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Abstract—The problem of finding semantic mappings between
heterogeneous geospatial databases is a key issue the

development of a semantic interoperability approach An

essential step towards the success of a semantipagach is the

ability to take into account the fuzzy nature of gespatial

concepts being compared and of the semantic mappimpgocess
itself. While fuzzy ontologies and quantitative fuzy matching

methods have been proposed, they are not targeted the

geospatial domain. In this paper, we present a fugzsemantic
mapping approach for fuzzy geospatial ontologies, ch

employs fuzzy logics. The fuzzy semantic mapping pmach

has the capability to produce fuzzy qualitative sewmtic

relations between concepts of fuzzy ontologies, vehi are

richer than quantitative-only matches that are prouded by

existing approaches. In an application example, wshow how

fuzzy mappings can be used to propagate fuzzy ques to

relevant sources of a network. In this way, the fuzy semantic
mapping supports geospatial data sharing among rente

databases of the network while taking into account
uncertainties that are inherent to the geospatial ancepts and
the semantic interoperability process.

Keywords-semantic  interoperability;
geospatial ontology; semantic mapping

fuzzy logics, fuzzy

l. INTRODUCTION

The spreading of decentralized systems has crehted
need for approaches supporting users to find thevast
sources that can provide the data they requiredhé&umore,
an important number of users search for geospdsial, e.g.
“flooding risk zones near built-up areas of Monlrea
Geospatial ontologies are considered as usefuls tool
support the identification of relevant geospatialadsources
[1][2][3][4]. For example, Cruz et al. [5] indicatinat the
problem of querying geospatial databases in ailig&d
environment can be addressed by finding semantapings
between the ontologies that describe each database.
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semantic heterogeneity among fuzzy geospatial ogies,
there is a need for a semantic mapping approatwitide
able to deal with fuzzy geospatial ontologies.

We propose that fuzzy logic is well adapted for
representing fuzzy knowledge about geospatial qusce
provided that the representation of concepts isli@xp
enough and takes into account all spatiotemporzas of
concepts. In this paper, we propose a solutiohggtoblem
of fuzzy geospatial ontology and fuzzy semantic pirag.
We first provide a definition of what is a fuzzyappatial
ontology. Then, we propose a new fuzzy semanticpiap
approach, which takes as input the concepts offubey
geospatial ontologies and finds semantic relatiogisveen
concepts and their degree of fuzziness. The fuenyastic
mapping approach integrates fuzzy logic operatard a
predicates to reason with fuzzy concepts. Finaile
demonstrate a possible application of the fuzzy ssim
mapping, which is the propagation of fuzzy quetieghe
relevant sources of a network.

This paper is organized as follows. In Section 2 w
discuss the role of fuzzy theory in semantic inperability
for GIS. In Section 3, we present the definitionttod fuzzy
geospatial ontology. In Section 4, we propose thzzyf
semantic mapping approach. In Section 5, we prethent
application for query propagation. In Section 6,aeaclude
this paper.

II.  ROLE OF FUZZY THEORY IN SEMANTIC
INTEROPERABILITY OF GEOSPATIAL DATA

Semantic interoperability is a major research tajgic
ensure data sharing among different geospatiabdaés in a
network [14][15]. Semantic interoperability is the
knowledge-level interoperability that provides cergiing
databases with the ability to resolve semanticrbgtneities
arising from differences in meanings of concept§].[1
Semantics, which is the meaning of expressions in a

However, several recent researches in GlScience haYanguage [17] [18], is crucial for semantic intezcability

acknowledged the need for representing and dewlithigthe

because two systems can “understand” each othesteare

uncertainty and fuzziness of geospatial phenomenﬁnowledge only if they make the meaning of theincepts

[61[71[8][9][10]. For example, a flooding risk zoris a fuzzy
concept because different sources can define it different
characteristics.

Consequently, geospatial ontologies have to sugpert
representation, but until now, the representatiofuzziness
in ontologies has been mostly limited to the noospatial
domain [11][12][13]. In addition, in order to resel
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apparent to each other. Ontologies, which are @xkpli
specifications of a conceptualisation [19], aimcapturing
semantics of data [20] [21][22] [14][23] [24]. Otbgies
with  poor (implicity semantics provide weaker
interoperability while ontologies with strong sertiesibased
on logical theory support richer semantic interapdity
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[25]. On the other hand, uncertainty in the sencantif  spatiotemporal types. It also includes spatiatiaia such as
concepts should be considered as a kind of knowledgt “Is_located_at,” which indicates the location of iastance
must also be explicit in conceptual representatiaasrgued of the concept, and other topological, directioraid
by Couclecis [7]. Fuzzy logic proposed by Zadeh isorientation spatial relations. An example of fuzmpperty
considered in GlScience as a suitable way to reptes “inclination” of the fuzzy concept “lowland” is gén on Fig.
uncertain knowledge and reason with it. Therefemyeral 1. Lowlands are regions which inclination is relaly flat,
approaches have proposed to augment ontologies withut there is a certain level of fuzziness when we tt

fuzziness, for example for news summarization [},
information retrieval in the medical domain [12]¢ @or
image interpretation [13]. However, these approgeire not
targeted at the geospatial domain. For examplespzial

determine if a given region is a “lowland.” Whileet value
“flat” of the “inclination” property has the fuzapembership
of 0.8 to the range of values of “inclination,” thalue “low”

has a lower membership value of 0.10. This refldutsfact

concepts are often described with properties (e.gthat a greater percentage of lands with flat irtlom are

“inclination” of “lowland”), which range of valuesan be
fuzzy. However, existing fuzzy ontology represeiota and
ontology mapping approaches do not consider priegert

considered as members of the geographical
“lowland,” in comparison to lands with “low” inclation.

category

with fuzzy range of values. Other approaches in the

geospatial domain use fuzzy sets to assess siyilafi
categorical maps [26]. But this approach is notegainand
aims at categorical maps, while we argue that a&rmgeneral
framework for any geospatial fuzzy ontology is reshdin
addition, we argue that quantitative fuzzy similarhave
limited expressivity in comparison to qualitativensantic
relations, which are easier to interpret by usérs. our
knowledge, there is no existing fuzzy semantic nrapp
approach that produces fuzzy semantic relationsoun
paper, we propose a definition of the fuzzy geadapat
ontology, and an approach that addresses this need.

I1l.  Fuzzy GEOSPATIAL ONTOLOGY

An ontology is usually defined as a set of concépts
classes) that represent entities of the domainiszfodrse,
relations and/or properties, and axioms that iridica
statements that are true within that domain ofalisse [14].
An example of axiom is “all intersections involve laast
two roads.” We follow a similar approach to defthe fuzzy
geospatial ontology. However, in the fuzzy ontologye
consider that membership of a property or relaiiorthe
definition of a concept can be quantified. In sgrontology,
the membership degree of a property of relatioo ithte
definition of a concept is always one or zero. Theans that
either a concept has that property; or it doeshaot it. In
the fuzzy ontology, this membership degree varigsveen
zero and one, to indicate partial membership. Thezein a
fuzzy ontology, concepts do not have a fully deieed
definition.

We define the fuzzy geospatial ontology as a 5etpl=
{C, R P, D, rel, prop}, where C is a set of concepts, which
are abstractions of entities of the domain of disse;R is a
set of relationsP is a set of properties for concepis;is a
set of possible values for properties Fn called range of
propertiesyrel: [R—C x C] — [0, 1] is a fuzzy function that
specifies the fuzzy relation that holds between tancepts;
prop: [P—C x D] — [0, 1] is a fuzzy function that specifies
the fuzzy relation between a concept and a sulidet D is
therefore a fuzzy range of values. The set of iatR
includes relations such as “has geometry,” whiaticates
the geometry of instances of the concept, suchodgan,
moving polygon, line, and other GML spatial
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Flat (0.80)
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© .
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(0.10)

Figure 1. Example of fuzzy property “inclinatiordrfconcept
“lowland”

For the purpose of our approach, we define a
concept with a conjunction of a set of axiofgs where each
axiom is a fuzzy relation or property that defities concept:

C :All'l A2|_| L An.

We use the term axiom, which is usually employedefer
to the whole expression that defines a conceptauser a
concept could also be defined by one feature (ptppe
relation).

V.

In this section, we propose the new fuzzy semantic
mapping approach. The idea of this approach is¢ofuzzy
logics to first determine the fuzzy inclusion ofcancept
into another concept from a different ontology,dzhen the
fuzzy inclusion of each axiom of the first conceapto
axioms of the second concept. Then, fuzzy predicate
which value depends on the fuzzy inclusion, areduse
infer the semantic relation between the two corgept

FUzzY SEMANTIC MAPPING PROCESS

Let two concepts C and C’, defined as follows:
C :A1|_| A2 m ..M An

C=AnA M ....1 Ay
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We define the fuzzy semantic mapping between CGirab
follows:

Definition (fuzzy semantic mapping) A fuzzy semantic
mappingm® betweenC andC' is a tuplem® = <C, C’, rel(C,
C), wW(C, C)>, whererel is a semantic relation betweéh
andC’, andu(C, C) is the fuzzy inclusion o€ into C'.

First, we explain how the fuzzy inclusion Gfinto C’ is
computed. Secondly, we explain how the semantatiosi
rel betweerC andC' is determined.

A. Fuzzy inclusion

We define the fuzzy inclusion as the membershipeakeg
of a concept in another. This means that when #heevof
the fuzzy inclusion is 1, the first concept is ssi{i included
in the second concept; when it is zero, no axiortheffirst
concept intersects with axioms of the second. Tuezyf
inclusion of C into C’ is denoted with pu(C, C’) :

Z:min(,uC (A, tic (A)
U(C,C) = LD Ay )

D He(A)

AC(A e Ay Ay )

1)

where [k(A) is the membership degree of axiom A in
concept C. We know that this membership degree some

from the definition of the concept in the fuzzy gpatial
ontology. Let A: <r.D> and A’ <r'.D’> be two axios
where D and D’ are fuzzy domains.
<shape.((0.2, circle);(0.8, ellipse))> represeriie fuzzy
relation on Fig. 1.

To compute (1), which relies on the membership o

axiom A in concept C’, and where axiom A of concépt
might not be already in the definition of the copic€’, we
need the membership of axiom A in axiom A’ of Cher
membership degree of A into A’ is determined by Zlagleh
conjunction for fuzzy sets:

H(AA)=min(D,D"),u(r,r) . )
The function (X1, X2) over any fuzzy sets X1, X2 is
defined as follows, using the fuzzy implicationrmiple of
fuzzy logics [27]:

H(XL,X2) =inf gyanx 2 (Uxa(X) =5 Ux2(X), (3

where =; is a fuzzy implication operator from [0,1] into
[0,1]. There are several definitions for the fubnplication
operator (including Gddel, Gogen and Lukasiewiczziu
implications, see Bosc and Pivert [27]).
Lukasiewicz fuzzy implication because of its superi
flexibility, which is defined as follow:
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HUx1(X) = Ux2(X)

if L1y (X) < ty o (X) - 4

1
N {1—ux1(x) + Uy 2(X) otherwise

To computeu(D, D) with (3), we use the Lukasiewicz

fuzzy composition operator, denoted with the synthpblnd
which determines the membership of a first elenggrnih a
set D, knowing the membership degreegbin g and the
membership degree efin D (Fig. 2). The symbdl is used
to indicate an element of the range of values foperty or
a relation of the fuzzy geospatial ontology.

ol i) elci)

Ty
-

un(e) = wo(c)) ® peiles’)

D

Figure 2. Fuzzy composition principle

The membership degree ©f in D writes as:

Ho (&)=Y po(e) D (&), Dil~e; Og),  (5)
j

where

For example,

Hp(cy) O He, (") = max(up (c;) U, € ')-10, (6

according to Lukasiewicz's definition of the fuzzy

composition operator.

To determinep,(e’), which is the membership
degree of an elemest of a range of values in an element
of another range of values, we have developed ayfuz
membership degree measure. This measure is bastég: on
relative position of; andeg’ in an upper-level ontology O.
An appropriated ontology for this task would becmain-
independent, largely recognized lexical base, swash
WordNet. However, other more specialized upperileve
ontologies might be more useful, depending on thmain

of application. Let<o be a hierarchical, is-a relationship

between terms in O, such thatd t" means that t is more
specific (less general) than t'. LeteR(e") be the path
relatinge; to g’ in O, according to this hierarchy: £(g/) =

{g, 11,12, ...&'} so that t1, t2, ... is the ordered set of nodes
from g to g’ in O. Let d(k) the set of descendants of a node
in O. We defingu;(") as follows:

We use
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if & <¢;
1 )
g)={————if&'>¢€ . 7
:ugj( |) [l|d(tk)| i i ()
Ot 0 (Ej &)
0 else

This equation means that, whe’' is more specific
than g, it is entirely included ing, and wheng’ is more
general thang;, p(e') decreases with the number
descendantsf its subsumers. Replacing results(7) in (6),
we obtain the membership of eaetemen of the fuzzy
range D’ in D, which, in turn, allows determineu(D, D’)
with (3). Eq. (7 is also used to determindr, r'), so these
results can be replaced in (3).

From the fuzzy inclusiomiven in (2, we obtain
the semantic relation between the axi, rel(A, A’), using
the following rules, which are derived from the fyzset
relationship definitions:

RDA=A < A A)=1 A, A =1
(R2DAC A p(A A)=1 O wA, A) <1
(RIIAI A pA A)<L DA, A)=1
(RHOAN A 0<uA A)<1 OOo<pA’, A) <1
(R5)A L A’ (A A) =0 [ uA, A) =0.

B. Semantic relation

In order to determine the semantic relation betv
concepts, we have defined a set of prediciThe semantic
relation between two concepts is determined by
following expression:

rel(C,C') =
(Ac, Ac) Opr C(Ac, Ac) Uy ClH (A, Ac)s

where 1(Ac, Ac’), C(Ac, Ac') and CI(Ac, Ac') are three
predicates that respectively evaluate the inteisecof
axioms of the concefi with axiomsof C’, the inclusion of
axioms ofC’ in axioms ofC, and the inclusion caxioms of
C in axioms ofC’. We have defined a composition opera
denoted®p,, the function of whichs to give the semant
relation betweerC andC’, based on the value of those th
predicates.The composition operator takes as input
value for the three predicates f6randC’, and returns the

semantic relation betweé&handC’.
For any predicater, the possible values Pr are:
* B value, if for all axioms ofC there is an axiom ¢

C’ that verifies predicatd’r, and vic~versa. For
examplel(Ac, Ac') = Biif for all axioms inA¢, there
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is an axiom inAc' that intersects this axiom (as
determined by rules R1 to R5 definecthe previous
section), and viceersa

* Svalue, ifthere exist somaxioms ofC and axioms
of C’ that verifypredicatePr, but not all;

¢ N value, ifthere exists naxiom of C andC’ that
verifies predicatér.

These principles for determining the value of adprate
are formalized as follow$where logic symbols arV (for
all), 3 (there exists)L (disjoint) and— (negation):

B Oilj,rel(A,A})#00u(A,A;)20)0
O0j,rel(A,A;) 200u(A,A;)#£0)

S ag.rel(A,A;)z00u(A,A;)£0 0

-[Oi, rel(A,A) 20 Ou(A,A}) 20) O
O0j,rel(A,A}) 200u(A, A} ) #0)]

N -0O0rel(A,A})200u(A,A;) %0)

B Oifj.rel(A A)) O{s 0} Du(A,A") 20
S ag,rel(A,A) (s O} Ou(A A 200

-0ig,rel(A,A) X s 0 Ou(A,A') 20
N ~O0.rel(A,AND{s O 0u(AA)20

B 0if,rel(A, AN S O} Ou(A A" %0
S ag,rel(A,A) (s O} Ou(A A 200

-0idg,rel(A,AND{= 0} Ou(A,A )20
N ~O0.rel(A A) O{s 0} Ou(A AY) 20

1(C,C) =

c(c,c)=

Cl(C,C) =

For C andC’, the domain of quantifiers is respectivi
€ {1,...,nfandj € {1,..., m}. When the three predicates
are evaluated within {B, S, N}, the resuli 14 classes of
cases, which are provided in Table 1. This tabfinds the

®p; Operator: each combination of values for the th
predicates is associatedth a resulting semantic relation.
For exampleC (semantically) containC’ if I(Ac, Ac’) =B,
C(Ac, AZ') =B andClI(Ac, Ac') = S(second line of Table 1).
In the associated illustrations, blue sets reptt axioms of
C, and red sets axioms 6f.

TABLE I. SEMANTIC RELATIONS IN FUNCTION OF THE COMBINATION
OF PREDICATE VALUES(®pr: OPERATOR
Semantic | Value | Value | Value Representation
relationship of of of
l(AC1 C(AC! CI(ACa
Ac) | Ac) | Ac)
1. B B B @
Equivalence @
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c 2. _ B B S @
ontains

9. Disjoint N N N

@00
0O

3. Contained| B S B
In @

4. Partial S- B S S
Containment

(S=Symetric)

S S S Q O
5. PartialL- | B S N %
Containment
(L-LEFT) @
S S N

6. Partial R-| B N S @
containment

(orIGHT) @9®

7. Strong B N N C@
Overlap

8. Weak S N N
Overlap
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Once the semantic relations and fuzinclusion are
determined between concepts, we aim to show thal
information can be used to find relevant sourcesai
network through propagation of que

V. APPLICATION EXAMPLE

The presented application aimto demonstrate the
usefulness of the proposafdproach. As an example of fuz
ontologies we consider the ontology fragmein Fig. 3 and

Fig. 4.

Adjacent_to (0.60)

Flat (0.80)

Medium
(0.10)

Status

Partly water
logged (0.30)
Water
logged (0.60)

Figure3. Portions of ontolcy A for the application example

Watercourse

Next _to (0.80)

Flooded area

State

| Steep
Partly flooded
(0.80)

Slope

L

Moderate
(1.0

(0.70)
Completely
flooded (0.80)

Figure4. Portions of ontology B for the application exde

The fuzzy ontology A describes the concept “wetfa
as “lowland” which can have flat, low or medium o
The valus “flat,” “low” and “medium” constitute the ranc
of the property “has slopePor each of these values, there
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is a fuzzy membership value that indicates the ekegf

membership of the value into the range of the pitype
Similarly, the wetland has the property “status,hieh

range is composed of values “dry,” “partly wateded”

and “waterlogged.”

I(Aﬂooded_area Ayetiand = B
C(Aflooded_area Awetlam) =S
Cl(Arooded_area Awetlancb =N

The resulting semantic relation, according to Tdhlés
“partial left containment,” which means that somems in

The fuzzy ontology B describes the concept “floodedthe definition of “wetland” are included in somei@xs of

area,” which has the property “state” with valugzartly
flooded” and “completely flooded.”

Consider that the user of ontology A needs to fiath
on wetlands in a given region. To do so, the owjickl

“flooded area.” The fuzziness of this relation 6@

When the requestor receives a set of conceptpénty
matches its query, he or she can select the mdegard
concept using two complementary information elemsgethie

description of concept “wetland” is compared to thesemantic relation and the degree of fuzziness o th

ontological description of concepts from other ke
sources, for instance fuzzy ontology B. The fuzatehing
approach is used for this purpose. The followihgves the
values that are obtained for the membership of raziof
both ontologies into the concepts of “flooded aresid
concept of “wetland:”

Hfiooded_arek<iS_a.lowland>) = 0.50

Hwetiand<iS_a.lowland>)  =1.00
Uflooded_areﬁ<adjacent_to.river>) =0.30
Hwetand<adjacent_to.river>) = 0.60

Hiooded_arek<Status.dry>) = 0.00
Huetand <Status.dry>) = 0.10

Hfiooded_areh<Status.partly waterlogged>) = 0.10
Mwetiand <Status.partly waterlogged >) = 0.30

Hfiooded_areh<Status.waterlogged>) = 0.20
Mwetand <Status.waterlogged >) = 0.60

Uflooded_are£<is_a.|and>) =1.00
Hwetand<iS_a.land>) = 0.50

Hficoded_arek<NeXt_to.watercourse>) = 0.80
Mwetand<next_to.watercourse>) = 0.30

Hiiooded_arck<State.partly flooded>) = 0.80
Mwetand <State.partly _flooded>) = 0.10

Hiiooded_aref<State.completely_flooded>) = 0.80
Hwetiand <State.completely_flooded >) = 0.20

When those values are inserted in (1), we obtaat th
M (flooded_area, wetland) = 0.69.

The semantic relation between “wetland” and “flodde
area” is obtained by computing the three predicatdsch
values are the following:
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relation. The fuzziness is more than a semantidlagity,

since it takes into account the fuzziness of cotscéping
compared. For example, a property value which hksva
membership degree into the concept’s definitiorgchsas
“dry” in the above example, will have less “weighiti’ the
computation of the semantic mapping than a propdvay
has higher membership degree, such as “waterlogged.

While the objective of the paper was not to demmaist
the cost of implementing the approach, we note that
concept of fuzzy mapping can be useful to supparious
semantic interoperability tasks. More particulaiityjs an
approach that can support query propagation
decentralized environment. In such environmentetlie no
central authority that can identify the sourcest than
process a query. Therefore, the goal of query wafien is
to forward the query from source to source throwagh
optimal path, i.e. a path that will contain the madevant
sources with respect to the query. The qualitativel
guantitative mappings issued by the fuzzy semantic
mapping algorithm can be used as criteria to selleet
sources that are relevant along the path, whilengakto
account the fuzziness of semantic mappings.

VI.

In the geospatial domain, it is essential to caasithe
uncertainty and fuzziness of geospatial phenomena.
Establishing semantic mappings between fuzzy geiadpa
ontologies is still an issue that was not fully esded. In
this paper, we have dealt with some problems mrleighe
representation of fuzziness in geospatial ontokgend
fuzzy semantic mapping between fuzzy geospatial
ontologies. In order to address these problems hase
proposed a fuzzy geospatial ontology model, andea n
fuzzy semantic mapping approach. The determinatibn
fuzzy semantic mappings is based on fuzzy logickaset
of predicates that were defined to determine fuseaypantic
relations between concepts, which are complemembattye
fuzzy inclusion degree between concepts. The skt
and quantitative results give more information floe user
to understand the nature of relation between ggyguery
and available concepts. One of the possible usesuof
approach is query propagation in a network of

CONCLUSION
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heterogeneous, fuzzy geospatial ontologies.
propagation determines to which nodes of a netwaayken
query should be forwarded in order to obtain optimeery
results. Query propagation provides the user wiffath in

the network that contains the most relevant souroes

Query

[11]

answer the query. In future work, we will apply shi [12]

approach to the issue of query propagation. We @so to

extend the fuzzy semantic mapping approach to morr—i3
complex cases of the fuzzy spatial, temporal and'®

spatiotemporal features of concepts. This is emdefur
propagating queries to relevant concepts, for
spatiotemporal properties have different meanintje
query may return inaccurate results. In additioa,phan to
extend the approach to the case of an ad hoc rietwbere
sources could be added or removed from the netimorbal
time.
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