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Abstract—The problem of finding semantic mappings between 
heterogeneous geospatial databases is a key issue in the 
development of a semantic interoperability approach. An 
essential step towards the success of a semantic approach is the 
ability to take into account the fuzzy nature of geospatial 
concepts being compared and of the semantic mapping process 
itself. While fuzzy ontologies and quantitative fuzzy matching 
methods have been proposed, they are not targeted at the 
geospatial domain. In this paper, we present a fuzzy semantic 
mapping approach for fuzzy geospatial ontologies, which 
employs fuzzy logics. The fuzzy semantic mapping approach 
has the capability to produce fuzzy qualitative semantic 
relations between concepts of fuzzy ontologies, which are 
richer than quantitative-only matches that are provided by 
existing approaches. In an application example, we show how 
fuzzy mappings can be used to propagate fuzzy queries to 
relevant sources of a network. In this way, the fuzzy semantic 
mapping supports geospatial data sharing among remote 
databases of the network while taking into account 
uncertainties that are inherent to the geospatial concepts and 
the semantic interoperability process. 

Keywords-semantic interoperability; fuzzy logics; fuzzy 
geospatial ontology; semantic mapping 

I.  INTRODUCTION 

The spreading of decentralized systems has created the 
need for approaches supporting users to find the relevant 
sources that can provide the data they required. Furthermore, 
an important number of users search for geospatial data, e.g. 
“flooding risk zones near built-up areas of Montreal.” 
Geospatial ontologies are considered as useful tools to 
support the identification of relevant geospatial data sources 
[1][2][3][4]. For example, Cruz et al. [5] indicate that the 
problem of querying geospatial databases in a distributed 
environment can be addressed by finding semantic mappings 
between the ontologies that describe each database.  

However, several recent researches in GIScience have 
acknowledged the need for representing and dealing with the 
uncertainty and fuzziness of geospatial phenomena 
[6][7][8][9][10]. For example, a flooding risk zone is a fuzzy 
concept because different sources can define it with different 
characteristics. 

Consequently, geospatial ontologies have to support the 
representation, but until now, the representation of fuzziness 
in ontologies has been mostly limited to the non-geospatial 
domain [11][12][13]. In addition, in order to resolve 

semantic heterogeneity among fuzzy geospatial ontologies, 
there is a need for a semantic mapping approach that will be 
able to deal with fuzzy geospatial ontologies.  

We propose that fuzzy logic is well adapted for 
representing fuzzy knowledge about geospatial concepts, 
provided that the representation of concepts is explicit 
enough and takes into account all spatiotemporal aspects of 
concepts. In this paper, we propose a solution to the problem 
of fuzzy geospatial ontology and fuzzy semantic mapping. 
We first provide a definition of what is a fuzzy geospatial 
ontology. Then, we propose a new fuzzy semantic mapping 
approach, which takes as input the concepts of the fuzzy 
geospatial ontologies and finds semantic relations between 
concepts and their degree of fuzziness. The fuzzy semantic 
mapping approach integrates fuzzy logic operators and 
predicates to reason with fuzzy concepts. Finally, we 
demonstrate a possible application of the fuzzy semantic 
mapping, which is the propagation of fuzzy queries to the 
relevant sources of a network.  

This paper is organized as follows. In Section 2, we 
discuss the role of fuzzy theory in semantic interoperability 
for GIS. In Section 3, we present the definition of the fuzzy 
geospatial ontology. In Section 4, we propose the fuzzy 
semantic mapping approach. In Section 5, we present the 
application for query propagation. In Section 6, we conclude 
this paper. 

II. ROLE OF FUZZY THEORY IN SEMANTIC 

INTEROPERABILITY OF GEOSPATIAL DATA 

Semantic interoperability is a major research topic to 
ensure data sharing among different geospatial databases in a 
network [14][15]. Semantic interoperability is the 
knowledge-level interoperability that provides cooperating 
databases with the ability to resolve semantic heterogeneities 
arising from differences in meanings of concepts [16]. 
Semantics, which is the meaning of expressions in a 
language [17] [18], is crucial for semantic interoperability 
because two systems can “understand” each other and share 
knowledge only if they make the meaning of their concepts 
apparent to each other. Ontologies, which are explicit 
specifications of a conceptualisation [19], aim at capturing 
semantics of data [20] [21][22] [14][23] [24]. Ontologies 
with poor (implicit) semantics provide weaker 
interoperability while ontologies with strong semantics based 
on logical theory support richer semantic interoperability 
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[25]. On the other hand, uncertainty in the semantics of 
concepts should be considered as a kind of knowledge that 
must also be explicit in conceptual representations, as argued 
by Couclecis [7]. Fuzzy logic proposed by Zadeh is 
considered in GIScience as a suitable way to represent 
uncertain knowledge and reason with it. Therefore, several 
approaches have proposed to augment ontologies with 
fuzziness, for example for news summarization [11], for 
information retrieval in the medical domain [12], or for 
image interpretation [13]. However, these approaches are not 
targeted at the geospatial domain. For example, geospatial 
concepts are often described with properties (e.g., 
“inclination” of “lowland”), which range of values can be 
fuzzy. However, existing fuzzy ontology representations and 
ontology mapping approaches do not consider properties 
with fuzzy range of values. Other approaches in the 
geospatial domain use fuzzy sets to assess similarity of 
categorical maps [26]. But this approach is not general and 
aims at categorical maps, while we argue that a more general 
framework for any geospatial fuzzy ontology is needed. In 
addition, we argue that quantitative fuzzy similarity have 
limited expressivity in comparison to qualitative semantic 
relations, which are easier to interpret by users. To our 
knowledge, there is no existing fuzzy semantic mapping 
approach that produces fuzzy semantic relations. In our 
paper, we propose a definition of the fuzzy geospatial 
ontology, and an approach that addresses this need. 

III.  FUZZY GEOSPATIAL ONTOLOGY 

An ontology is usually defined as a set of concepts (or 
classes) that represent entities of the domain of discourse, 
relations and/or properties, and axioms that indicate 
statements that are true within that domain of discourse [14]. 
An example of axiom is “all intersections involve at least 
two roads.” We follow a similar approach to define the fuzzy 
geospatial ontology. However, in the fuzzy ontology, we 
consider that membership of a property or relation in the 
definition of a concept can be quantified. In a crisp ontology, 
the membership degree of a property of relation into the 
definition of a concept is always one or zero. This means that 
either a concept has that property; or it does not have it. In 
the fuzzy ontology, this membership degree varies between 
zero and one, to indicate partial membership. Therefore, in a 
fuzzy ontology, concepts do not have a fully determined 
definition. 
 

We define the fuzzy geospatial ontology as a 5-tuple: O = 
{ C, R, P, D, rel, prop}, where C is a set of concepts, which 
are abstractions of entities of the domain of discourse; R is a 
set of relations; P is a set of properties for concepts; D is a 
set of possible values for properties in P, called range of 
properties; rel: [R→C × C] → [0, 1] is a fuzzy function that 
specifies the fuzzy relation that holds between two concepts; 
prop: [P→C × D] → [0, 1] is a fuzzy function that specifies 
the fuzzy relation between a concept and a subset of D. D is 
therefore a fuzzy range of values. The set of relations R 
includes relations such as “has geometry,” which indicates 
the geometry of instances of the concept, such as polygon, 
moving polygon, line, and other GML spatial and 

spatiotemporal types. It also includes spatial relations such as 
“Is_located_at,” which indicates the location of an instance 
of the concept, and other topological, directional and 
orientation spatial relations. An example of fuzzy property 
“inclination” of the fuzzy concept “lowland” is given on Fig. 
1. Lowlands are regions which inclination is relatively flat, 
but there is a certain level of fuzziness when we try to 
determine if a given region is a “lowland.” While the value 
“flat” of the “inclination” property has the fuzzy membership 
of 0.8 to the range of values of “inclination,” the value “low” 
has a lower membership value of 0.10. This reflects the fact 
that a greater percentage of lands with flat inclination are 
considered as members of the geographical category 
“lowland,’ in comparison to lands with “low” inclination.  
 

 
Figure 1. Example of fuzzy property “inclination” for concept 

“lowland” 
 

 
For the purpose of our approach, we define a 

concept with a conjunction of a set of axioms AC, where each 
axiom is a fuzzy relation or property that defines the concept:  
 
C = A1⊓ A2 ⊓  …. ⊓  An. 
 
We use the term axiom, which is usually employed to refer 
to the whole expression that defines a concept, because a 
concept could also be defined by one feature (property or 
relation).  

IV. FUZZY SEMANTIC MAPPING PROCESS 

In this section, we propose the new fuzzy semantic 
mapping approach. The idea of this approach is to use fuzzy 
logics to first determine the fuzzy inclusion of a concept 
into another concept from a different ontology, based on the 
fuzzy inclusion of each axiom of the first concept into 
axioms of the second concept. Then, fuzzy predicates, 
which value depends on the fuzzy inclusion, are used to 
infer the semantic relation between the two concepts.  
 

Let two concepts C and C’, defined as follows: 

C = A1⊓ A2 ⊓  …. ⊓  An 

              C’ = A1’⊓ A2’ ⊓  …. ⊓  Am’ 
 

Low 
(0.10) 

Medium 
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Flat (0.80) 

Lowland 
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a
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n 
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We define the fuzzy semantic mapping between C and C’ as 
follows: 
 
Definition (fuzzy semantic mapping) A fuzzy semantic 
mapping mC between C and C’ is a tuple mC = <C, C’, rel(C, 
C’), µ(C, C’)>, where rel is a semantic relation between C 
and C’, and µ(C, C’) is the fuzzy inclusion of C into C’.  
 

First, we explain how the fuzzy inclusion of C into C’ is 
computed. Secondly, we explain how the semantic relation 
rel between C and C’ is determined. 

A. Fuzzy inclusion 

We define the fuzzy inclusion as the membership degree 
of a concept in another. This means that when the value of 
the fuzzy inclusion is 1, the first concept is entirely included 
in the second concept; when it is zero, no axiom of the first 
concept intersects with axioms of the second. The fuzzy 
inclusion of C into C’ is denoted with µ(C, C’) : 
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∑

∈
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where µC(A) is the membership degree of axiom A in 
concept C. We know that this membership degree comes 
from the definition of the concept in the fuzzy geospatial 
ontology. Let A: <r.D> and A’: <r’.D’> be two axioms, 
where D and D’ are fuzzy domains. For example, 
<shape.((0.2, circle);(0.8, ellipse))> represents the fuzzy 
relation on Fig. 1.  
 

To compute (1), which relies on the membership of 
axiom A in concept C’, and where axiom A of concept C 
might not be already in the definition of the concept C’, we 
need the membership of axiom A in axiom A’ of C’. The 
membership degree of A into A’ is determined by the Zadeh 
conjunction for fuzzy sets: 
 

))',(),',(min()',( rrDDAA µµµ = .               (2) 

 
The function µ(X1, X2) over any fuzzy sets X1, X2 is 
defined as follows, using the fuzzy implication principle of 
fuzzy logics [27]: 
 

))()((inf)2,1( 2121 xxXX XfXXXx µµµ ⇒= ∪∈ ,       (3) 

 

where ⇒f is a fuzzy implication operator from [0,1] into 
[0,1]. There are several definitions for the fuzzy implication 
operator (including Gödel, Gogen and Lukasiewicz fuzzy 
implications, see Bosc and Pivert [27]). We use 
Lukasiewicz fuzzy implication because of its superior 
flexibility, which is defined as follow:  
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To compute µ(D, D’) with (3), we use the Lukasiewicz 

fuzzy composition operator, denoted with the symbol ⊗, and 
which determines the membership of a first element εi’ in a 
set D, knowing the membership degree of εi’ in εj and the 
membership degree of εj in D (Fig. 2). The symbol ε is used 
to indicate an element of the range of values of a property or 
a relation of the fuzzy geospatial ontology. 

 
Figure 2. Fuzzy composition principle 

 
The membership degree of ε i’ in D writes as: 
 

∑ ⊗=
j

ijDiD j
)'()()'( εµεµεµ ε , )( ijj εε ⊥¬∀ ,      (5) 

where 
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jj

µµµµ      (6) 

 
according to Lukasiewicz’s definition of the fuzzy 
composition operator.  
 

To determine µεj(εi’), which is the membership 
degree of an element εi’ of a range of values in an element εj 
of another range of values, we have developed a fuzzy 
membership degree measure. This measure is based on the 
relative position of εj and εi’ in an upper-level ontology O. 
An appropriated ontology for this task would be a domain-
independent, largely recognized lexical base, such as 
WordNet. However, other more specialized upper-level 
ontologies might be more useful, depending on the domain 

of application. Let <O be a hierarchical, is-a relationship 

between terms in O, such that t<O t’ means that t is more 
specific (less general) than t’. Let P(εj, εi’) be the path 
relating εj to εi’ in O, according to this hierarchy: P(εj, εi’) = 
{ εj, t1, t2, … εi’} so that t1, t2, … is the ordered set of nodes 
from εj to εi’ in O. Let d(tk) the set of descendants of a node 
in O. We define µεj(εi’) as follows: 
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This equation means that, when ε

than εj, it is entirely included in εj, and when 
general than εj, µεj(εi’) decreases with the number of 
descendants of its subsumers. Replacing results of 
we obtain the membership of each element
range D’ in D, which, in turn, allows to determine 
with (3). Eq. (7) is also used to determine 
results can be replaced in (3). 
 

From the fuzzy inclusion given in (2
the semantic relation between the axioms
the following rules, which are derived from the fuzzy set 
relationship definitions: 

(R1) A ≡ A’ ⇔ µ(A, A’) =1 ∧  µ(A’, A) =1

(R2) A  ⊑  A’⇔ µ(A, A’) =1 ∧  µ(A’, A) <1

(R3) A  ⊒  A’⇔ µ(A, A’) <1 ∧  µ(A’, A) =1

(R4) A  ⊓  A’⇔ 0 < µ(A, A’) <1 ∧  0 < 

(R5) A ⊥ A’⇔ µ(A, A’) =0 ∧  µ(A’, A) =0

B. Semantic relation 

In order to determine the semantic relation between 
concepts, we have defined a set of predicates. 
relation between two concepts is determined by the 
following expression:  

 

),(),(

)',(

Pr'Pr' CCCC AACAAI

CCrel

⊗⊗
=

 
where I(AC, AC’ ), C(AC, AC’ ) and CI(
predicates that respectively evaluate the intersection of 
axioms of the concept C with axioms of 
axioms of C’ in axioms of C, and the inclusion of 
C in axioms of C’. We have defined a composition operator, 

denoted ⊗Pr, the function of which is to give the semantic 

relation between C and C’, based on the value of those three 
predicates. The composition operator takes as input the 

value for the three predicates for C and 

semantic relation between C and C’.  
 

For any predicate Pr, the possible values of 
 

• B value, if for all axioms of C there is an axiom of 
C’ that verifies predicate Pr, and vice
example, I(AC, AC’) = B if for all axioms in 

>

else

' j

j

ε

εp

.                (7) 

This equation means that, when εi’ is more specific 
, and when εi’ is more 

’) decreases with the number of 
of its subsumers. Replacing results of (7) in (6), 

element of the fuzzy 
to determine µ(D, D’) 

) is also used to determine µ(r, r’), so these 

given in (2), we obtain 
the semantic relation between the axioms, rel(A, A’), using 
the following rules, which are derived from the fuzzy set 

(A’, A) =1 

(A’, A) <1 

(A’, A) =1 

0 < µ(A’, A) <1 

(A’, A) =0. 

In order to determine the semantic relation between 
concepts, we have defined a set of predicates. The semantic 
relation between two concepts is determined by the 

),,( 'Pr CC AACI
 

CI(AC, AC’ ) are three 
predicates that respectively evaluate the intersection of 

of C’, the inclusion of 
, and the inclusion of axioms of 

. We have defined a composition operator, 

is to give the semantic 

, based on the value of those three 
The composition operator takes as input the 

and C’, and returns the 

the possible values of Pr are: 

there is an axiom of 
, and vice-versa. For 

if for all axioms in AC, there 

is an axiom in AC’  
determined by rules R1 to R5 defined in 
section), and vice-versa;

• S value, if there exist some 
of C’ that verify predicate 

• N value, if there exists no 
verifies predicate Pr.

 
These principles for determining the value of a predicate 

are formalized as follows (where logic symbols are 

all), ∃ (there exists) ⊥ (disjoint) and 
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For C and C’, the domain of quantifiers is respectively 

∈ {1,…, n} and j ∈ {1,…, 
are evaluated within {B, S, N}, the result is
cases, which are provided in Table 1. This table defines the 

⊗Pr operator: each combination of values for the three 
predicates is associated with 
For example, C (semantically) contains 
C(AC, AC’ ) = B and CI(AC, AC

In the associated illustrations, blue sets represent
C, and red sets axioms of C’.

TABLE I.  SEMANTIC RELATIONS IN
OF PREDICATE VALUES 

Semantic 
relationship 

Value 
of 

I(AC, 
AC’) 

Value 
of 

C(AC

AC’)

1. 
Equivalence 

B B 

 that intersects this axiom (as 
determined by rules R1 to R5 defined in the previous 

versa; 
there exist some axioms of C and axioms 

predicate Pr, but not all; 
there exists no axiom of C and C’ that 
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, the domain of quantifiers is respectively i 
{1,…, m}. When the three predicates 

are evaluated within {B, S, N}, the result is 14 classes of 
cases, which are provided in Table 1. This table defines the 

each combination of values for the three 
with a resulting semantic relation. 

(semantically) contains C’ if I(AC, AC’ ) = B, 
C’ ) = S (second line of Table 1). 

In the associated illustrations, blue sets represent axioms of 
. 

EMANTIC RELATIONS IN FUNCTION OF THE COMBINATION 
OF PREDICATE VALUES (⊗PR OPERATOR) 

Value 
of 

C, 
) 

Value 
of 

CI(AC, 
AC’) 

Representation 

 B 
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2.  
Contains 

B B S 

B B N 

3. Contained 
In 

B S B 

B N B 

4. Partial S-
Containment 

(S=Symetric) 

B S S 

S S S 

5. Partial L-
Containment 

(L-LEFT) 

B S N 

S S N 

6. Partial R-
containment 

(R=RIGHT) 

B N S 

S N S 

7. Strong 
Overlap 

B N N 

8. Weak 
Overlap 

S N N 

 

 

 

 

 

 

 

 

 

 

 

 

9. Disjoint N N 

Once the semantic relations and fuzzy 
determined between concepts, we aim to show that this 
information can be used to find relevant sources of a 
network through propagation of query.

V. APPLICATION EXAMPLE

The presented application aims 
usefulness of the proposed approach. As an example of fuzzy 
ontologies, we consider the ontology fragments 
Fig. 4.  
  

Figure 3. Portions of ontolog

Figure 4. Portions of ontology B for the application example

The fuzzy ontology A describes the concept “wetland” 
as “lowland” which can have flat, low or medium slope.  
The values “flat,” “low” and “medium” constitute the range 
of the property “has slope.” 
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Once the semantic relations and fuzzy inclusion are 

determined between concepts, we aim to show that this 
information can be used to find relevant sources of a 
network through propagation of query. 

PPLICATION EXAMPLE  

The presented application aims to demonstrate the 
approach. As an example of fuzzy 

, we consider the ontology fragments in Fig. 3 and 

 
 

3. Portions of ontology A for the application example 
 
 

 
4. Portions of ontology B for the application example 

 
The fuzzy ontology A describes the concept “wetland” 

as “lowland” which can have flat, low or medium slope.  
s “flat,” “low” and “medium” constitute the range 
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is a fuzzy membership value that indicates the degree of 
membership of the value into the range of the property. 
Similarly, the wetland has the property “status,” which 
range is composed of values “dry,” “partly waterlogged” 
and “waterlogged.”  
 

The fuzzy ontology B describes the concept “flooded 
area,” which has the property “state” with values “partly 
flooded” and “completely flooded.” 
 

Consider that the user of ontology A needs to find data 
on wetlands in a given region. To do so, the ontological 
description of concept “wetland” is compared to the 
ontological description of concepts from other available 
sources, for instance fuzzy ontology B. The fuzzy matching 
approach is used for this purpose.  The following shows the 
values that are obtained for the membership of axioms of 
both ontologies into the concepts of “flooded area” and 
concept of “wetland:” 
 

µflooded_area(<is_a.lowland>) = 0.50 

µwetland(<is_a.lowland>)      = 1.00 
 
µflooded_area(<adjacent_to.river>) = 0.30 
µwetland(<adjacent_to.river>) = 0.60 
 
µflooded_area(<status.dry>) = 0.00 
µwetland(<status.dry>) = 0.10 
 
µflooded_area(<status.partly_waterlogged>) = 0.10 
µwetland(<status.partly_waterlogged >) = 0.30 
 
µflooded_area(<status.waterlogged>) = 0.20 
µwetland(<status.waterlogged >) = 0.60 
 
µflooded_area(<is_a.land>) = 1.00 
µwetland(<is_a.land>) = 0.50 
 
µflooded_area(<next_to.watercourse>) = 0.80 
µwetland(<next_to.watercourse>) = 0.30 
 
µflooded_area(<state.partly_flooded>) = 0.80 
µwetland(<state.partly_flooded>) = 0.10 
 
µflooded_area(<state.completely_flooded>) = 0.80 
µwetland(<state.completely_flooded >) = 0.20 
 
When those values are inserted in (1), we obtain that 
µ(flooded_area, wetland) = 0.69.  
 
The semantic relation between “wetland” and “flooded 
area” is obtained by computing the three predicates, which 
values are the following: 
 

I(A flooded_area, Awetland) = B 
C(Aflooded_area, Awetland) = S 
CI(Aflooded_area, Awetland) = N 
 

The resulting semantic relation, according to Table 1, is 
“partial left containment,” which means that some axioms in 
the definition of “wetland” are included in some axioms of 
“flooded area.” The fuzziness of this relation is 0.69. 
 

When the requestor receives a set of concepts that partly 
matches its query, he or she can select the more relevant 
concept using two complementary information elements, the 
semantic relation and the degree of fuzziness of this 
relation. The fuzziness is more than a semantic similarity, 
since it takes into account the fuzziness of concepts being 
compared. For example, a property value which has a low 
membership degree into the concept’s definition, such as 
“dry” in the above example, will have less “weight” in the 
computation of the semantic mapping than a property that 
has higher membership degree, such as “waterlogged.” 
 

While the objective of the paper was not to demonstrate 
the cost of implementing the approach, we note that the 
concept of fuzzy mapping can be useful to support various 
semantic interoperability tasks. More particularly, it is an 
approach that can support query propagation in 
decentralized environment. In such environment, there is no 
central authority that can identify the sources that can 
process a query. Therefore, the goal of query propagation is 
to forward the query from source to source through an 
optimal path, i.e. a path that will contain the most relevant 
sources with respect to the query. The qualitative and 
quantitative mappings issued by the fuzzy semantic 
mapping algorithm can be used as criteria to select the 
sources that are relevant along the path, while taking into 
account the fuzziness of semantic mappings. 

VI. CONCLUSION 

In the geospatial domain, it is essential to consider the 
uncertainty and fuzziness of geospatial phenomena. 
Establishing semantic mappings between fuzzy geospatial 
ontologies is still an issue that was not fully addressed. In 
this paper, we have dealt with some problems related to the 
representation of fuzziness in geospatial ontologies, and 
fuzzy semantic mapping between fuzzy geospatial 
ontologies. In order to address these problems, we have 
proposed a fuzzy geospatial ontology model, and a new 
fuzzy semantic mapping approach. The determination of 
fuzzy semantic mappings is based on fuzzy logics and a set 
of predicates that were defined to determine fuzzy semantic 
relations between concepts, which are complementary to the 
fuzzy inclusion degree between concepts. The qualitative 
and quantitative results give more information for the user 
to understand the nature of relation between its fuzzy query 
and available concepts. One of the possible uses of our 
approach is query propagation in a network of 
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heterogeneous, fuzzy geospatial ontologies. Query 
propagation determines to which nodes of a network a given 
query should be forwarded in order to obtain optimal query 
results. Query propagation provides the user with a path in 
the network that contains the most relevant sources to 
answer the query. In future work, we will apply this 
approach to the issue of query propagation. We also plan to 
extend the fuzzy semantic mapping approach to more 
complex cases of the fuzzy spatial, temporal and 
spatiotemporal features of concepts. This is essential for 
propagating queries to relevant concepts, for if 
spatiotemporal properties have different meanings, the 
query may return inaccurate results. In addition, we plan to 
extend the approach to the case of an ad hoc network, where 
sources could be added or removed from the network in real 
time. 
 

ACKNOWLEDGMENT 

This research was made possible by an operating grant 
from Natural Sciences and Engineering Research Council of 
Canada (NSERC). 

 

REFERENCES 

 
[1] R. Lemmens, Semantic Interoperability of Distributed Geo-

Services. Ph.D Thesis, International Institute for Geo-
Information Science and Earth Observation (ITC), Enschede, 
The Netherlands, 323 p., 2006. 
http://www.ncg.knaw.nl/Publicaties/Geodesy/pdf/63Lemmens
.pdf <retrieved: Nov, 2011> 

[2] M. Lutz and E. Klien, “Ontology-based Retrieval of 
Geographic Information,” International Journal of 
Geographical Information Science, vol. 20, 2006, pp.  233–
260. 

[3] L. Vaccari, P. Schvaiko, and M. Marchese, “A Geo-Service 
Semantic Integration in Spatial Data Infrastructures,”  
International Journal of Spatial Data Infrastructures Research,  
vol. 4, 2009, pp. 24-51. 

[4] M. Bakillah, M.A. Mostafavi, Y. Bédard, and J. Brodeur, 
“SIM-NET: A View-Based Semantic Similarity Model for Ad 
Hoc Networks of Geospatial Databases,” Transactions in GIS, 
13(5), 2009, pp. 417-447.  

[5] I. F. Cruz, W. G. Sunna, and A. Chaudry, “Semi-Automatic 
Ontology Alignement for Geospatial Data Integration,” 
International Conference on Geographic Information Science 
(GIScience), LNCS 3234, Springer, 2004, pp. 51-66.  

[6] J. Zhang and M. Goodchild, Uncertainty in Geographical 
Information. London: Taylor & Francis, 2002. 

[7] H. Couclelis, “The Certainty of Uncertainty: GIS and the 
Limits of Geographic Knowledge,” Transactions in GIS, vol. 
7, issue 2, 2003, pp. 165-175. 

[8] V.B. Robinson, “A Perspective on the Fundamentals of Fuzzy 
Sets and Their Use in Geographical Information Systems,” 
Transactions in GIS, vol. 7, issue 1, 2003, pp. 3-30.  

[9] O. Ahlqvist, “Using Uncertain Conceptual Space to Translate 
Between Land Cover Categories,” International Journal of 
Geographical Information Science, vol. 19, issue 7, 2005, pp. 
831-857. 

[10] H. Ban and O. Alhqvist, “Representing and Negociating 
Uncertain Geospatial Concepts – Where Are the Exurban 

Areas?” Computers, Environment and Urban Systems, issue 
33, 2009, pp. 233-246. 

[11] C.-S. Lee, Z.-W. Jian, and L.-K. Huang, “A Fuzzy Ontology 
and Its Application to News Summarization,” IEEE 
Transaction on Systems, Man and Cybernetics, vol. 35, issue 
5, 2005, pp. 859-880. 

[12] D. Parry, “A Fuzzy Ontology for Medical Document 
Retrieval,”  Australasian Workshop on Data Mining and Web 
Intelligence, 2004, pp. 121-126. 

[13] C. Hudelot, J. Atif, and I. Bloch, “Fuzzy Spatial Relation 
Ontology for Image Interpretation,” Fuzzy Sets and Systems, 
vol. 159, 2008, pp. 1929-1951. 

[14] P. Agarwal, “Ontological Considerations in GIScience,” 
International Journal of Geographical Information Science, 
vol. 19, issue 5, 2005, pp. 501–536. 

[15] L. Bian and S. Hu, “Identifying Components for Interoperable 
Process Models using Concept Lattice and Semantic 
Reference System,” International Journal of Geographical 
Information Science, vol. 21, issue 9, 2007, pp. 1009–1032. 

[16] J. Park and S. Ram, “Information systems interoperability: 
what lies beneath?” ACM Transactions on Information 
Systems, vol. 22, issue 4, 2004, pp. 595-632. 
http://comminfo.rutgers.edu/~muresan/IR/Docs/Articles/toisP
ark2004.pdf <retrieved: July, 2011> 

[17] W. Kuhn, “Geospatial Semantics: Why, of What, and How?” 
Journal on Data Semantics III, vol. 3534, 2005, pp. 1–24. 

[18] G. R. Fallahi, A. U. Frank, M. S. Mesgari, and A. Rajabifard, 
“An Ontological Structure for Semantic Interoperability of 
GIS and Environmental Modeling,” International Journal of 
Applied Earth Observation and Geoinformation, vol. 10, issue 
3, pp. 342-357. 

[19] T.R. Gruber, “A Translation Approach to Portable Ontology 
Specification,” Stanford, California: Knowledge Systems 
Laboratory, Technical Report KSL 92-71, 1993. 
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-92-
71.html.ps <retrieved: Oct, 2011> 

[20] J. Brodeur, Y. Bédard, G. Edwards, and B. Moulin, 
“Revisiting the Concept of Geospatial Data Interoperability 
within the Scope of Human Communication Process,” 
Transactions in GIS, vol. 7, issue 2, 2003, pp. 243-265. 
http://yvanbedard.scg.ulaval.ca/wpcontent/documents/ 
publications/349.pdf <retrieved: Sept, 2011> 

[21] W. Kuhn, “Semantic Reference Systems,” International 
Journal of Geographical Information Science, vol. 17, issue 5, 
2007, pp. 405–409.  

[22] A. Rodriguez and M. Egenhofer, “Determining Semantic 
Similarity Among Entity Classes from Different Ontologies,” 
IEEE Transactions on Knowledge and Data Engineering, vol. 
15, issue 2, 2003, pp. 442–456. 
http://www.spatial.maine.edu/~max/across.pdf <retrieved: 
Nov, 2011> 

[23] F. Fonseca, G. Camara, and A.M. Monteiro, “A Framework 
for Measuring the Interoperability of Geo-Ontologies,” 
Spatial Cognition and Computation, vol. 6, issue 4, 2005, pp. 
307-329. 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.8
084.pdf <retrieved: Oct, 2011> 

[24] M. Kavouras and M. Kokla, “Theories of Geographic 
Concepts,” CRC Press, Taylor & Francis Group, 2008. 

[25] L. Obrst, “Ontologies for Semantically Interoperable 
Systems,” Proceedings of the 12th international conference on 
information and knowledge management, New Orleans, LA, 
USA, 2003, pp. 366-369. 
http://semanticommunity.info/@api/deki/files/5953/%3DLeo
Obrst2003.pdf <retrieved: Oct, 2011> 

27Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing



[26] A. Hagen, “Fuzzy Set Approach to Assessing Similarity of 
Categorical Maps,” International Journal of Geographical 
Information Science, vol. 17, issue 3, 2003, pp. 235–249. 

[27] P. Bosc and O. Pivert, “About Approximate Inclusion and its 
Axiomatization,” Fuzzy Sets and Systems, vol. 157, 2006,  
pp. 1438-1454. 

 

28Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing


