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Abstract — Scientific research has become interdisciplinary 
and collaborative, of which sharing and utilizing data in an 
efficient manner is critical. Data collected for environmental 
monitoring and modeling, however, often lack semantic 
information vital for efficient data sharing, thereby causing 
semantic gaps between the data collection and utilization. The 
problem is especially acute when data have to be processed 
without human intervention. To support efficient data sharing, 
this paper proposes an ontology-based architecture to integrate 
heterogeneous data. With the help of ontology reasoning, it 
provides a simpler and more intelligent way for data searching 
with high-precision and high-recall. 
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I.  INTRODUCTION 
Scientific data are collected and exchanged across many 

research groups. As the volume of data and range of 
applications increase, being able to access the data that suit 
our needs has become a demanding process. Although we 
could easily access any existing data resources through the 
Internet, it is often difficult to utilize them due to various 
heterogeneities between different data sources. Semantic 
heterogeneity, in particular, presents a major problem for 
data integration in any interdisciplinary projects [1, 2]. Such 
problem exists because researchers from different disciplines 
commit to different domain knowledge and vocabularies, 
thereby generating semantic gaps that must be bridged 
before data from different research groups can be integrated. 

To cope with this problem, an information system needs 
to be able to parse and analyze intelligently the search issued 
by researchers – it should understand user queries, 
automatically identify data with compatible semantics, and 
return the data to the researchers. Over years, various tools 
and technologies have been explored to achieve this goal. 
Metadata systems have been used to assist determining the 
usability of datasets [3]. Such metadata systems often work 
for single domains. Their capability to support data queries 
in an interdisciplinary project is therefore not guaranteed. 
Ontology technology, on the other hand, has been introduced 
to make explicit data semantics and to support data 
integration at the semantic level. Ontology-driven 
infrastructure has increasingly gained recognitions [1, 4, 5], 
especially in spatial science [6, 7]. Several reusable upper 
ontologies have been developed [8-10]. They provide 
foundation for developing domain ontologies that can be 

easily integrated. All these developments suggest that 
ontology technology is a promising tool to bridge the 
semantic gaps facing an interdisciplinary project.  

The paper aims to develop an ontology-based 
infrastructure to support semantic data access in an 
interdisciplinary project involving pervasive monitoring and 
modeling of the physical environment using sensor-network. 
Ontology is an explicit specification of conceptualization 
that encodes inter-connected concepts [11]. It can be 
extended easily to accommodate an unlimited number of 
concepts compared to traditional metadata systems. Its 
capability to support reasoning is extremely advantageous 
for bridging the semantic gaps as no additional classification 
or annotation is needed. We developed an ontology and 
related functions as the core components of a 
cyberinfrastructure for the sensor network, aiming at helping 
users from different domains utilize the sensor data 
efficiently. It has the following components: (1) a user 
interface that accepts queries from the users and returns 
query results to the users, (2) a reasoning engine that 
supports intelligent search, and (3) validators that verify 
metadata and data formats. The system is distributed and the 
data in the system are managed in separate databases, each of 
which stores data developed or processed by a research 
group. Each group uses a unique set of concepts and 
constraints to describe the meanings of its datasets. The 
concepts used to query the data are domain-specific. 

The paper is organized as follows. The next section 
introduces the related work and our approach. Section III 
discusses our ontology design. Section IV introduces how 
ontology reasoning is used to facilitate data integration. 
Section V demonstrates the ontology alignment technique 
and how to connect the raw data with our ontology. Section 
VI presents the current system implementation. Section VII 
provides conclusion and presents future work. 

II. RELATED WORK AND OUR APPROACH 
Over years ontologies that can potentially be used to 

support data search and integration have been developed. 
Upper ontologies such as BFO [10], DOLCE [8], and SUMO 
[9], were developed as foundation ontologies on which 
various domain ontologies can be developed and then be 
used to facilitate data search and integration. SWEET 
(Semantic Web for Earth and Environmental Terminology)  
[12], a comprehensive ontology for the earth science domain, 
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has been used in various scientific projects [13, 14]. Its main 
concepts such as Data, PhysicalProperty, Substance, are 
critical for describing data semantics. However, it has few 
relations between concepts, which are essential for reasoning 
between concepts [15].  

The use of ontology to search and integrate data has 
greatly improved the search result [1]. For example, Couchot 
[4] used a minimum set of concepts, which he called it 
reduced ontology, to build up descriptive graphs to 
summarize the content of the web resources. With fewer 
constraints than a classical ontology, the reduced ontology is 
more flexible and easy to use. Shah et al. [5] used ontology 
to annotate biomedical databases so that the data in the 
databases can be located with ontology concepts.  

Many ontology-based methods have been proposed for 
data integration within distributed data infrastructures. Beran 
and Piasecki [16] presented a ontology-driven design for an 
integrated water data system based on SWEET and GCMD 
(NASA's Global Change Master Directory). To improve both 
the recall and precision for data searching in different 
granularity, they proposed a four-layer ontology: navigation, 
compound, core and detail, each represents a different 
abstraction level. The navigation layer contains higher-level 
concepts that make it easy to visualize the ontology. The 
compound and core layers contain concepts for assisting 
users’ input. The detail layer contains finer concepts of those 
in the core layer. These concepts are used during search and 
for clustering the search result. 

Ludäscher et al. [17] proposed a multiple-tier mediation 
framework for integrating data from different types of data 
formats, such as database and XML file. The framework 
aims to alleviate data users from coping with various data 
formats. They introduced a conceptual model wrapper layer 
(GM-Wrapper) that encapsulates the methods to access data 
directly and a generic conceptual model (GCM) layer to 
which the data access methods are mapped. The GCM is 
then mapped to an integrated view that provides easy data 
access for the users. 

Based on the degree of efficiency and flexibility, Wache 
et al. [18] classified ontology-driven data integration 
approaches into single ontology, multiple ontology, and 
hybrid ontology approaches. The single ontology approach is 
efficient; the multiple ontology approach is flexible; the 
hybrid ontology approach achieves both and is thus the 
preferred method. Buccella et al. [19] evaluated several 
well-known geographic data integration systems. The result 
of their work suggests that most such systems are now 
ontology-based, but the level the geographic information 
represented, the degree formal representation of ontologies 
adopted, and the criteria used to determine how integration 
should proceed vary from one system to another. They thus 
recommend full inclusion of geographic information into the 
integration process, a wider adoption of formal model for 
ontology representation, and a better assimilation of the 
geographic knowledge (e.g., quantitative and qualitative 
relations and scale) in the integration process.  

Many annotation schemes have been proposed to tag 
meaning to the data generated by sensors and to improve the 
efficiency of data exchange. Russomanno et al. [20] 

developed OntoSensor, a sensor ontology based on SUMO, 
SensorML [21] and ISO 19115, to define schema required 
for geographic information and services. It provided a solid 
conceptual foundation for sensor itself, but lacks certain 
concepts related to data processing, e.g., calibration, unit, 
process chain, and input and output. To bridge the semantic 
gap between sensor data and to solve the disagreement on 
methods for data access and exchange, Shankar et al. [22] 
compared the difference between the adoption of a 
bottom-up, entity-oriented schema construction approach 
and a top-down, ontology-based approach in creating a 
conceptual schema for integrating data generated in a wide 
area sensor network. They argued that the top-down 
approach provides semantic commonality and enables better 
implementation interoperability if adhering to an advertised 
vocabulary, thereby a higher level of semantic 
interoperability, is the priority for the system design. 

The review shows that various ontology designs for 
facilitating data sharing have been examined and evaluated. 
To complete our system, however, more work is needed. To 
be more specific, we need to perform the following four 
tasks: 

Task 1. Generate requests. A user specifies the query 
criteria, which includes the theme (e.g., rainfall and 
temperature) and the constraints (e.g., year, spatial domain, 
and value ranges). The user does not know the availability of 
the data that are related to these data types and how they are 
specified in the system. 

Task 2. Parse and analyze requests. The reasoning 
engine translates the user query to an ontology query using 
the semantic rules defined in ontology.  

Task 3. Retrieve Data. This is the process in which the 
computer system locates and queries heterogeneous data 
sources, identify suitable data, and then integrates these data 
into a usable format. The process relies on the alignment 
between ontology and data schema.  

Task 4. Data production and publishing. Data are 
original generated by sensors and then processed and 
reorganized. A dataset needs to be registered and aligned to 
ontology before it becomes searchable and amenable to 
integration.  

These tasks reflect the need of mediating communication 
between data provider’s and user’s sides.  Task 1 is 
different from a traditional concept searching for that the 
query criteria needs to be made, which concerns the data 
model and numeric representation rather than a usual domain 
semantics. Task 2 requires a process to convert the query 
with the help of ontology reasoning. Task 3 requires the 
alignment between ontology and different types of data 
sources. Task 4 requires the semantics to be transferred from 
the data providers to cyberinfrastructure, for which we need 
to use the existing metadata to populate the semantics 
defined in our ontology. 

To accomplish these tasks we developed our ontology 
based on SWEET and complimented it with terms from 
CSDGM (Content Standard for Digital Geospatial Metadata) 
[23] and SensorML [21] as they are standards for describing 
semantics of spatial datasets and sensor systems, 
respectively. We also explored how our ontology can be 
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used with existing metadata systems, which provides 
valuable information to populate its concepts and then be 
used for searching and reasoning. 

III. ONTOLOGY DESIGN 
The domains dealt with in this paper mainly include the 

monitoring and modeling of urban airshed and ocean water 
quality. For the first domain, attention has been paid to 
measure various attributes of air (e.g., temperature and 
humidity). The characteristics of the buildings that constitute 
urban canyons, specifically their facades, shapes, and 
functions, as well as the gaps or holes, such as roads and 
green spaces in between buildings, are also important 
concepts for describing the micro-climatic behavior in urban 
areas. Sensors deployed for measuring these air and building 
characteristics are stationary. 

For the second domain, water quality indicators (e.g., 
pH) and water characteristics (e.g., temperature and current 
speed) are the most important concepts. However, significant 
attention has been paid to the navigational concepts as the 
readings of these water quality indicators are often taken by 
sensors mounted on autonomous vehicles. Location 
information for the individual vehicles or groups of vehicles 
as well as the location for the potential danger zones (e.g., 
zones with underwater barriers) are thus important for 
researchers to make sense of the data collected. 

To capture these domain concepts and to support 
intelligent search across domains, the ontology design adopts 
a strategy that is in line with the recommendations from the 
ontology development community – that the ontology is 
modular [24], has a clearly delineated content [25], is based 
on a well-designed upper-level ontology [26], and is 
independent from any databases [11]. The strategy leads to a 
two-layer ontology that consists of two domain ontologies at 
the bottom, and cyberinfrastructure (CI) ontology at the top. 
CI ontology acts as the basis of domain ontology. Concepts 
in the CI ontology such as Space and Time are generic to 
both domain ontologies and are useful for defining domain 
concepts in a more consistent manner. 

Some of the concepts in the SWEET Ontology are 
adopted in the CI ontology as it provides a common semantic 
framework for earth science domains. The SWEET concepts 
such as NumericalEntity, PhysicalProperty, Instrument, 
HumanActivity, and Unit were chosen to be the core CI 
concepts of the following seven CI main categories (Figure 1) 
due to their relevancy to the domains in question (note that 
every category includes the related concepts as well as the 
core concepts indicated by its name) : 

 
1. Data. Data is the core concept of the CI ontology and 

has a much richer meaning than most other concepts 
because it can be instances of any others. It is also 
connected to many other concepts, including data 
accessing forms (e.g., DataFile and DataService), data 
format (e.g., Text and Binary), data attribute (e.g., Size 
and Format), and spatial data model (e.g., Vector and 
Raster). It is mainly related to the Data in SWEET and 
the concepts and relations from CSDGM. 
 

2. Property. The concept describes physical and spatial 
quality associated with an object. For example, physical 
properties such as Temperature, Weight, and Length, 
are applicable for most physical objects. Spatial 
properties such as Location, Orientation, and Elevation, 
are applicable for objects which are in a space 
coordinate system. It is mainly related to 
PhysicalProperty of SWEET. 

3. Device. This concept describes all the hardware used in 
the research. The most typical ones are Computer, 
Sensor, Vehicle, and GPS. Most of these concepts are 
sub-concepts of sweet:Instrument. Since the 
sciInstrument of SWEET has limited sub-concepts, 
concepts from SensorML and our research domains 
have been added (e.g., environment and geography). 

4. Research. This concept incorporate any research 
domains, research actions (e.g., Observation and 
Analysis Fieldwork), and academic activities (e.g., 
Conference and Publication). It is mainly related to the 
HumanActivity of SWEET. 

5. Space. This concept describes the basic characteristics 
of physical spaces of an object. An object can be 
associated with one or more two- or three-dimension 
properties that indicate its geometric characteristics 
such as location and shape. It also defines the basic 
frames and reference for spatial objects, including 
topology relations such as containment and located-in. 
Space is the basic category of SWEET, and its related 
spaceCoordinates, spaceDirection, spaceDistribution, 
and spaceObject.  

6. Time. Temporal concepts are most common in any 
environmental data. Similar to spatial reference system, 
time is always associated with a reference system, such 
as Before Christ (B.C.) and Anno Domini (A.D.). Some 
computer systems may use other reference systems or 
their own customized systems. These concepts are 
related to the Time concept in SWEET. There are 
different units and reference systems for time, which 
are defined in ontology to assist the processing of 
temporal data.  

7. Numeric. Numeric concepts are used to represent the 
quantity observed for a property. They are associated 
with values, units and reference systems, which are 
defined here and reused for specific subclasses. It is 
mainly related to NumericEntity and Unit of SWEET. 

 
Figure 1. The Main Concepts of CI Ontology 
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The concepts extracted from the domain are included in 

the domain ontologies. Each of these concepts holds an is-a 
relationship to one or more concepts in the CI ontology. For 
example, the Residence in the domain ontology is a 
BuildingFacility in the CI ontology (Figure 2). Concepts 
from SWEET are incorporated in domain ontology if they 
are deemed equivalent to the domain concepts, e.g., 
Temperature, Humidity, and WaterPressure. 

The domain ontologies are enriched with the concepts 
from CSDGM and SensorML. The CSDGM defines the 
necessary metadata for a dataset, some of which have 
relations to Data, such as name, URI, spatial domain, spatial 
reference, size, and suffix, while others are sub-concepts, 
such as ShapeFile as a sub-concept of DataFile. SensorML 
provides a list of sensor concepts for us such as 
Thermometer, Anemometer, and Barometer. These concepts 
are all sub-concepts of sweet:Instrument. Furthermore, we 
specify the concepts such as Input and Output, which could 
be referred to PhysicalProperty, such as WindPressure, 
WaterTemperature. 

From the development of the two-layered ontology 
several points were learned. First, existing metadata 
standards and upper-level ontologies such as SWEET 
generally contain concepts sufficient for describing the 
semantics of the environmental data. What is needed, 
however, is a clear distinction between concepts, relations, 
and a more comprehensive encoding of the relationships 
between these concepts. They enable the system to 
automatically identify and match the related concepts. 

Second, the layered ontology is flexible for queries with 
different granularities. A user of the system can readily query 
related data and refine the query conditions with the help of 
the ontology. For example, to identify the temperature data, a 
user of the system might start with a search based on the 
concept Temperature, and then filter the result by its 
relations, e.g., spatial and time scope. The user might want to 
know the usability of this data, which might be met by 
giving them the sensor information from which the data are 
generated. Well-formed upper-level concepts and relations 
between them can be utilized to query the data by both 
domain and computational concepts. 

Third, for the data engineers who are responsible to help 
both the data providers to publish their data and the data 
users to find the right data, the need to bridge the gap 
between domain concepts (e.g., temperature) and 
computational concepts (e.g., data service, file repository and 
database) cannot be overlooked. The task requires ontology 
to recognize computational concepts but not mix them up 
with the professional domain concepts. Separating the 
domain concepts in the domain ontology from computational 
concepts in the CI ontology helps maintain such conceptual 
clarity. In addition, it utilizes concepts in different ways, 
alleviating data engineers or providers from doing the 
conversion between the user interfaces and different cyber 
components. 

IV. REASONING 
Reasoning enables multiple interpretations of one or more 

basic concepts [27]. It also reduces the number of concepts 
that are left undefined while making precise the semantics of 
other concepts. In our work, reasoning is supported by three 
types of information: (1) explicitly declared relations 
between concepts, (2) T-Box axioms, and (3) rules. The 
explicitly declared relations, such as is-a, permits the 
reasoning of related concepts based on the axioms defined 
with the relations. T-Box axioms can be necessary or 
equivalent axioms that are used to infer new relations for 
existing data. The axioms can also be used to infer concepts 
associated with the concept in question and the relations 
between them. Such inference mechanism enables validation 
of the completeness of the data. Rules are specified by the 
ontology designer to indicate the implications between two 
sets of statements.  

Examples of T-Box axioms are shown in Table 1. Axiom 
1 validates if a metadata has provided the basic provenance 
information, which comes from either observation or process. 
Axiom 2 validates if a vector instance (e.g., time point) has 
been assigned reference information, e.g., UTC to a temporal 
value. Axiom 3 validates the completeness of a process 
definition. Axiom 4, 5, and 6 populate new concepts using 
instance from other concepts that make more sense to users 
from different professional domains. 

 

Table 1. Examples of T-Box axioms. The “some” means there is at least 
one value coming from the range defined thereafter. The “min”, “max” and 
“exactly” are cardinality constraints on the binary relations. 

   T-Box Axioms 
1. Data  {has_source some Observation ∪ has_source some 

Process} 
2. Vector  {Numeric ∩ has_reference  exactly 1 } 
3. Process  {has_input min 1 ∩ has_output min 1 ∩ has_processor  

min 1} 
4. GeographicalData ≡ {Data ∩ has_model some SpatialDataModel} 
5. ElevationData ≡ {Data ∩ (has_model some DEM ∪ has_model 

some DTM ∪ has_model some DSM ∪ has_model some 
Contour)} 

6. Thermometer ≡ {Sensor ∩ has_input some Temperature } 

 

 
Figure 2. Concepts from different layers of ontology. HDB (Housing 

Development Bureau Flat, flats built by Housing Development Bureau 
of Singapore) 
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Table 2. Rules for the reasoning on data. The “r(x,y)” means that binary 
relation r has the subject x and the object y. The “ist(x,y)” means that x is 
an instance of y. The “sub(x,y)” means x is a subclass of y. The “sup(x,y)” 
means x is a super class of y. The “eql(x, y)” means x equals to y.  

     Rule 
1. has_content(?x,?c1)∩has_content (?y,?c2)∩(sub(?c1,?c2)∪

sup(?c1,?c2)∪eql(?c1,?c2)) → compatible_content(?x,?y) 
2. ist(?p,Process)∩has_input(?p,?x)∩has_output(?p,?y)→

has_parent(?x,?y) 
3. ist(?x,TemperatureUnit)∩ist(?y,TemperatureUnit)→

convertible_unit(?x,?y) 
4. ist(GeoReference,?x)∩ist(GeoReference,?y)→

convertible_reference(?x,?y) 
5. ist(?x,Contour)∩ist(?y,DEM)→convertible_model(?x,?y) 

ist(?x,DEM)∩ist(?y,TIN)→convertible_model(?x,?y) 
ist(?x,DLG)∩ist(?y,DLG)∩has_feature_type(?x,?f)∩

has_feature_type(?y,?f)→convertible_model(?x,?y) 
6. ist(?x, Data) ∩generatedBy(?x, ?s) ∩has_location(?s, ?p) →

located_in(?x, ?p) 
 
A portion of the rules which had been useful in 

supporting reasoning on the datasets and sensors in our work 
is shown in Table 2. Rule 1 is used to decide if two datasets 
contains the same domain concepts, which indicates the 
compatibility of the datasets. Rule 2 is used to infer the 
provenance relation between two data sets. Rule 3 indicates 
that units under the same category are compatible and 
amenable to conversion, which is useful to deciding if two 
numeric instances with the specified units are convertible. 
Rule 4 indicates whether geo-reference systems are 
convertible to each other, e.g., a local coordinate system 
without geo-reference components such as datum, 
projection, is not convertible to a geo-reference system. Rule 
5 indicates four pairs of model which are considered as 
compatible. Rule 6 makes the data generated by the sensor 
inherit some relations from it. In this case, the location of the 
sensor is taken as the location of the data. 

All data in our project can be the input of the reasoning 
engine. Figure 3 shows the correspondence between the 
CSDGM metadata and ontology concepts. The reasoning 
engine does the conversion by parsing the CSDGM metadata 
entries and creating instances of its corresponding ontology 
concepts, e.g., instances of DataFile. The reasoning engine 
also performs validation and inference during conversion by 
using all axioms and rules, which include the declared “is-a” 
relations and those from the above two tables.  

 

In our work, semantic gap exists between users of 
different domains. Reasoning function can be used to search 
the result with high precision and recall with the criteria 
which is not specified in the original query but stated either 
explicitly or implicitly in the ontology. Moreover, for the 
data engineers, reasoning function helps them to efficiently 
develop the program. Since axioms can be updated on the fly, 
costs of updating the programs in an ever-changing project 
can be sharply reduced. 

V. ALIGNMENT AND TRANSLATION 
Ontology alignment is the process of establishing 

correspondence between two similar concepts, including 
their subordinate and related concepts. In a data-centered 
scientific research, an alignment mechanism is needed to 
extract information from the data models of the original data 
sources, to perform reasoning, and to translate an ontology 
query request to a specific query language. A tool to support 
such process is vital in our work because the data producers 
and users often use different terms to refer to the same 
concepts and different encoding methods for their data. 

Three types of alignment between commonly used data 
models and our domain ontologies were explored. Using the 
alignment between the CSDGM metadata and our domain 
ontologies (Figure 4), they include: 
1. Concept alignment that identifies the corresponding 

concepts by text comparison. For example, the keyword 
Depth in an AUV dataset is identified as Depth (of 
Water). This alignment process is usually facilitated by 
referring to the context, i.e., the standard vocabulary or 
the ontology, used by the users.  

2. Instance alignment that identifies the correspondence 
between instances in an ontology concept and semantic 
information in the database. These instances are 
typically extracted from rows in a database table or 
identified by unique reference identifiers.  

3. Relation alignment that identifies the attribute of a 
data model to be a relation of an ontology concept, such 
as a temperature value of a “Temperature” concept, and 
other concepts essential to define the attribute, such as 
the unit for temperature. 

 
One benefit of establishing these alignments is to 

facilitate the conversion of heterogeneous data models into a 
global ontological model preferred by the users of a 
particular domain [28]. Consider the following query: 
retrieve the climate data of Asia and return the records which 
were produced between 2009-3-3 and 2009-4-3. To 
accomplish this task, the first step is to infer the possible 
candidates which meet the semantic requirement. In this 
case, there are two semantic restrictions: is-a Climate and 
located-in Asia. The relations is-a and located-in are both 
transitive relations. The reasoning process returns a list of 
candidate datasets related to Climate, such as Temperature, 
Humidity, and are located in Asia, e.g., Japan and Singapore. 
To further narrow in on the data in a particular time frame, 
assuming the data are stored in relational tables, the query 
with a time filter will be sent to the mediator for the 
relational tables and translated to the following: 

Figure 3. Parse the CSDGM metadata to ontology structure. 
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Select value1, time1 from table1 where time1 > 
‘2009-3-3’ and time1 <’2009-4-3’ 

Select value2, time2 from table2 where time2 > 
‘2009-3-3’ and time2 <’2009-4-3’ 

Select value3, time3 from table3 where time3 > 
1236009600000 and time3 <1238688000000 

 
The last clause uses integer values for time representation 

(milliseconds between 1970-1-1 00:00:00 GMT and this 
time), which is used by some systems and needs to be 
translated to a uniform format. Alignment can take 
advantage of the is-a relation encoded in ontology concepts, 
i.e., if an alignment is applicable to an ontology concept, it 
could be applied to all its sub-concepts as well.  

A second benefit of establishing these alignments is to 
support automatic conversion between scalars, between 
vectors, and between data formats: 
1. Scalar conversion. This is a conversion for the data 

values described by a single scalar and an associated 
unit, such as different unit for Length, Area, Time, and 
Pressure. 

2. Vector conversion. This is a conversion between data 
whose values are referenced to a chosen reference 
system. Spatial coordinates and time are typical 
examples of a vector. 

3. Text format conversion. This is a conversion between 
different representation formats. For example, the text 
format for Date and Time varies in different data, even 
if they use the same unit and the reference system. 

 

In our system, we focus on the alignment between 
ontology and conceptual or systematic data model. It is a 
process similar to ontology alignment except that a common 
data model is always vague on semantics, i.e., different types 
of entities and relations between them, where entity here can 
be regarded as an instance of a specified concept. Thus, the 
first step is to rebuild the entities and relations of the data 
model. In our system, we utilize ORM (Object-Relational 
Mapping) tool to achieve this on relational databases. 

VI. IMPLEMENTATION 
The system is a web application based on J2EE. We use 

Java as the major implementation language because it is 
widely supported by the open sources communities. We 
selected two ontology projects – Jena [28] and Pellet [29] – 
to process the ontology files. The OWL files are firstly 
generated by Protégé, and then stored and maintained via 
Jena API. The Pellet is a reasoning engine that provides 
support for SWRL (Semantic Web Rule Language [30]) 
based rules. We use ArcGIS from ESRI to develop 
spatial-related functions. The system architecture is shown in 
Figure 5. 

The system adopts a three-layer architecture – the UI and 
Application Layer, Data Registration Layer, and the 
Resource Layer. The Data Registration layer uses the 
ontologies and other APIs to process the original 
information, which contains two paths, one for the data users 
and the other for the data providers: 

For a data user, it is easier and more straightforward to 
search by concepts rather than look into the details of data. 
The user therefore uses the ontology to develop a request, 
which will be processed by the reasoning engine in the 
system and attached with richer semantics (e.g., more 
concepts and restrictions). The original query will be 
translated to different forms suitable for querying different 
data sources with the ontology alignment service.  

A data provider provides sufficient metadata based on 
uniform standards, such as an XML schema which can be 
used to standardize the format of metadata, and is useful for 
standard-dependent programs. The metadata could be 
directly referred to ontology concepts, or some other 
standard vocabulary like GCMD, whereby they would then 
be recognized and aligned automatically. The data provider 
can also add more alignments or alter existing ones 
manually. Both of the original metadata and generated 
alignment are stored in the database for future applications. 

VII. CONCLUSION AND FUTURE WORK 
We have used ontology to model data semantics and to 

help users unfamiliar with the data structure and semantics to 
find the data they look for. We demonstrated the advantage 
of ontology-based system over traditional metadata or 
standard data exchange systems in bridging the semantic 
gaps in a heterogeneous environment. Ontology reasoning is 
a powerful tool for generating or importing a new ontology 
and its concepts without modifying the data. It makes it 
possible to accommodate concepts across different domains 
and from different user groups. Ontology alignment acts as a 
middleware for integrating data from different sources. 

 
Figure 4. An example of the alignment between the metadata and the 

ontology. 
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Compared to the most existing methods such as those 
mentioned in Section II, our work has focused on the 
following two points: 
1. We have considered how to support data integration at 

both the semantic level and the conceptual model level. 
We give a clear roadmap from the users’ request to the 
data retrieval, along with which ontology reasoning is 
essential for dataset searching and for integration. 

2. We have designed and implemented a modular data 
integration system to ensure system flexibility. Every 
single application works independently while 
cooperating with each other through a dynamic, 
semantics-enabled interface. We also make sure the 
system is connected to the existing technologies and 
systems so that existing tools, e.g., metadata for 
populating databases and alignments for translating user 
queries to database queries, are reused. 

 
Interfaces useful for automating data registration and 

alignment were developed. They allow a data set to be 
registered by uploading the associated metadata file 
compatible with CSDGM. They then automatically create 
instances of the metadata entries using the ontologies in the 
system. Alignments are mainly performed by the system 
managers who are well versed with the ontology concepts. 
Through text matching and ontology reasoning, the 
interfaces suggest the necessary inputs associated with the 
data that will be uploaded to the system. 

Yet more remain to be incorporated to enrich the 
functionality of this system. First, with the increase of new 
applications and users, ontology is bound to evolve through 
time [31]. How to ensure the consistency of the whole 
ontology while evolving is an important problem to 
investigate. Second, extending the spatial reasoning 
capability of the system is crucial. For example, we can use 
spatial computation in the reasoning process to define the 
relations as near, far, and neighbor. Integrating spatial 
functions with ontology components particularly the 
reasoning functions would significantly improve the data 
search capability of the system. Third, users should be able 
to share both the data as well as the services associated with 
the formats of the data. For example, users could click a link 

to view a searched spatial dataset via an online visualization 
service. In this process, data should be organized and 
converted to a specific format suitable as the input of the 
service. The users can also choose to download them in a 
specific format and use local tools to handle them. 
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