
Semantic Process Modeling and Planning
Michael Igler

Chair for Applied Computer Science IV
University of Bayreuth

Bayreuth, Germany
michael.igler@uni-bayreuth.de

Stefan Jablonski
Chair for Applied Computer Science IV

University of Bayreuth
Bayreuth, Germany

stefan.jablonski@uni-bayreuth.de

Christoph Günther
Chair for Applied Computer Science IV

University of Bayreuth
Bayreuth, Germany

christoph.guenther@uni-bayreuth.de

Abstract—In this paper, we investigate how complex process
models can be modeled such that both the modeling remains
doable for domain experts and the resulting process models
remain readable. We chose an approach that can be characterized
as mixed approach consisting of declarative and imperative
modeling aspects with semantically enriched process modeling
constructs. Our aim is to benefit from both modeling approaches,
declarative and imperative, whereby through their combination
we want to avoid their drawbacks. However, the implementation
of our modeling approach is completely declarative. In this paper
we present our novel approach for process modeling and together
with its implementation. Some experiences about how domain
users are applying this approach are also given.

Keywords-Semantically enriched process modeling constructs;
flexible process execution; process planning.

I. INTRODUCTION

Process management has been accepted as adequate method
to describe complex business applications and to support their
enactment. Deliberately we focus on complex applications
since there the benefits of a process-based approach are of
particular importance. Process models illustrate nicely how
complex applications are structured and describe what has to
be done by which person using which tools. However, we
believe that process management approaches still do not cope
well with complexity. In order to substantiate this proposition
we want to analyze the causes of complexity. We focus the
discussion of complexity on two situations. A process-based
application is complex if it consists of a huge number of
different process steps (step complexity). It is not so easy
to reduce this kind of complexity. Such an application can
be structured by creating sub-processes through decomposi-
tion. Then process models are at least easier to understand.
However, it is hard to eliminate process steps such that
the application gets ”smaller”. Step complexity is a kind of
an inherited feature. There is a chance that domain experts
recognize that some process steps are not necessary; then
this complexity can be reduced partially. A second sort of
complexity arises when a huge number of execution paths
exists (path complexity). In this case, the number of process
steps might even be moderate. However, through the flexibility
of many different execution paths complexity escalates. For
example, consider three process steps A, B, and C

• which all have to be executed exactly once, and
• whose executions must not overlap.

B

C

XOR
B

C

C

B

A

C

C

A

B

A

A

B

A

XOR XOR

XOR

XOR

XOR

XOR

XOR

Fig. 1. Example process model

In Figure 1, a solution to this scenario is depicted. We regard
this process model as complex: although only three different
process steps are involved, the process model consists of 15
process steps (repetitions of the three basic steps A, B, and C),
29 arcs, and 8 flow constructs (XOR) for splitting and joining
control flow. In this context it is not so relevant how to count
steps and arcs; the message is that there are a lot of modeling
elements although the application is rather small. The most
severe drawback of this process model is that its pragmatics
(what it means from an application point of view) is totally
camouflaged, i.e., users do not comprehend the meaning and
purpose of the process. We state that path complexity is
partially avoidable when powerful process modeling constructs
are applied.

II. MOTIVATION

What is the reason that still path complexity is not dealt
with adequately? We see one of the major reasons in the
adoption of execution rules from imperative programming
languages like sequential execution, alternative execution (if-
then-else; XOR between execution paths) or independent
execution (parallel execution paths). It is not that we blame
imperative programming languages it is just that we state that
this programming style is not adequate for process modeling.
The fact that programs are going to become complex is not
that bad since programs are just read by programmers, i.e.,
software experts that are able to cope with that complexity.
In contrast to that process model complexity is problematic.
Process models must also (besides professional process mod-
elers) be readable for end users like medical doctors or nurses,
who are usually not so familiar with formal process modeling

199

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

techniques. Thus, when process models are becoming too
complex, these people cannot interpret them anymore. That
also means that they cannot assess their quality anymore
and therefore cannot improve them. As a consequence we
really want to promote applying process modeling techniques,
which reduces complexity such that complex applications
can be described by comprehendible process models and can
therefore be understood much more easily. We propose to
apply declarative process modeling techniques that specifically
reduce path complexity. In contrast to imperative modeling
(here the path(s) going through a process is defined explicitly)
declarative modeling concentrates on describing what has to be
done and the exact step-by-step execution order is not directly
prescribed.

In order to provide another motivating example we
introduce a second scenario which would result in a
most complex process model if it is only described
with conventional process modeling elements (such that
are borrowed from imperative programming). The (sim-
plified) scenario originates from a clinical study. Four
process steps are involved: Take blood sample (from
now on called A), Measure intraocular pressure (B),
Measure blood pressure (C), and Write report (D).
It is not a problem to model this scenario with conventional
means under the assumption that the four steps should be
executed sequentially and each step must be executed exactly
once. However, if it is allowed to execute A, B, and C in
any order (but not overlapping) then the model adopts the
complexity of the process model in Figure 1 and is presented
in Figure 6. Complexity increases again when process steps A,
B, and C could be executed multiple times (if their execution
results are not satisfactory). Finally we would like to restrict
the number of executions for each process step A, B, and
C individually. Process step A should be executed once or
twice, process step B doesnt have to be executed at all but
can be performed once; C must be executed once and can
be repeated arbitrarily. We abstain from listing the possible
execution sequences. It becomes obvious that a huge number
of such sequences could be produced. It is also a challenging
exercise to define process models for the two last extensions
of our application scenario.

Our goal is to introduce process modeling constructs that
facilitate to model complex and flexible processes in a com-
pact and comprehensible way. Our first idea was to switch
from imperative modeling (as it is quite common in pro-
cess management) to declarative modeling (see Section IV).
However, studying [1], which discusses the pros and cons
of imperative and declarative process modeling, we decided
that a complete switch to declarative process modeling is not
optimal, since that would mean to abandon the good aspects of
imperative modeling. Thats why we have chosen an approach
that tries to combine the pros of both approaches: declarative
and imperative. Thus, we can reduce the obstacles of both
modeling approaches as well. So, our modeling approach is a
combination of declarative and imperative concepts. However,
the underlying implementation of our process execution engine

is a purely declarative one.
Besides this main requirement we want to post two further

requirements, which are vital for our approach. We state
that the semantics of these new process modeling constructs
must be unique, i.e., they must be precisely defined. This
requirement refers to both process modeling and execution.
We explicitly name this requirement since we will allow a
great degree of freedom for process execution. This looks
like allowing arbitrary execution orders. However, this is
not the case as we will discuss in Section IV. The third
major requirement focuses process execution. Since we deal
with complex scenarios that should be described by compact
process models, end users should be guided through the
execution of such processes, i.e., there should be a possibility
to highlight recommended execution paths among the many
eligible execution paths. Hence we give the process executors
(e. g. nurse, medical doctor) some guidance through the
process flow but still sustain the flexibility in choosing the
next process step according to the actual personal perception
of the process executors involved.

III. RELATED WORK

The current approaches to process modeling can be cat-
egorized as either imperative approaches or declarative ap-
proaches. In this section, we compare our work with some
representative implementations of both imperative and declar-
ative approaches.

A. Imperative approaches

Wohed et al. [2] made an evaluation of the suitability of
the imperative modeling language BPMN [3]. It evaluates the
modeling languages against the workflow patterns from [4]
concluding that there exist inherent difficulties in applying a
language that does not have commonly agreed-upon formal
semantics nor an execution environment. Although there is
a mapping from BPMN to the execution environment BPEL
[5], closer inspections show that this mapping is only partial,
leaving aside models with unstructured topologies.

The research described in [6] does a comparison of business
modeling and execution languages coming from the open
source area. It concludes that open source systems like jBPM
[7] and OpenWFE (now called ruote 2.1) [8] are geared more
towards modelers who are familiar in programming languages
than towards business analysts.

YAWL (Yet Another Workflow Language) [9] is a workflow
language that make use of so called high-level Petri nets to
refer to Petri nets extended with color, time and hierarchy. The
definition of YAWL presented in [9] only supports the control-
flow (behavioral) perspective. Therefore newYAWL [10] has
been developed to provide support for the control-flow, data
and resource perspectives. Nevertheless the functional and
organizational perspective are still neglected.

B. Declarative approaches

DECLARE [11] is a constraint-based system, developed
at the University of Eindhoven, that is focused on modeling

200

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

constraints between processes. It supports the behavioral and
the functional perspectives of Perspective Oriented Process
Modeling method (POPM) [12]. DECLARE uses the ConDec
[13] modeling language. Modeled constraints in ConDec are
translated to a Linear Temporal Logic (LTL) formula. There is
an automaton generated for every specific constraint in order
to verify it. Furthermore, an automaton is also generated over
all constraints. The support for the organizational perspective
in DECLARE is, however, limited as hierarchical structures
cannot be modeled. A planning component that can be con-
sulted for advice during execution phase is also absent.

EM-BrA2CE (Enterprise Modeling using Business Rules,
Agents, Activities, Concepts and Events) is a framework for
unifying vocabulary and execution models for declarative
process modeling [14]. The vocabulary is described in terms
of the Semantics for Business Vocabulary and Rules (SBVR)
standard and the execution model is presented as a Colored
Petri Net (CP-Net). EM-BrA2CE also follows the same con-
cept we use in this paper to specify a state space transition
relation based on rules. However, functional and operational
perspectives are not supported in this framework. Furthermore,
the process modeler has no possibility to graphically “model”
business process. Instead, every process must be described in
the form of the mentioned Business Vocabulary. This slows
down re-reading of process models by different users or the
process modeler itself after some period of time.

IV. INTRODUCING NEW ELEMENTS FOR COMPACT
PROCESS MODELING

This section presents three new modeling elements, which
form the basis of our approach. Since we focus on the
reduction of path complexity we introduce three new declar-
ative modeling elements: special arrows (with two different
semantics), boxes (to group processes), and quantification (to
define the number of executions of a process). Besides these
new modeling constructs we rely on the typical modeling
elements of the perspective oriented process modeling method
[15]. However, in this paper we mainly focus on the functional
perspective and the behavioral perspective, whereas we neglect
the data, operational and organizational perspectives.

A. Two Different Types of Arrows

The first modeling construct that will be associated with a
new semantics is the arrow. The semantic of the well known
arrow symbol in process modeling is that if an arrow connects
process A with process B then process B has to be performed
after process A. Accordingly, if process B is connected with an
arrow to process C then C may start after process B has finished
(Figure 2). We also say: B requires the execution of A before
it can run; C requires the execution of B (and consequently of
A, too) before it can run. We want to keep this very common
construct and put it in our modeling toolbox. We present this
modeling construct as a solid line.

Beside this arrow construct depicted by a solid line we want
to add an arrow depicted by a dashed line; this dashed arrow
holds a different meaning. Two processes that are connected

A B C

Fig. 2. Sequential process flow

through a dashed arrow can be executed in any order. For
instance, if process A and process B are connected by a dashed
arrow, then A can be performed before B or vice versa (B
can be performed before A). Along with this construct we see
the optimal combination of the imperative and the declarative
approaches. Applying imperative concepts would require much
more arrows and deciders to express the flexibility; this would
blow up the process model drastically and lead to unreadable
models; exclusively applying declarative concepts would avoid
any arrows and the ”natural” understanding of a process
flow would be lost. Furthermore, having defined a dashed
arrow from process A to process B expresses a preference
(recommendation) that process A should be performed before
process B. This feature can be utilized when processes are
put on a work list for execution. If more than two processes
are connected through a dashed line then a permutation of all
process executions is feasible, e.g., ABC, BCA, CBA. Processes
must not be performed in parallel but sequentially. Modeling
the scenario from Figure 1 using the dashed arrow, results in
the simple process model of Figure 3. It is obvious that the
process model of Figure 3 is much more readable than the
process model of Figure 1.

A B C

Fig. 3. Model of flexible scenario

It is certainly possible to combine the solid and dashed
arrows: In Figure 4 process A and B are connected through a
dashed arrow; process B and process C are connected through a
solid arrow. This means that there is flexible ordering between
processes A and B while process B must always be executed
before process C. This semantics results in the following three
execution orders: ABC, BAC and BCA.

A B C

Fig. 4. Combination of solid and dashed arrows

Now consider the medical example from Section I. To
connect the three process steps A, B, and C with dashed arrows
offers to execute them in an arbitrary order. However, so far
it is not possible to say that process step D must be executed
after the three process steps A, B, and C have terminated. In
order to express this semantics a new modeling element has
to be introduced, which is called box.

201

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

A B C D

Fig. 5. Box with final acceptance process D

B. The Box Modeling Element

The box modeling element ensures that all the processes
inside a box are regarded as a unit. Thus a box can substitute a
process. That means that instead of executing a single process
A or B the box must be performed, that means the processes
within the box must be executed. For instance, in Figure 5
the box must be executed completely before process D can be
started. Executing the box means to execute processes A, B, and
C in an arbitrary order. This execution results in the following
sequences: ABCD, BCAD, CABD, CBAD, ACBD and BACD. D is
always the last step that requires the completion of all previous
steps respectively the box, in which the steps are contained.

The process of Figure 5 clearly models the medical scenario
from Section I, when processes A, B, and C must be performed
in any order before process D.

C. Quantification

Often it is necessary to specify that a process can be
executed several times. For that purpose we add quantifica-
tional aspects to process steps which are novel in the field
of process modeling. Every process gets a minimum and
maximum counter that indicates how often a process may be
executed. If it shall be executed exactly a certain number of
times then minimum and maximum are equal. To express that
a process step is not essential for the whole process but can
be done in the sense of “possible but not necessary”, then a
minimum quantification of zero should be selected.

Reconsider the medical example of Section I. We now want
to declare how often these processes may be executed:

• Process A: minimum = 1, maximum = 2
• Process B: minimum = 1, maximum = 1 (exactly once)
• Process C: minimum = 0, maximum = * (optional, any

repetition)
• Process D: minimum = 1, maximum = 1 (exactly once)
Modeling this scenario by just using conventional, i.e.,

imperative modeling elements results in a process model as
depicted in Figure 6. It is almost impossible to derive the above
defined semantics from that diagram. That situation changes
when our innovative combination of declarative and imperative
modeling constructs is applied. Figure 7 presents the same
process model as Figure 6. It is obvious that the complexity
of the process model is completely vanished through the use of
the new powerful modeling constructs. Users regard processes
A, B, and C as a unit that has to be executed before process
D can be performed. Also the flexibility of executing the
processes within the box can be recognized easily. The number
attached to the processes shows how often processes have to
be executed. This example nicely shows that the declarative

process modeling constructs facilitate compact modeling of
complex process-based applications. This modeling style is
advantageous for business process modeling in such a way that
it is now possible to describe very complex business process
models in a more elegant and easier to comprehend way.

B 1..1A 1..2 C 0..* D 1..1

Fig. 7. Simplified medical example

Nevertheless, it is not that easy for novel users to apply
our new modeling constructs. Therefore, we were directly
supporting them during modeling. We experienced that after a
couple of modeling sessions they were able to apply the new
constructs independently and, finally, that it was even easier for
them to express their complex application scenarios. Without
any doubt by introducing our new modeling constructs we
are leaving the realm of standards (e.g., BPMN). However,
this is not an unusual approach. In many publications (see
the BPM conference series [16]) new modeling constructs are
introduced, which are not covered by a standard like BPMN.
Many researchers and especially practitioners accept that in
special cases standards have to be violated in order to provide
more adequate modeling capabilities. The tradeoff between
standard conformance and enhanced expressiveness has to be
resolved individually for each project.

V. ARCHITECTURE AND IMPLEMENTATION

In this section, we want to give an overview on our im-
plementation for process management, i.e., process modeling
and execution. In Figure 8 the architecture of our process
management infrastructure is depicted.

iPM

Modeling Engine

ESProNa
Export

Engine for
Semantic Process

Navigation

Query

Process Navigator

Worklist

State Space

Process
Modeler

Process
Executor

Fig. 8. Architecture of the process modeling and execution framework

Processes are modeled with the tool “iPM Process Modeler”
[17]. This tool supports modeling constructs of POPM and all
the modeling elements introduced in Section IV. A process
model is saved in a special data format and is loaded into
the planning component of the process execution system. We
call this prototype ”Engine for Semantic Process Navigation”
(ESProNa). A process executor (e.g., nurse, medical doctor)

202

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

measure
blood

pressure

START

END

XOR
measure

intraocular
pressure

take
blood

sample

blood sample
already taken

twice?

intraocluar
pressure

already executed?

blood sample and
intraocular pressure

executed at least once?

XOR

execute another
process?

write
report

Yes

Yes

No

No

No

Yes

No

Yes

Fig. 6. Conventional modeling of medical example

can then use the Process Navigator PN [18] to navigate through
a process. PN is a process execution system that works on
process models deploying the Perspective Oriented Process
Modeling method. A work list depicts all processes that are
executable. The process executor can then select one of the
executable processes to perform it. So far the PN cannot
interpret process modeling elements as presented in Section
IV. Our prototype ESProNa extends PN in order to cope also
with these declarative modeling constructs.

A conventional process management system [19] cannot
support a look ahead to the process executor such that he
can see what processes are not executable anymore and what
processes are still executable. This functionality is additionally
provided for PN by ESProNa. With this “look ahead” some
kind of guidance is provided to the process executor since he
can better anticipate the impact of the execution of a special
process. It is of enormous importance when flexible execu-
tion is provided as described in Section I and IV. Through
the many different alternative execution paths that become
available a process executor might get overburdened with the
selection of processes for execution. Therefore, this guidance
functions is very important and sustains a better overview on
process execution. Thus we can say: introducing this highly
flexible execution semantics, which drastically reduces path
complexity (Section I) comes with costs: loss of overview
since often very many processes are executable (what is an
indication of flexible execution). However, in our approach
this loss is totally compensated through the provided guidance
functionality, which will support the process executors to
navigate through the process. How to implement guidance? We
have chosen a pretty handy approach. Instead of solely offering
possible next processes (for execution) we additionally offer
two more columns on a work list. These columns depict the
following two sorts of processes, which support a look ahead:

• Processes that can still be executed eventually after a now

possible next

A
B
C

History: -

History: AB

some when possible

A, B, C, D
A, C, D
A, B, C, D

not possible afterwards

B

A
C

A, B
possible next some when possible not possible afterwards

D

C, D
A, C, D
-

B
A, B, C

Fig. 9. Work list for the process executor

executable process is performed.
• Processes that never can be executed again after a now

executable process is performed.
Figure 9 depicts the implementation of this new kind of

worklist. In conventional process execution systems only the
left column of the two work lists (”possible next”) in Figure
9 would be supported: this column depicts the processes that
are executable next. The two columns ”some when possible”
and ”not possible afterwards” depicts processes, which are still
executable respectively not anymore executable after a certain
process is selected for execution.

Figure 9 shows two different situations whereas the example
from Figure 7 is referred to. The upper work list depicts the
state when nothing is done yet (history is empty ”-”). The
three processes of the box are executable (A, B, C); D is
not executable since first the (elements in the) box must be
performed. Selecting processes A or C means that all processes
A, B, C and (later) D can still be performed again. Selecting
process B means that B must not be performed again since it

203

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

is only allowed to be performed exactly once (quantification).
The lower work list shows a situation where processes A

and B were already performed: History AB. Process B is
not executable any more since it was already executed and
the domain constraint (B must be executed exactly once) is
prohibiting this. Process D became executable since the box
could be terminated and all processes of the box are performed
as often as required minimally. If process A is selected it
must not be performed again since it can be executed twice
at most. When process C is selected, then all processes except
B are executable. In the case that process D is selected no
other preceding process is executable anymore. It shall be
mentioned, that this behavior is exchangeable. We can adopt
them to any special business process execution semantics. For
example, in the former medical example processes A, B and
C are not executable again since D has started and the box
containing processes A, B and C must not be executed any
more.

VI. CONCLUSION AND OUTLOOK

Two observations become noticeable when conventional
process execution (PN) is extended with the ESProNa frame-
work: Process modeling can cope with much more complex
process models without enhancing complexity, i.e., especially
path complexity is well coped with (Section IV). Through the
powerful implementation, process executors can effectively be
guided through process execution by supporting guidance in
form of a “look ahead”.

Together, compact process modeling capabilities and pow-
erful process execution guidance provides an add-on to con-
ventional process management that is heavily requested in
literature [20], [21], [22].

ESProNa is part of the ForFlow Process Navigator. This
system is developed in the joint research project ForFlow
[23] among 4 Bavarian Universities and about 30 industrial
partners. The Process Navigator is meanwhile in prototype use
in 5 partner companies, which intend to use it in productive
mode.

The most important next step in our research is to integrate
the operational, behavioral and data perspective of process
management. We currently investigate how these aspects can
be integrated into the ESProNa Framework. First steps into
this research are showing that these perspectives can seam-
lessly be added to the concepts defined so far. However, it
is obvious that these perspectives have a major impact on
execution flexibility. In a future paper, we will also analyze
how workflow patterns [4] can be expressed by ESProNa to
show the completeness of our modeling approach.

REFERENCES

[1] D. Fahland, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and
S. Zugal, “Declarative vs. Imperative Process Modeling Languages: The
Issue of Maintainability,” in 1st International Workshop on Empirical
Research in Business Process Management (ER-BPM’09), B. Mutschler,
R. Wieringa, and J. Recker, Eds., Ulm, Germany, Sep. 2009, pp. 65–76,
(LNBIP to appear).

[2] P. Wohed, W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede,
and N. Russell, “On the Suitability of BPMN for Business Process
Modelling,” in Business Process Management, 2006, pp. 161–176.

[3] S. White. (2004, May) Business Process Modeling Notation (BPMN)
— Version 1.0. [Online]. Available: http://www.bpmn.org/Documents/
BPMN V1-0 May 3 2004.pdf

[4] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and
A. P. Barros, “Workflow patterns,” Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[5] OASIS. (2010, Mar) Web services business process execution language
version 2.0. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/
OS/wsbpel-v2.0-OS.html

[6] P. Wohed, N. Russell, A. H. M. ter Hofstede, B. Andersson, and W. M. P.
van der Aalst, “Patterns-based evaluation of open source BPM systems:
The cases of jBPM, OpenWFE, and Enhydra Shark,” Inf. Softw. Technol.,
vol. 51, no. 8, pp. 1187–1216, 2009.

[7] jBPM 3.1 Workflow and BPM made practical, Chapater 9.6 Superstates.
IBM. [Online]. Available: http://docs.jboss.com/jbpm/v3.1/userguide/en/
html/processmodelling.html

[8] J. Mettraux. (2010, March) ruote 2.1. [Online]. Available: http:
//ruote.rubyforge.org/

[9] W. M. P. van der Aalst and Ter, “Yawl: yet another workflow language,”
Information Systems, vol. 30, no. 4, pp. 245–275, June 2005. [Online].
Available: http://dx.doi.org/10.1016/j.is.2004.02.002

[10] Z. Zhou, S. Bhiri, and M. Hauswirth, “Control and data dependencies in
business processes based on semantic business activities,” in iiWAS’08:
Proceedings of the 10th International Conference on Information Inte-
gration and Web-based Applications & Services. New York, NY, USA:
ACM, 2008, pp. 257–263.

[11] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support.” Computer Sci-
ence — R&D, vol. 23, no. 2, pp. 99–113, 2009.

[12] S. Jablonski, “Functional and behavioral aspects of process modeling in
workflow management systems,” in CON’94: Proceedings of the Ninth
Austrian-informatics conference on Workflow management: challenges,
paradigms and products. Munich, Germany, Germany: R. Oldenbourg
Verlag GmbH, 1994, pp. 113–133.

[13] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE: Full
support for loosely-structured processes,” in EDOC’07: Proceedings of
the 11th IEEE International Enterprise Distributed Object Computing
Conference. Washington, DC, USA: IEEE Computer Society, 2007, p.
287.

[14] S. Goedertier, R. Haesen, and J. Vanthienen, “EM-BrA2CE v0.1: A
vocabulary and execution model for declarative business process mod-
eling,” K.U.Leuven, FETEW Research Report KBI-0728, 2007.

[15] S. Jablonski and C. Bußler, “Workflow-management: Modeling con-
cepts, architecture and implementation,” International Thomson Com-
puter Press, 1996.

[16] U. Dayal, J. Eder, J. Koehler, and H. A. Reijers, Eds., Business Process
Management, 7th International Conference, BPM 2009, Ulm, Germany,
September 8-10, 2009. Proceedings, ser. Lecture Notes in Computer
Science, vol. 5701. Springer, 2009.

[17] S. Dornstauder, Handbook of the iPM Integrated Process Manager,
ProDatO Integration Technology GmbH, 2005.

[18] M. Faerber, S. Jablonski, and S. Meerkamm, “The ProcessNavigator —
Flexible process execution for product development projects,” Interna-
tional Conference on Engineering Design, ICED’09, 2009.

[19] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Prentice Hall PTR, September 1999.

[20] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke,
“A comprehensive approach to flexibility in workflow management
systems,” in WACC. ACM, 1999, pp. 79–88.

[21] R.-M. Stefanie, R. Manfred, and D. Peter, “Correctness criteria for
dynamic changes in workflow systems: A survey,” Data & Knowledge
Engineering, vol. 50, no. 1, pp. 9–34, 2004.

[22] W. Aalst and S. Jablonski, “Editorial: Flexible Workflow Technology
Driving the Networked Economy,” International Journal of Computer
Systems, Science, and Engineering, vol. 15, no. 5, pp. 265–266, 2000.

[23] Prof. H Meerkamm and Dr.-Ing. K. Paetzhold, Bayerischer
Forschungsverbund für Prozess- und Workflowunterstützung zur
Planung und Steuerung der Abläufe in der Produktentwicklung, ISBN
978-3-9808539-7-2.

204

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

