
GCO: A Generic Collaboration Ontology

Germán Sancho, Thierry Villemur, Saı̈d Tazi
CNRS; LAAS; 7 avenue du colonel Roche, F-31077 Toulouse, France

Université de Toulouse; UT1, UT2, UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
{sancho,villemur,tazi}@laas.fr

Abstract—Collaborative systems provide support for users
that work together for achieving a common goal. In the past
years, several ad-hoc models have been proposed in order
to model collaborative activities in such systems. This paper
proposes a shareable model for collaboration, the Generic
Collaboration Ontology, that can be used by systems in run-
time in order to implement session management and compo-
nent deployment services. This model is an OWL ontology
containing SWRL rules, and therefore it can be processed with
standard Semantic Web tools in order to perform inference.
This ontology is generic because it does not contain domain-
specific knowledge, and it can be extended for specific domains.

Keywords-ontology, collaboration, OWL, SWRL, session, in-
ference

I. INTRODUCTION

Collaborative applications are distributed systems espe-
cially designed to provide support to groups of users that
act in a coordinated way in order to achieve a common
goal. Such applications have been studied since the 1990s in
the domain called Computer-Supported Collaborative Work
(CSCW). These studies include concepts from very differ-
ent domains such as Social Sciences, Cognitive Sciences,
Human-Machine Interfaces and Distributed Computing in
order to maximize the efficiency and ergonomics of CSCW
systems.

In the past years, a variety of models and techniques have
been developed in the CSCW domain. Applications using
these models rely on them in order to represent the possible
collaboration schemas and the current system configuration
at a given time. These models have been used with more or
less success in the implemented systems. However, although
many of the modeled elements are common, very often
these models are ad-hoc or application-specific, thus limiting
their reusability and extensibility. Moreover, each model
is described with a different formalism or language, or
even worse, they are hard-coded inside the application. This
results in a limited interoperability of the systems based
in such models. It would be preferable to have common
models shared between several applications. These models
should be described in standard languages allowing them to
be processed with standard tools.

Another disadvantage of existing collaboration models is
that they are not well suited for enabling a model-based
deployment service. The function of such a service is to

deploy (i.e., download, install and configure) the application
components necessary on each user device in order to
implement the collaboration schema indicated by the model.
For example, if, at a given time, the model indicates that
an audio connexion must exist between two users, then
audio components must be deployed on both users’ devices
in order to manage that connexion. In old systems, where
collaborative software was monolithic, this function was
performed statically, and therefore a deployment service was
not needed. However, as the systems become more and more
dynamic (e.g., in the context of Ubiquitous and Pervasive
Computing), deployment needs to be adaptive at run-time,
so a dynamic deployment service is needed.

The goal of this paper is to provide a shareable model
enabling the development of collaborative applications re-
quiring session management and dynamic component de-
ployment. This model is represented in the OWL ontology
language. As far as we know, a common ontology for
modeling collaborative sessions has not been proposed yet.

Ontologies have received great attention in the recent
years, due to their use for knowledge representation in the
Semantic Web domain. The Semantic Web was proposed
by Tim Berners-Lee [1] in order to enrich data contained
in the World Wide Web. The main idea is to add meta-
data describing regular Web data (which is only human-
readable) in order to make it understandable by machines,
thus enabling the automation of distributed processing over
the Web. Metadata describing the semantics of contents is
expressed in several languages such as RDFS (Resource
Description Framework Schema, based on RDF) and OWL.
OWL (Web Ontology Language) is the Semantic Web stan-
dard for describing ontologies [2], which are common vo-
cabularies allowing to model and represent knowledge. The
main elements of ontologies are concepts, relations (between
two concepts), individuals and axioms. All these elements
are based on well-known formalisms such as Description
Logics [3] in the case of OWL. Thus, knowledge can be
automatically deduced by inference engines or reasoners (for
example, Pellet [4]). These software elements can process an
ontology in order to make explicit the implicit knowledge
contained in them. Also, rules (expressed in SWRL, the
Semantic Web Rule Language [5]) may be included in
ontologies and processed by reasoners. Rules add some
expressivity to OWL constructs.

212

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

For these reasons, OWL seems a good choice for the
representation of a shareable collaboration model. Standard
tools and frameworks are available and can be used for
building and querying model instances. It also enables the
sharing of collaboration concepts between several applica-
tions. Moreover, the use of reasoning and rules is very
useful. For example, they allow deducing, at run-time, the
deployment schema that corresponds to a given collaboration
configuration.

The contents of this paper are organized as follows.
Section II provides an overview of existing collaboration
models in CSCW domain in order to analyze the elements
to retain in our collaboration ontology. Section III details the
elements of the GCO and explains the principles that have
guided its design. Section IV presents some guidelines for
using an ontology as the core model of a run-time system
and provides some examples of systems using the GCO.
Finally, Section V concludes and provides some perspectives
for future work.

II. EXISTING COLLABORATION MODELS

This section provides a brief overview of existing models
in the CSCW domain and the elements that have to be
present in a model for collaborative activities enabling
session management and component deployment.

The main models published in the literature are based
on set formalisms [6] or first-order logic [7] in order to
describe unstructured sessions. In the case of structured
sessions, i.e., sessions where relations between members are
clearly detailed (e.g., group coordination), models are based
on graphs. The modeled elements take part in the definition
of group activities. Some of the main elements found in these
models are, users, hardware devices, and software tools.

Baudin et al. [8] propose a model capturing the most
common elements found in previous systems. The goal
of this model is to explicitly represent relationships of
information exchange between users in order to keep a
tight coupling between communication and network layers.
Therefore, this model, which is graph-based, enables the
construction of session management services. In this model,
a collaborative session is composed of a set of three el-
ements to be managed: users, tools and data flows. Such
elements are represented in a unified graph-based model.
Vertices represent users, and edges define the relationships
between them. An edge going from user U1 to user U2

means that U1 transmits data through a selected tool (e.g., a
videoconference tool) to U2. The type of data and the tools
that handle data sent through a flow are defined by edge
labels.

The proposed collaboration model is based on data pro-
ducer/consumer relationships, to represent and process data
exchanges for synchronous and interactive work sessions,
that. Such sessions handle interactive data flows (e.g. video,
real time audio).

This model is simple enough to be easily handled by
session designers for various collaborative configurations.
Moreover, instances of this model can be automatically taken
into account by services or platforms that can be configured
by the model. The sessions explicitly designed are managed
by model-based platforms.

This model also considers the dynamics of the session:
the current session configuration evolves whenever entries or
exits of members occur. In the same way, role and function
changes of the members already present in the collaborative
session introduce modifications of the current graph (for
instance a passive user becomes active by making an action
and therefore new flows have to be set up). At any time, the
current session configuration corresponds to a valid graph.

III. THE GENERIC COLLABORATION ONTOLOGY

This section presents the Generic Collaboration Ontology
(GCO)1. First, the design principles used for the design of
the GCO are presented. Then, the elements present in the
GCO are explained in detail.

A. Design Rationale

1) Ontology language: the GCO is expressed in OWL,
which is the current web standard for ontology description.
Since the expressivity of OWL is not enough for some of
the required relations, rules are used. Rules are expressed
in SWRL. Standard, open-source tools are available for
processing OWL ontologies and SWRL rules.

2) Genericness: the GCO has been designed in order
to be as generic as possible. This means that it may be
used to model collaboration in any application, regardless
of the domain. In this aspect, the GCO can be viewed as an
upper ontology that can be extended by domain ontologies
in order to model domain-specific concepts and relations.
The simplest way of extending this ontology is to use
inhreritance by defining sub-conceps and sub-relations of
the concepts and relations present in the GCO (is-a relation).

3) Multi-Layered Architectures: the genericness of the
GCO means that it can be used inside a multi-layered
architecture. In such case, the GCO may be the core model
of the layer that handles collaborative sessions. Domain-
specific data may be handled in upper layers, while low-
level data, such as network connexions, can be handled in
lower layers.

4) Ontology contents: Since the main goal of the GCO
is to support collaboration in run-time systems, the concepts
and relations present in this ontology have been chosen
among those that have been used in collaboration models
until today (i.e., those presented in the previous section). For
example, it contains concepts representing tools, flows, roles,
etc. In order to enable dynamic deployment services based
on the GCO, some other elements such as components,

1The GCO is a available online at http://homepages.laas.fr/gsancho/
ontologies/sessions.owl

213

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

http://homepages.laas.fr/gsancho/ontologies/sessions.owl
http://homepages.laas.fr/gsancho/ontologies/sessions.owl

nodes hosting devices, etc. have been added to this ontology.
The rules associated to the GCO are also designed in order
to enable a simpler deployment process by making explicit
the deployment schema that must support the collaborative
activity described by the ontology.

5) Simplicity: the contents of the GCO have been chosen
to enable a complete modeling of collaborative sessions.
However, only basic elements have been retained. Therefore,
this ontology is lightweight and reasoning and rule process-
ing may be performed at run-time without heavy overhead.
Moreover, this simplicity eases the task of designers willing
to use or extend this ontology for domain-specific applica-
tions.

B. Description of the GCO

The main elements of the Generic Collaboration Ontology
are represented in Figure 1. Concepts are represented as
round-cornered rectangles, while relations between concepts
are represented as arrows going from one concept (the
domain of the relation) to another concept (the range of the
relation). Individuals are represented as dash-line rectangles.

The basic concept of this ontology is Node. A node
represents a communicating entity which takes part in a
collaborative activity. Nodes may represent human users
(i.e. human-controlled software components) but also au-
tonomous software components, agents, etc. The nature of
entities is not represented in this generic ontology.

Nodes play a role in the collaborative activity which
determines the position of the entity within the collaborative
group. Depending on their role, entities will have different
functions in the group and they will need to communicate
with different group members in order to better achieve the
collaboration’s goal. This is captured by the concept Role.
Therefore a relation called hasRole links the Node and
Role concepts.

Whether a node is an autonomous software compo-
nent or it is a human-controlled component, it has to
be executed on a physical machine. Such machines are
represented by the concept Device (Node is linked to
Device by the property hasHostingDevice). The
execution context of the node will depend on the re-
sources of the device that hosts it. At the present time,
a minimal set of device properties is considered, con-
taining IP addresses (hasIpAddress), operating system
(hasOS), available memory (hasAvailableMemory),
CPU load (hasAvailableMem) and battery level
(hasBatteryLevel). Additional properties could com-
plete this initial list in order to better capture and reason
about the execution context.

Entities take part in the collaborative activity by send-
ing and receiving data to/from other entities. The concept
Flow represents a communication link between two entities.
Therefore, Flow is linked to Node by two properties:
hasSource and hasDestination. In this ontology,

flows are considered as being unidirectional, and thus if a bi-
directional communication between two nodes is required,
it will be represented by two instances of Flow with two
opposite directions. The hasSource property is functional,
while hasDestination is not functional, i.e., a flow has
a single source node, but it may have several destination
nodes (thus representing multicast links).

In order to represent the nature of data exchanged through
a flow, the Flow concept has a functional property called
hasDataType that relates it to the DataType concept.
Possible values of data types are captured through the
DataType individuals audio, text and video (addi-
tional data types could be considered). The subconcepts of
Flow differ in the value of their data type: AudioFlow,
TextFlow and VideoFlow (not represented in the figure).

In order to handle data flows, nodes use external software
components that are deployed on the same device as
them. This enables the separation between business code
(implemented in entities’ components) and collaboration
code (implemented in such external components). These
external components are represented by the Tool concept.
Tools are composed of several components, e.g., a sender
component and a receiver component. Therefore the
Tool concept is related to a concept called Component
through the property hasComponent. Since components
handle flows, a property called managesFlow links
Component and Flow. Components have a data type
(the same as the data type of the flow that they manage)
and are deployed on a single device (isDeployedOn
property which links Component and Device). The
Component concept has several subconcepts that
represent components depending on the handled data
type (AudioComponent, TextComponent and
VideoComponent, not represented in the figure) and on
the direction of the handled flows (SenderComponent
and ReceiverComponent). SenderComponent
and ReceiverComponent are linked to Flow by
two sub-relations of managesFlow: sendsFlow and
receivesFlow, respectively.

Finally, the Session concept represents a set of flows
belonging to the same collaborative activity. The hasFlow
property relates a session to a flow. The inverse property,
belongsToSession, is functional, i.e., a flow belongs
to a single session. Since flows are related to nodes, nodes
are indirectly related to one or more sessions depending on
the flows that connect them to other entities.

C. Generic collaboration rules

A set of 6 SWRL rules is associated to the GCO in
order to express some additional knowledge and to enable
deployment-related inference. This section provides a de-
scription of the main rules associated to the GCO.

Let us consider the first rule:

214

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

Session

Component

Flow

DataTypeDeviceRole

Node

hasRole hasHostingDevice

hasSource

hasDestination

hasDataType

hasDataType

hasComponent

hasDataType

isDeployedOn is-a
is-a

hasFlow

belongsToSession

managesFlow

hasInstanceSenderComponent

Tool

video

text

audio

receivesFlow sendsFlow

ReceiverComponent

Figure 1. Main elements of the Generic Collaboration Ontology.

AudioFlow(?af) => hasDataType(?f,audio)

This rule allows expressing that the data type of
AudioFlows is audio. Similar rules exist for video
an text flows. The second rule is:

Flow(?f) & belongsToSession(?f,?s)
& hasDataType(?f,?dt)
& hasSource(?f,?src)
& hasDestination(?f,?dst)
& swrlx:createOWLThing(?sc,?src,?s)
& swrlx:createOWLThing(?rc,?dst,?f)
=> SenderComponent(?sc)
& hasDataType(?sc,?dt)
& isDeployedOn(?sc,?src)
& sendsFlow(?sc,?f)
& ReceiverComponent(?rc)
& hasDataType(?rc,?dt)
& isDeployedOn(?rc,?dst)
& receivesFlow(?rc,?f)

This rule states that, whenever a flow belonging to a session
is found between two nodes, a SenderComponent has to
be present in the source node and a ReceiverComponent
has to be present on the destination node. These components
send and receive, respectively, the flow, and they have the
same data type as the flow. This rule uses the SWRL built-in
createOWLThing that allows creating new individuals.
Please note that the first createOWLThing matches the
source node and the session, while the second matches the
destination node and the flow. This choice enables multicast
flows where a single sender component sends several flows
to several receiver components.

These rules are generic w.r.t. collaboration, because they
do not depend on the particular domain of the collaborative
application.

IV. USE OF THE GCO IN RUNTIME SYSTEMS

As explained before, the GCO has been designed to be
used at run-time as the core model of systems providing
support for collaborative activities. This section details this
use and gives some examples of collaborative systems that
use the GCO.

A. Using ontologies in run-time systems

An ontology may be considered as a meta-model which
describes the possible concepts and relations of a given
domain. Actual instances of this meta-model are represented
by individuals of the concepts available in the ontology. Such
individuals (and the relations between them) may be used
in order to represent the state of the application at a given
time. Relations and concepts are fixed at design-time, while
individuals representing the state are created at run-time. In
order to use an ontology as the core model in a run-time
system, the system must be able to perform the following
tasks:

• read the concepts and relations existing in the ontology;
• read/modify the individuals existing in the ontology and

the values of their properties;
• create new individuals and set the values of properties;
• perform reasoning and rule processing over the ontol-

ogy and its individuals.

The tools made available in the context of the Semantic
Web enable the execution of these tasks. Implementations
of APIs like OWL API [9] or Protégé-OWL API [10] allow
performing the four first tasks programmatically. Reasoning
can be performed by OWL reasoners such as Pellet [4]. Most
reasoners are also capable of processing SWRL rules; how-
ever, SWRL built-ins are not fully supported yet. Therefore,
it may be necessary to use rule engines such as Jess2 in order
to process rules containing such built-ins. Both reasoners and
rule engines can be executed programmatically in order to
process in-memory OWL models.

2http://www.jessrules.com/

215

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

The presented tools enable the creation of programs that
modify the individuals of an ontology in order to represent
the current state of of the system at every time. However,
if reasoning and rules are used to deduce knowledge from
individuals, the monotonic nature of OWL inference may
represent a problem. Indeed, OWL does not support non-
monotonic inference [2], [11]. This means that reasoning and
rules can not modify (addition or removal) the information
contained in an ontology. They only allow finding implicit
knowledge contained in the ontology and making it explicit.
For example, if the processing of a rule in the GCO results in
the creation of an individual of the class Flow whose source
is nodeA and whose destination is nodeB , this information
will always remain in the ontology. No other rule can
remove it afterwards. If the application needs to remove
this individual in order to reflect a new state, it can do it
programmatically, but it can be very tricky and unpractical
(or even impossible) to keep a track of which information
has been inferred and to decide what has to be deleted at
every moment.

The solution to this problem is to use the inference
capabilities of OWL in a capture-inference-results loop such
as the one depicted in Figure 2. The first step if to capture
the state of the world that is modeled by the ontology. This
is done by the code of the application using the ontology.
Then, this state is introduced in the ontology by creating
individuals of the available concepts and by establishing re-
lations between these individuals through object properties.
The result is a set of ontology individuals related between
them reflecting the state of the modeled world. For example,
if a system using the GCO has, at a given time, three users
connected, there will be three individuals of the class Node
representing these users, each one related to one individual
of the class Role representing the role of the user in the
group. Once this model has been built, the resulting ontology
can be processed by the inference and rule engines. The
result of this step is a new version of the ontology where
new individuals and relations may have been introduced. In
the example of the GCO, this step results, e.g., in the creation
of several individuals of the class Flow having the existing
Node individuals as values for the properties hasSource
and hasDestination. This new model contains the new
state of the world that has to be achieved. Therefore, the
application code can read this model and perform the actions
necessary in order to achieve this state. In the GCO example,
the new Flow instances will be found and therefore the
application will effectively set up this new flows between the
users’ devices. Whenever the state of the world is changed
(e.g., when one of the users leaves), the whole loop has to
be repeated in order adapt the response of the application to
the new state.

The presented loop is discrete; the results of a step
are valid until the next change in the state of the world.
Whenever a change occurs, the whole loop is executed again

ONTOLOGY INDIVIDUALS

MODIFIED
ONTOLOGY INDIVIDUALS

CAPTURE STATE OF
THE WORLD

READ INDIVIDUALS
+

PERFORM ACTIONS

REASONING
+

RULES PROCESSING

Figure 2. Capture-inference-results loop for run-time systems using
ontology reasoning.

in order to get the new results. Because of the monotonicity
of OWL inference, the new state can not be represented
by directly modifying the resulting ontology individuals; it
would be necessary to delete all the inferred knowledge.
Otherwise, the next inference process will result in an
incoherent (inconsistent) ontology.

B. Systems using the GCO

In a recent work [12], [13] we have proposed a mod-
eling approach and a framework enabling the design and
implementation of collaborative applications for ubiquitous
computing environments. Ubiquitous Computing provides a
new range of challenges and opportunities for collaborative
applications. Indeed, the fact that mobile users carrying
smart devices are immersed in intelligent environments and
the availability of contextual data may greatly enhance
the possibilities of collaborative applications. The presented
framework uses a multi-layered approach for enabling appli-
cations that can be adapted to both high-level requirements
and low-level constraints. The proposed layers are called
application layer, collaboration layer and middleware layer.
The core model of the application layer is the GCO. The
models of the application layer are domain-specific ontolo-
gies and rules that extend the GCO in order to capture the
specific collaboration knowledge of the considered domains.
This ontology is processed in a capture-inference-results
loop as explained in the previous section. The results of
this process are translated into a graph model, which is
the core model of the middleware layer, and then it is
processed with graph-transformation techniques. This allows

216

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

taking into account high-level requirements at the applica-
tion and collaboration layers, while low-level requirements
are handled at the middleware layer. The resulting graph is a
low-level, detailed deployment descriptor that is used by the
deployment service in order to carry out the deployment of
components needed for supporting collaborative activities.

Bouassida Rodriguez et al. [14] propose an Emergency
Response and Crisis Management System (ERCMS) that
uses the GCO as the core collaboration model. ERCMSs
support collaboration of policemen, firemen and physicians
in order to better handle critical situations such as fires,
earthquakes, terrorist attacks, etc. The proposed system is
adaptive and takes into account the evolution of commu-
nication and processing resources in order to guarantee
the required QoS properties. Non-functional properties are
modeled in an OWL ontology that extends the GCO by
relating QualityAttributes to the Component and
Device concepts of the GCO. A domain-specific OWL
ontology is used in order to describe ERCMS-specific col-
laborative knowledge. This ontology extends the GCO by
providing sub-concepts of the Flow and Node concepts of
the GCO. Several SWRL rules are provided for implement-
ing adaptation transformations that handle context changes.
However, the authors do not explain how their system uses
the proposed ontologies and rules at run-time, neither they
explain how the problem of the monotonic nature of OWL
inference is handled.

V. CONCLUSION AND FUTURE WORK

This paper has presented the GCO, a generic collaboration
ontology that represents knowledge about session-oriented
collaboration. This ontology is generic because it can be
extended in order to model domain-specific collaboration
knowledge. Rules associated to the GCO allow implement-
ing ontology-driven systems using the GCO as their core
collaboration model for implementing session management
and deployment services. Explanations of how this usage of
the GCO in run-time systems have also been provided.

Perspectives for future work include designing domain-
specific ontologies that extend the GCO for several domains
and building systems that use the GCO as their model
for collaboration activities. The framework described in
Section IV-B is currently being implemented, as well as
proof-of-concept applications that use it for modeling and
implementing collaborative activities.

ACKNOWLEDGMENT

The authors would like to thank ITEA2 USENET project
for supporting this work.

REFERENCES

[1] T. Berners-Lee, “A Roadmap to the Semantic Web,” W3C,
Sep. 1998, http://www.w3.org/DesignIssues/Semantic, last ac-
cess date: July 2010.

[2] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL Web
Ontology Language Guide,” W3C Recommendation, Feb.
2004, http://www.w3.org/TR/owl-guide/, last access date:
July 2010.

[3] D. F. Baader, D. Calvanese, D. L. McGuinness, P. Patel-
Schneider, and D. Nardi, The Description Logic Handbook.
Theory, Implementation, and Applications.

[4] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,
“Pellet: A practical OWL-DL reasoner,” Web Semant., vol. 5,
no. 2, pp. 51–53, 2007.

[5] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean, “SWRL: A Semantic Web Rule
Language Combining OWL and RuleML,” W3C Member
Submission 21 May 2004, 2004.

[6] W. K. Edwards, “Session management for collaborative ap-
plications,” in CSCW ’94: Proceedings of the 1994 ACM
conference on Computer supported cooperative work. New
York, NY, USA: ACM, 1994, pp. 323–330.

[7] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wäsch, and P. Muth,
“Towards a Cooperative Transaction Model - The Cooperative
Activity Model,” in Proceedings of the 21th International
Conference on Very Large Data Bases. San Francisco, USA:
Morgan Kaufmann Publishers Inc., 1995, pp. 194–205.

[8] V. Baudin, K. Drira, T. Villemur, and S. Tazi, “A model-driven
approach for synchronous dynamic collaborative e-learning,”
in E-Education applications: human factors and innovative
approaches. Ed. C. Ghaoui, Information Science Publishing,
ISBN 1-59140-292-1, 2004, pp. 44–65.

[9] M. Horridge and S. Bechhofer, “The OWL API: A Java API
for Working with OWL 2 Ontologies,” in OWLED, ser. CEUR
Workshop Proceedings, R. Hoekstra and P. F. Patel-Schneider,
Eds., vol. 529. CEUR-WS.org, 2008.

[10] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A.
Musen, “The Protégé OWL Plugin: An Open Development
Environment for Semantic Web Applications,” The Semantic
Web - ISWC 2004, pp. 229–243, 2004.

[11] J. McCarthy, “Generality in artificial intelligence,” Commun.
ACM, vol. 30, no. 12, pp. 1030–1035, 1987.

[12] I. Bouassida Rodriguez, G. Sancho, T. Villemur, S. Tazi, and
K. Drira, “A model-driven adaptive approach for collaborative
ubiquitous systems,” in AUPC 09: Proceedings of the 3rd
workshop on Agent-oriented software engineering challenges
for ubiquitous and pervasive computing. London, United
Kingdom: ACM, 2009, pp. 15–20.

[13] G. Sancho, I. Bouassida, T.Villemur, S. Tazi, and K. Drira, “A
model-driven adaptive framework for collaborative ubiquitous
systems,” in Proceedings of the 9th Annual International
Conference on New Technologies of Distributed Systems,
NOTERE 2009, Montreal (Canada), July 2009, pp. 233–244.

[14] I. Bouassida, J. Lacouture, and K. Drira, “Semantic Driven
Self-Adaptation of Communications Applied to ERCMS,”
in The 24th IEEE International Conference on Advanced
Information Networking and Applications, Perth (Australia),
Apr. 2010.

217

SEMAPRO 2010 : The Fourth International Conference on Advances in Semantic Processing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-104-5

http://www.w3.org/DesignIssues/Semantic
http://www.w3.org/TR/owl-guide/

	Introduction
	Existing collaboration models
	The Generic Collaboration Ontology
	Design Rationale
	Ontology language
	Genericness
	Multi-Layered Architectures
	Ontology contents
	Simplicity

	Description of the GCO
	Generic collaboration rules

	Use of the GCO in Runtime Systems
	Using ontologies in run-time systems
	Systems using the GCO

	Conclusion and Future Work
	References

