useful for many 
reasons, for instance, to gain statistical insights or to build 
Machine-Learning (ML) models. When it comes to 
confidential data, we expect entities that we trust our data 
with to release information only as long as privacy is 
maintained. Participants in medical trials expect their data to 
be handled with confidentiality, but, on the other hand, 
having as much available data collected as possible can be 
key to new scientific insights in medical trials. 

In many cases, often including medical trials, the 
assumption is that anonymizing data suits this need. Often, it 
is considered safe to use pseudonyms and not release other 
identifying data, such as phone numbers and addresses. 
However, the Netflix prize dataset linkage attack performed 
by Narayanan and Shmatikov [1] in 2007 using the Internet 
Movie Database (IMDb) to successfully identify users is a 
good example of why pseudonymization and anonymization 
as the only means of privacy-preservation are insufficient.  

The advances in privacy-preserving approaches are 
released proportionally to the increasing importance and 
awareness of privacy. The clinical implementation of 
privacy-preserving mechanisms, on the other hand, is often 
lagging many years behind because of the previously 
described misconception; and the data protection laws either 
do not require the implementation of advanced security 
functions or have, according to Koch et al. [3], insufficient 
requirements. On the basis of a real clinical study, we discuss 
an approach to improve the situation. This work focuses on 
the applicability of Differential Privacy (DP) in a specific 
medical trial scenario rather than surveying or evaluating 
different DP mechanisms to find the most suitable 
mechanism. However, the outcome of relevant surveys of 
DP ML in practice, such as Jayaraman and Evans [14], has 
been considered. 

A. Problem Definition 

Initially, we explain the setup of a real-world scientific 
study to illustrate the privacy problem and how specific 
privacy-preserving mechanisms can be used to solve them. 
The research was carried out in the context of a clinical trial 
that studied ulcer prevention using a smart insole. The study, 
which is based on the findings in Armstrong et al. [2], found 
that the temperature at the affected foot regions increases 
weeks before the inflammation. The study, conducted in [6], 
aimed at providing 300 diabetics who suffer from 
comorbidities like nerve damage and are at risk of 
developing ulcers with a smart insole in order to intervene in 
time. The insole has multiple temperature sensors and 
transfers the measurement data to a smartphone app which 
then forwards the data to an electronic trials system located 
at the research facility. 

Researchers then analyze the data to learn about potential 
diseases like ulcers, gout, or peripheral arterial occlusive 
disease that can be detected by continuously measuring the 
foot temperature. Further research intends to find automated 
alarm signals by using ML algorithms to identify arising 
ulcers early. In order to benefit the most from the data, it 
makes sense to involve third-party scientists specialized in 
data mining and ML. 

First, the data subject must give explicit consent to all of 
the primary (article 6 (1)(a) of General Data Protection 
Regulation (GDPR)) and secondary research activities 
(article 6 (1)(b) of GDPR) involving their personal data: 

“Personal data shall be collected for specified, explicit 
and legitimate purposes and not further processed in a 
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manner that is incompatible with those purposes; further 
processing for archiving purposes in the public interest, 
scientific or historical research purposes or statistical 
purposes shall, per Article 89(1), not be considered to be 
incompatible with the initial purposes (‘purpose 
limitation’);” 

This clinical trial setup relies on third parties to analyze 
the acquired data. Under the assumption that all requirements 
of the GDPR, including the explicit consent, are met, the 
privacy of the participants is at risk: Both the data queries 
and the ML models reveal data about the study participants. 
According to Jagannathan et al. [15]: “The difficulty of 
individual privacy is compounded by the availability of 
auxiliary information, which renders straightforward 
approaches based on anonymization or data masking 
unsuitable.” 

Significant progress was made when Cynthia Dwork [4] 
defined DP as retrieving useful information while 
maintaining privacy. Pre-eminently, DP uses randomized 
noise to protect individuals in a data set. The required range 
of noise that needs to be added to a query depends on the 
sensitivity of the respective function. The sensitivity 
describes the maximum difference between two queries on 
an underlying data set and is therefore proportional to the 
magnitude of the required noise to maintain privacy. 
Depending on the underlying data set, the amount of 
required noise can be very high if the global sensitivity is 
high. There are investigations to still achieve DP in these 
cases; Lundmark and Dahlman [5], for instance, address the 
issue of applying noise based on global sensitivity to reduce 
the required noise. 

B. Goals 

First, this work will demonstrate why the security 
regulations required by European law and their national 
implementations are insufficient in the context of preserving 
the participant’s privacy. This includes the General Data 
Protection regulation (art.70.1.b of the GDPR) and the 
Clinical Trials Regulation (CTR). 

Second, we will demonstrate that it is possible to 
implement DP in the context of the clinical trial described in 
the problem definition to improve privacy without 
significantly affecting the usefulness of the results (utility). 
This is possible for both queries and ML operations. We will 
conclude this paper with a subjective assessment of the 
results. 

C. Setup 

Implementing privacy-preserving mechanisms extending 

further than pseudonymization or anonymization might be 

hard to sell to physicians. They potentially fear for the 

usability of their data if encryption or noise of some sort is 

implemented. In the same vein, looking into the field of 

homomorphic encryption reveals many cases of rejection 

due to performance concerns [25]. Among other reasons, 

this is why most clinical trials implement legally required 

privacy measures without questioning them. 

The open-label, prospective, and single-blinded study 

recruited participants with diabetes mellitus type I or II who 

are randomly assigned to the control (n=150) or the 

intervention group (n=150). All study participants are 

diagnosed with severe peripheral neuropathy (e.g., vibration 

perception ≤ 4/8). 

The study participant provides data by regularly 
measuring their foot temperature using smart insoles and a 
mobile application. The application uploads the raw data. 
Data analysts perform queries on the data with the goal of 
finding patterns that could help in developing and improving 
automatic ulcer detection algorithms. The analysts apply 
both Data Mining as well as ML approaches to make sense 
of the collected data and to predict future behavior (see 
examples described in Section IV). 

Section II addresses related work that is the foundation of 
this study. Next, Section III describes possible attack 
scenarios. Section IV and section V describe DP queries and 
DP ML. The article closes with section VI summarizing the 
results and providing an outlook. 

II. RELATED WORK 

ML models are commonly used in the health care field. 
For instance, Orfanoudaki et al. [17] identify a non-linear 
Framingham stroke risk score using Optimal Classification 
Trees. With regard to the subject matter at hand, Tabaei et al. 
[18] use a logistic regression model to predict the likelihood 
of study subjects suffering from diabetes. Maniruzzaman et 
al. [19] expand on the aforementioned studies by addressing 
the impact of missing values and outliers and verified their 
results in different scenarios by testing six feature selection 
techniques and ten different qualifiers with Random Forest-
based models showing the best performance. The given 
example and many more studies aim to create or improve 
their models and databases. Moreover, other studies focus on 
identifying various approaches to making ML algorithms 
privacy-preserving. This may partly be the case because the 
nature of the underlying ML algorithms is substantially 
different, but it is also driven by the system design and data 
flow. There are, among others, supervised, unsupervised, and 
reinforced ML algorithms that require different types of data 
and produce different types of results. Furthermore, the 
system can follow a local or a global privacy approach. 
Local privacy can be achieved by perturbating the individual 
input. Global privacy can be achieved by cost function or 
output perturbation, which will be explained in detail in 
Section IV and V. Privacy Preservation can be further 
expanded to other fields, like, for instance, Deep Learning. 
Phan et al. [9] proposed an adaptive Laplacian mechanism 
that can be used in a Deep Learning setting. 

In [16], Bos et al. provide a good introduction to the topic 
of publicly available databases as well as privately compiled 
databases containing medical records. The authors expand on 
the point made in [15] that masked data records state privacy 
concerns when publicly available. Respectively, according to 
Bos et al. [16], publicly available databases provide the most 
benefit while also “creating the steepest privacy challenge”. 
They first compared “conventional encryption” to 
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homomorphic encryption, concluding that both encryption 
approaches can be used to assure privacy, but homomorphic 
encryption provides more operations on the encrypted data 
without the need for a decryption key. Second, they describe 
possible scenarios to conduct predictive analysis privately. In 
their outlook section, Bos et al. describe the need for 
performance improvements, which remains an issue with 
homomorphic encryption. 

DP mechanisms use different ways of data perturbation 
to protect the privacy of individuals in a data set. Local DP 
approaches perturb the data on input time while global DP 
approaches do so when the data is queried by an adversary. 
The DP mechanisms range from applying random noise 
(e.g., coin toss) to more advanced systems using Laplacian 
noise [8]. Fundamental work and surveys by Dwork et al. 
can be found in [4], [8], [20], [21]. DP can be applied both to 
queries and ML approaches. For instance, Cheu et al. [22] 
introduce a system that works with sensitive data in a 
distributed setting and applies DP via shuffling. 

Other contributions discuss the application fields of DP 
and that it has been successfully applied. Nguyen et al. [26] 
stated in 2013 that DP “[..] has become the de facto principle 
for privacy-preserving data analysis tasks”. The application 
of DP on medical data is actively researched: Lee and Chung 
[24], for instance, propose “Informative attribute preserving 
anonymization” (IPA), which is further discussed in Section 
IV. 

III. ATTACKS ON DATA RECORDS AND MODELS 

This section goes into detail about why and how the 
previously described medical trial raises privacy concerns for 
participants even though it acts within the legal 
requirements. The study participants agreed that their data 
may be shared with data analysts. Data analysts can access 
the masked data via a query interface using a secure channel, 
which allows for a similar linkage attack as described in 
Section I. Data analysts can query personal information like 
a subject’s birthday, sex, diabetes type, and other known 
information regarding medication or medical anamnesis. The 
combination of the information becomes a quasi-identifier, 
rendering the pseudonymization meaningless. 

A. Membership inference 

In medical trials, the ML models are trained on highly 
sensitive data of real persons and could potentially leak 
information about them. Membership inference attacks aim 
to prove the existence of a data record in a data set. 
According to [13], this is done by training an attack model 
which intends to distinguish the behavior based on input that 
was part of the training and input that was not. Publicly 
available ML models are usually block-boxes with unknown 
structures and parameters. Shokri et al. [13] propose multiple 
generic techniques to tackle this problem. For instance, they 
introduced “shadow training”. Shadow training creates 
multiple models that imitate the original ML model’s 
behavior with known training data. 

B. Attribute Inference 

Attribute inference attacks are based on publicly 
available information about a person that is either provided 
directly by the user or gathered indirectly via their 
connections (“friends”) on their social media accounts. The 
combined knowledge can then be used to infer or validate 
further information about an individual. Jayaraman and 
Evans [14] describe attacks on social network profiles of 
users and infer data about individuals by creating “social-
behavior-attribute networks” and run different mechanisms 
like, e.g., “friends-based attack” on them.  

The work of Shokri et al. [13] and Jayaraman and Evans 
[14] are examples of privacy breaches while potentially 
fulfilling the requirements of GDPR and CTR (see first goal 
in Section I), but both attacks can be mitigated by DP 
because there is plausible deniability or reasonable doubt 
about the presence or authenticity of data. 

IV. DIFFERENTIAL PRIVATE QUERIES 

There are two stakeholders performing queries on the 
data set: the trial staff located at the study center observing 
the study data to intervene if necessary and the data analysts. 
Data analysts can be understood as adversaries in this setup 
and should be prohibited from finding sensitive information 
about individuals. 

The original data may not be changed, which is why a 
preceding data perturbation is not a suitable solution but can 
be done on intermediate data sets. Purely syntactic 
approaches are also not suitable because the use case can be 
understood as a data mining problem rather than a data 
publication problem. Other means of anonymization and DP 
are mandatory to protect the privacy of individuals. This 
section describes different approaches to create differentially 
private versions of the queries. Transforming the queries into 
differentially private queries has an impact on the usefulness 
of the result due to reduced accuracy. We decided to go with 
the rather straightforward and well-known approaches to 
show their applicability in a real-world telemedical use case 
and do not focus on maximizing privacy or improving 
existing DP approaches. 

A. Basic DP query mechanisms 

To evaluate a selection of differentially private analyses, 
the following example query will be used: 

 
“Did study participant x have a foot ulcer in the past?” 
 
This is revealing information and, therefore, worthy of 

being protected. Across all study participants, the percentage 
to answer the query with “yes” lies at p=0.3.  
Each query on the medical database, including DP queries, 
reveals information about a patient and causes a certain 
amount of privacy loss. The privacy loss is defined by the 
parameter ε. The closer ε gets to 0, the smaller the privacy 
loss will be for each query. However, smaller ε also 
decreases the accuracy of the result due to the increased 
noise level. Fig. 1 illustrates how the usability increases 
when a larger n is available. 
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Figure 1: Laplacian mechanism’s decreasing usability impact with larger n 

 
The first global DP method is an ε-DP mechanism called 

the Laplacian method which is popular for numeric 
functions. Dwork [4] and Dwork and Roth [8] introduced 
solutions to (ε, 𝛿)-DP by applying Gaussian noise to query 
results. In [4] the summand 

 
2

2ln
f

 


 , () 

which was changed in [8] to 

 
1.25

2ln
f

 


 , () 

is added independently to each query answer for a query 

with L2 sensitivity f . The Gaussian mechanism does not 

satisfy ε-DP but achieves (ε, 𝛿)-DP for some 𝛿 ∈ [0, 1] while 
Laplacian achieves ε-DP.  

Consequently, the Laplacian mechanism works best with 
low sensitivity and smaller amounts of queries. Vice versa, 
large amounts of queries require a larger ε, which produces 
less accurate results. The relaxed (ε, 𝛿)-DP definition and the 
smaller accuracy of the Gaussian mechanism turn out useful 
for vector-valued functions. The Laplacian mechanism 
requires the use of L1 sensitivity, while the Gaussian 
mechanism supports both L1 and L2 sensitivity. There are 
extensions and improvements to Gaussian and Laplacian 
mechanisms available with higher privacy results described, 
among others, in [7].  

The Gaussian and Laplacian mechanisms are both 
focused on numerical queries. However, McSherry and 
Talwar [23] proposed a mechanism that is able to solve 
different types of problems that require retrieving a certain 
element of an existing set R that fits a query. A simple 
example could be: “What is the most common comorbidity 
of diabetic foot neuropathy?” from a set that could be  

R = {“Ulcer”, “Gait”, “Macroangiopathy”, “Fasciitis”, 
“Angiopathy”, “Arthrosis”}. 

B. Medical DP queries 

Naturally, there are more complex queries than the query 
used for 5.1. Likewise, the requirements for DP queries 
exceed the possibilities of the basic mechanisms. It becomes 
both interesting and complex when different approaches are 
combined, may they be sequential or parallel compositions 
of DP functions. 

The following somewhat simplified query is a realistic 
example that was run on the data in a similar fashion: 

 
 SELECT AgeGroup, Disease, COUNT(*) 
 FROM ( 
     SELECT FLOOR (Age/5) * 5 as AgeGroup, * 
     FROM Patients 
     WHERE Sex = ‘male’ AND DiabetesType = 1 
 ) GroupedResults 

 GROUP BY AgeGroup, Disease   
  

The query goes through the study subjects and divides 
them into age groups and diseases. A possible way of 
applying compositions of DP functions is the IPA approach 
proposed in Lee and Chung [24]. The IPA approach goes 
through a processing pipeline as illustrated in a simplified 
version in Fig. 2. The authors of [24] classify the data 
perturbation into different methods: generalization, 
suppression, and insertion. Each method achieves a different 
goal, such as reducing the number of counterfeit records or 
reducing information loss. 

V. DIFFERENTIALLY PRIVATE MACHINE LEARNING 

In the previous sections, we have introduced basic DP 
mechanisms. Now, we go a step further by implementing 
privacy-preserving ML using the same clinical trial as our 
use case. In contrast to the more theoretical Section IV, this 
section is more detailed and looks into the trade-off between 
the privacy parameter ε and the prediction quality of the ML 
model.  
ML allows more stages to perturb data to make ML DP. We 
will consider output and cost function perturbation. 

  

         
Figure 2: Simplified IPA model by Lee et al. [24] 
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This section will describe how output and objective 
perturbation have been applied to linear regression in a real-
world application. 

A. Differentially Private Linear Regression 

In our use case, we gather significant amounts of data 
from many different patients. One of our goals is to build a 
predictive model to identify inflammations or other diseases 
at an early stage and maybe even predict them before they 
occur. Using ML on the data sets has the potential to 
improve the accuracy of our prediction. However, this first 
example takes a step back and provides a forecast of the 
temperature development. 

Let 

 ( ) 0 1 1, ... D Dy f x w w w x w x= = + + +  () 

where ( )1,...,
T

Dx x x= and iw are weights. With N data 

records, X  has dimension ( )N D , which will become  

( )1N D+  -dimensional matrix X when accounting for 

0.w  Then .y Xw=  When training a model from a data 

set, y can then be used to evaluate the chosen .w  A popular 

cost function can be the Mean Squared Error (MSE) 

 ( )
2

*

1

1 N

i i

i

MSE y y
N =

= −  () 

To make the linear regression DP, we can add noise at 
several stages in the process including the dataset, the cost 
function, and the prediction output as shown in Fig. 3. As 
mentioned before, we will not alter the original datasets 
because the trial staff must have access to an immaculate 
dataset. Instead, we could create a secondary synthetic data 
set from the original data set that can be used to achieve a 
DP Linear Regression [10]. However, creating a synthetic 
data set was not part of this work. The linear regression is 
executed on a dataset of feet temperature measurements as 
described in Section I.  

Several features are collected during the clinical trial as 
described in Ming et al. [6] and Section I. For simplicity 
reasons, no thought-out feature selection has been 
performed, but the features have been reduced to the 
available temperature data. The trained model has an MSE of 
1.27. 

The first example will add Laplacian noise to the 
prediction output of the linear regression. In order to do that, 

we need to calculate the sensitivity 1l . According to [8] the 

sensitivity 1l  is determined by finding f  of a function 

:
x kf N R→  over all pairs of neighboring databases. 

However, the pairs can only be found by making many 
 

 
Figure 3: Perturbation approaches 

 
assumptions about, for instance, the highest and lowest 
possible temperatures. Alternatively, we follow the approach 
proposed in Ji et al. [11] to find neighboring databases by 
deleting an element rather than changing it. Finding the 
element with the biggest impact on the model is still a 
challenging task; particularly if large amounts of data are 
gathered. Our use case allows applying a brute force 
approach because we have a maximum of 1,424 data records 
per study participant. We were able to identify a neighboring 
database with the highest difference in the MSE by deleting 
the element with the largest impact at index 64. Now that we 
have our original database and the one with the most 
differing outputs, the difference between their MSE can be 
used to find an approximated sensitivity of 0.62.  

With the sensitivity value, we can now apply the 
following Lap(0, 0.62/ε) with ε being the selected security 
parameter. If ε is very small, e.g., 0.01, the noise addition 
will be very high, and the usability of the data gets very low 
due to a high mean error rate. With a higher value for ε, the 
error rate decreases but so does the privacy gained by the 
noise addition. Dwork [4] and Dwork and Roth [8] proposed 
a range between 0.01 and log3. Finding the “best value” for ε 
is not a trivial task and always needs to be a compromise 
between usability and privacy, depending on the 
requirements. If we use log2, for instance, and repeat the test 
using 10-fold cross-validation, we get an MSE of 5.74. The 
average processing time increased from approximately 7ms 
to 44ms on a machine with Intel Core i7-8665U with 48GB 
RAM. 

To perturb the cost function of linear regression, we have 
to preprocess our data because it needs to be in the range [-1, 
1]. This was achieved by scaling it using a min-max 
normalization 

 min

max min

x x
x

x x

−
 =

−
 () 

Following the approach described by Zhang et al. in [12], 
we are not only able to perturb the cost function but also the 
function itself. This can be done by adding noise directly to 
the cost functions. Here, again, we used the noise from the 
Laplacian distribution. Following the definitions from [12], 

we define our problem to have a set of features 1x  to nx   

resulting from the temperature measurements and a Boolean 
y indicating whether the participant has developed a disease.  
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Figure 4: Laplacian and Functional Mechanism in comparison 

 
This leaves us with a prediction function to predict 

1y =  with probability: 
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Zhang et al. [7] describe 
*  as a vector of d real 

numbers that minimize a cost function: 

 ( )( )( )*

1

arg min log 1 exp
n

T T

i i i

i

x y x  
=

= + −  () 

Using this function, a logistic regression on our dataset 
will be able to return a probability of a participant having an 
inflammation. To achieve DP by perturbing this function, we 
use the functional mechanism and the polynomial extension 
to this mechanism from [12], which have been proven to  
achieve DP for logistic regressions. The functional 
mechanism averaged at approximately 15ms on the same 
machine. 

In Fig. 4 it can be seen that for the smallest ε=0.01 the 
Laplacian approach reaches a mean error of around 211 
where the functional approach only reached 2.2, making the 
latter significantly more suitable. However, with decreasing ε 
the mean error also drops exponentially, eventually falling 
below the mean error of the Functional Mechanism. This 
explanation lies in the nature of the Laplacian algorithm 
which adds noise based on the underlying distribution. If all 
samples are very close together, it is much simpler to hide 
the original values but with strong outliers, much more noise 
needs to be added. The Functional Mechanism is better 
suited for smaller ε because it provides more accurate results 
than the Laplacian Mechanism. 

VI. CONCLUSION 

ML problems can have different data types which are 
more or less suitable for the previously described DP 
mechanisms. If the data is strongly correlated, it gets even 

worse. Eventually, the practicability of the DP mechanisms 
remains dependent on the application. Sections IV and V 
have shown that it is a possible but not a trivial task to select 
the correct DP mechanism, since it requires a deep 
understanding of the (ML) task as well as DP. The 
exemplary privacy breaches from Section III can be 
prevented by choosing the right trade-off between usability 
and privacy. 

The authors of this work are not aware of any openly 
available DP libraries which can be used for ML tasks, but 
existing open-source libraries can be integrated into, e.g., 
Microsoft’s “ML.net” framework, which was one of the 
chosen approaches for this paper. Hence, each clinical study 
faces the problem of finding the correct DP approach to their 
individual ML tasks. Because of the unavailability of out-of-
the-box solutions, smaller scale studies like our use case 
from Section I using DP correctly likely exceeds their 
possibilities and could be solved differently. However, when 
creating large databases like a diabetes register of a state 
with thousands of entries that could be used by multiple 
studies at once, DP becomes a more realistic approach. 

Assuming the masked dataset is publicly available, it 
would allow for creating a huge learning data set. On the 
other hand, the public availability would pose a great privacy 
challenge. The privacy challenge can be addressed by 
applying differential privacy-preserving techniques, which 
enables users to query for approximate answers based on 
trained models. The suitability of DP techniques that build 
on ML training models requires further investigation [16]. 
Furthermore, the question remains whether this can be 
applied efficiently in the encrypted domain. Syntactic 
approaches were also not considered in this work and may be 
a valid solution for certain problems. 

Privately compiled databases are a more typical scenario 
to handle patient data because companies and hospitals 
usually do not disclose their data freely. Regulations and 
applicable laws bind stakeholders to not only handle data 
confidentially but to use them for predetermined purposes. 
Nevertheless, both clinics and companies wish to learn as 
much as possible from their data and, consequently, to 
improve their work. Another approach to overcome this 
dilemma could be using a homomorphic encryption function. 
It may be possible to outsource the homomorphically 
encrypted storage and prediction model building and still 
maintain confidentiality. 

The previously described use case is not as time-sensitive 
as, for example, an ECG evaluation. Nevertheless, a fast and 
efficient implementation is always desirable with respect to 
cost-efficiency. On the other hand, this approach may be 
adapted in a different medical use case that works with 
continuous data flows. 
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