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Abstract—Proliferation of RDF data on the Web creates
a need for systems that are not only capable of querying them,
but also capable of scaling efficiently with the growing size of
the data. Parallelization is one of the ways of achieving this
goal. There is also room for optimization in RDF processing to
reduce the gap between RDF and relational data processing.
SPARQL is a popular RDF query language; however current
engines do not fully benefit from parallelization potential. We
present a solution that makes use of the Bobox platform, which
was designed to support development of data-intensive parallel
computations as a powerful tool for querying RDF data stores.
A key part of the solution is a SPARQL complier and execution
plan optimizer, which were tailored specifically to work with
the Bobox parallel framework. The performance of the system
is compared to the Sesame SPARQL engine.
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I. INTRODUCTION

SPARQL [1] is a popular RDF (Resource Definition
Framework) query language. It contains capabilities for
querying graph patterns along with their conjunctions and
disjunctions. SPARQL also supports extensible value testing
and constraining queries by source RDF graph. The results
of SPARQL queries can be result sets or RDF graphs.

The Bobox framework was designed to support develop-
ment of data-intensive parallel computations [2], [3]. The
main idea behind Bobox is to divide a large task into
many simple tasks that can be arranged into a non-linear
pipeline. These simple tasks are performed by boxes. They
are executed in parallel and the execution is driven by
the availability of data on their inputs. The developer of
such boxes does not have to be concerned about problems
such as synchronization, scheduling and race conditions.
All this is done by Bobox itself. The system can easily be
used as a database execution engine; however, each query
language requires its own front-end that translates a request
(query) into a definition of the structure of the pipeline that
corresponds to the query.

In the paper, we present a way in which we used the
Bobox framework to create a tool for effective parallel
querying of RDF data [4] using SPARQL. The data are
stored using an in-memory triple store which consists of
one three-column table and a set of indexes. We provide
a brief description of query processing using SPARQL-
specific parts of the Bobox and provide results of bench-
marks. Benchmarks were performed using the SP2Bench [5]
query set and data generator.

The rest of the paper is structured as follows: Sec-
tions II and III describe the Bobox framework and models
used to represent queries during their processing. Section
IV contains a description of the SPARQL compiler and
steps performed during query processing. Bobox back-end
processing and SPARQL specific boxes are discussed in
the Section IV-D. Section V presents our experiments and
a discussion of their results. Section VI describes future
directions of research and concludes the paper.

II. BOBOX FRAMEWORK

A. Bobox Architecture

The Bobox parallelization framework has two primary
goals: to simplify writing parallel, data intensive programs
and to serve as a testbed for the development of generic
parallel algorithms and data-oriented parallel algorithms.
The main aspects that make writing parallel programs easier
include the following: all synchronization is hidden from
the user; most technical details (NUMA, cache hierarchy,
CPU architecture) are handled by the framework; high-
performance messaging is the only means of communica-
tion and synchronization; and it is built around easy-to-
comprehend basic paradigms such as task parallelism and
non-linear pipeline.

Bobox provides a run-time environment that is used
to execute a non-linear pipeline in parallel. The pipeline
consists of computational components provided by the user
and connecting parts that are part of the framework. The
structure of the pipeline is defined by the user, but the
communication and execution of individual parts is handled
by the run-time; a component is executed when it has data
waiting to be processed on its inputs. This simplifies the
design of the individual computational components, since
communication, synchronization and scheduling are handled
by the framework.

Compared to scientific workflows, the Bobox boxes are
usually smaller than actors or other workflow elements and
they never encapsulate user interaction or unreliable remote
communication.

B. Task Level Parallelism

The environment with many simple components and
pipeline-based communication is very suitable for task level
parallelization. In this paradigm, the program is not viewed
as a process divided into several threads. Instead, it is seen
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as a set of small tasks. A task is a piece of data together with
the code that should be executed on the data. Their execution
is handled by a task scheduler. The scheduler maintains a
pool of tasks to be executed and a pool of execution threads
and allocates the tasks to the threads. At any given time, a
thread can either be executing a task or be idle. If it is idle,
the task scheduler finds a suitable task in the task pool and
starts the execution of the task on the idle thread.

C. Run-time Architecture
One of the main differences between other parallelization

frameworks and the Bobox architecture is the way the user’s
code interacts with Bobox. OpenMP [6] and TBB [7] are
used to invoke parts of the code in parallel; MPI [8] provides
means for communication between processes. Bobox is more
similar to the first two systems; however, there are two key
differences. First, it uses a declarative approach to describe
the way in which elements of the computation are put
together. Second, it provides more services to the user code
(data transport, flow control etc.), but also imposes greater
restrictions (only pipeline, no recursive calls, etc.).

The parallel execution environment is somewhat similar to
that of TBB, since it contains a task pool and several threads
that execute tasks from that pool. However, the way in which
the tasks are created and added to the pool is completely
different [9]. In TBB, this is controlled either directly by the
user’s code or by using a thin layer of parallel algorithms
provided by the library.

In Bobox, the user first specifies a model. The model
defines the way in which the individual computational
components are connected. The model is then instantiated
to produce a model instance. The elements of the model
instance are used as tasks. When they are ready, they are
enqueued – added to the task pool. Later, a thread takes a
task from the pool, performs the action (invokes the task)
and then the model instance element is returned and can be
used again as a new task and added to the pool.

D. Scheduling
The Bobox system is well suited for a certain class of

problems, due to the way in which the system decides
what computational components should be executed. This
is controlled by the flow of the data through the pipeline.
The data must be passed in a way defined by the system,
so that the system is aware of the fact that a component
consumed or created some data. This simplifies the design of
the individual computational components; they do not have
to be concerned with controlling the execution and data flow.

The basic Bobox computational component is a Box.
Boxes are used for the implementation of basic operations
such as joins (see Section IV-D for a more details).

III. QUERY REPRESENTATION

During query processing, our SPARQL compiler uses
different representations of the query itself. They are chosen

according to the needs of each processing step. In the
following sections, we mention models used during query
rewriting and generation of execution plan.

A. SQGM Model

Pirahesh et al. [10] proposed the Query Graph Model
(QGM) to represent SQL queries. Hartig and Reese [11]
modified this model to represent SPARQL queries (SQGM).
With appropriate operations definition, this model can be
easily transformed into Bobox pipeline definition, so it was
ideal candidate to use.

SQGM model can be interpreted as a directed graph (in
our case a directed tree). Nodes represent operators and are
depicted as boxes containing headers, body and annotations.
Edges represent data flow and are depicted as arrows that
follow the direction of the data. Figure 1 shows an example
of a simple query represented in the SQGM model.

This model is created during execution plan generation
step and is used as a definition for the Bobox pipeline.

Figure 1. Example of SQGM model.

B. SQGPM Model

In [12], we proposed the SPARQL Query Graph Pattern
Model (SQGPM) as the model that represents query during
optimization steps. This model is focused on representation
of the SPARQL query graph patterns [1] rather than on
the operations themselves as in the SQGM. It is used
to describe relations between group graph patterns (graph
patterns consisting of other simple or group graph patterns).
The ordering among the graph patterns inside a group graph
pattern (or where it is not necessary in order to preserve
query equivalency) is undefined. An example of the SQGPM
model graphical representation is shown in Figure 2.

Each node in the model represents one group graph
pattern that contains an unordered list of references to graph
patterns. If the referenced graph pattern is a group graph
pattern, then it is represented as another SQGPM node.
Otherwise the graph pattern is represented by a leaf.

105Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-175-5

SEMAPRO 2011 : The Fifth International Conference on Advances in Semantic Processing



The SQGPM model is built during the syntactical analysis
and is modified during the query rewriting step. It is also
used as a source model during building the SQGM model.

Figure 2. Example of SQGPM model.

IV. QUERY PROCESSING

Query processing is performed in a few steps by separate
modules of the application as shown in Figure 3. First
steps are performed by the SPARQL front-end represented
by compiler. The main goal of these steps is to validate
the compiled query, pre-process it and prepare the optimal
execution plan according to several heuristics. Execution
itself is done by the Bobox back-end where execution
pipeline is initialized according to the plan from the front-
end. Following sections describe steps done by the compiler
in a more detail way.

Figure 3. Query processing scheme.

A. Query Parsing

The query parsing step uses standard methods to perform
syntactic and lexical analysis according to W3C recom-
mendation. The input stream is transformed into a SQGPM
model. Transformation also includes expanding short forms
in query, replacing aliases and transformation of blank nodes
into variables.

B. Query Rewriting

The second step is query rewriting. We cannot expect
that all queries are written optimally (they may contain
duplicities, constant expressions, inefficient conditions, re-
dundancies etc.). So, the goal of this phase is to normalize
queries to achieve a better final performance. We use the
following operations:

• Merging of nested Group graph patterns
• Duplicities removal
• Filter, Distinct and reduced propagation
• Projection of variables
It is also necessary to check applicability of each oper-

ation with regards to the SPARQL semantics, before it is
used to preserve query equivalency. Query representation is
the same as in the previous step.

C. Execution Plan Generation

In the previous steps, we described some query transfor-
mations that resulted in a SQGPM model. However this
model does not specify complete order of all operations.
Main goal of the execution plan generation step is to
transform the SQGPM model into an execution plan. This
includes selecting from different join operation orderings,
join types and selecting the best strategy to access the data
stored in the physical store.

The query execution plan is built from the bottom to
the top using dynamic programming to search part of the
search space of all possible joins. This strategy is applied
to each group graph pattern separately because the order of
the patterns is fixed in the SQGPM model. Also, the result
ordering is considered, because a partial plan that seems to
be worse locally, but produces a useful ordering of the result
may provide a better overall plan later. The list of available
atomic operations (e.g., the different types of joins) and their
properties are provided by the Methods Space module.

In order to compare two execution plans, it is necessary
to estimate the cost of both plans – an abstract value that
represents the projected cost of execution of a plan on the
actual data. This is done with the help of the cost model
that holds information about atomic operation efficiency and
summary statistics gathered about the stored RDF data.

Search space of all execution plans could be extremely
large, so we used heuristics to reduce the complexity of the
search. At first, only left-deep trees of join operations are
considered. This means that right operand of join operation
may not be another join operation. There is one exception to
this rule – avoiding cartesian products. If there is no other
way to add another join operation without creating cartesian
product, the rest of the unused operations is used to build
separate tree recursively (using the same algorithm) and
result is joined with the already built tree. This modification
greatly improves plans for some of the queries we have
tested and often significantly reduces the depth of the tree.
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The final execution plan is represented using SQGM
model and later transformed int a Bobox model. This
transformation is completely straightforward.

D. Query Representation for Back-end
After the execution plan is generated, it is transformed

into a serialized form and passed to the back-end. The back-
end deserializes the plan and instantiates boxes provided by
the runtime implementation. Boxes are connected according
to the plan and computation may then be started. The
serialization and deserialization is useful since it provides
many benefits, such as:

• When distributed computation support is added, text
representation is safer than (e.g., binary), where prob-
lems with different formats, encodings or reference
types may appear.

• Serialization language has very simple and effective
syntax; serialization and deserialization is much faster
than (e.g.) the use of XML.

• Text representation is independent on the programming
language; new compilers can be implemented in a
different language.

• Compilers can generate plans that contain boxes that
have not yet been implemented, which allows for earlier
testing of the compiler during the development process.

E. Runtime
Another important part of the front-end on which the com-

piler depends is called runtime. It provides compiler-specific
features in the (otherwise compiler independent) back-end.
For example, it handles the instantiation of the boxes, since
they are compiler-specific (e.g., the join operation used in
SPARQL is slightly different from joins used in SQL).
SPARQL runtime provides boxes that represent operations
used in SPARQL evaluation. Examples of such boxes are
scan, join, union, filter box etc. Some of the operations
have different implementations. For example, scan box is
implemented as full-table scan using direct access to the
triples table but also as an indexed access to the table.
Join boxes use two basic approaches: nested-loops join and
merge-join (faster, but requires ordered inputs). Most other
boxes use only one implementation.

V. EXPERIMENTS

We performed a number of experiments to test func-
tionality and performance of the SPARQL query engine.
The experiments were performed using the SP2Bench [5]
query set, since this benchmark is considered to be standard
in the area of semantic processing. The compiler output
was visualized to check the correctness of the plans and
the whole query engine was benchmarked against a set
of test queries on differently sized data sets to determine.
We also performed the same tests on the Sesame [13]
SPARQL engine, so we can compare these two SPARQL
query engines.

A. Set-up

Experiments were performed on a server running Redhat
6.0 Linux. Server configuration is 2x Intel Xeon E5310,
1,60Ghz (L1: 32kB+32kB L2: 2x4MB shared) and 8GB
RAM. It was dedicated specially to the testing; therefore
no other CPU or memory services were running on the
server. As the benchmark framework (queries and data) we
chose the SP2Bench [5] framework that is targeted on testing
SPARQL engines and provides a set of queries, and a data
generator that creates DBLP-like publication database.

SPARQL front-end and Bobox are implemented in C++.
Document data were stored in-memory. We also tested
Sesame v2.0 engine using its in-memory data store. We
report the total elapsed time that was measured by a timer.

For all scenarios, we carried out multiple runs over
documents containing 10k, 50k, 250k, 1M, and 5M triples
and we provide the average times. Each test run was also
limited to 30 minutes (the same timeout as in the original
SP2Bench paper). All data were stored in-memory, as our
primary interest is to compare the basic performance of the
approaches rather than caching etc. The expected number of
the results for each scenario can be found in Table I.

B. Discussion of the Benchmarks Results

The query execution times are shown in Figure 4. The
y-axes are shown in logarithmic scale and individual plots
scale differently. In following paragraphs, we discuss some
of the queries and their results.

Q2 implements a bushy graph pattern and the size of the
result grows with the size of the queried data. We can see
that Bobox scales well, even though it creates execution
plans shaped as a left-deep tree. This is due to the parallel
stream processing of fast merge joins.

The variants of Q3 (labeled a to c) test FILTER expression
with varying selectivity. We present only the results of Q3c
as the results for Q3a and Q3b are similar. The performance
of Bobox is negatively affected by the simple statistics
implementation used to estimate the selectivity of the filter.

Q4 (Figure 5) contains a comparably long graph chain,
i.e., variables ?name1 and ?name2 are linked through articles
that (different) authors have published in the same journal.
Bobox embeds the FILTER expression into this computation,
instead of evaluating the outer pattern block and applying the
FILTER afterwards and propagates the DISTINCT modifier
closer to the leaves of the plan in order to reduce the size
of the intermediate results. This provides better performance
than Sesame.

Queries Q5a (Figure 5) and Q5b test implicit join encoded
in FILTER condition (Q5a) and explicit (Q5b) variant of
joins. While on explicit join (Q5b) both engines performs
similarly, on implicit join (Q5a) Bobox outperforms Sesame
since it is able to compute also documents with 250k and
1M triples before the 30 minute limit is reached. This
is achieved by creating bushy execution plan (thanks to
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Q1 Q2 Q3a Q3b Q3c Q4 Q5a/b Q6 Q7 Q8 Q9 Q10 Q11
10k 1 147 846 9 0 23.2k 155 229 0 184 4 166 10
50k 1 965 3.6k 25 0 104.7k 1.1k 1.8k 2 264 4 307 10
250k 1 6.2k 15.9k 127 0 542.8k 6.9k 12.1k 62 332 4 452 10
1M 1 32.8k 52.7k 379 0 2.6M 35.2k 62.8k 292 400 4 572 10
5M 1 248.7k 192.4k 1.3k 0 18.4M 210.7k 417.6k 1.2k 493 4 656 10

Table I
QUERY RESULT SIZES ON DOCUMENTS UP TO 5M TRIPLES.
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Figure 4. Results (time in seconds) for 10k, 50k, 250k, 1M, and 5M triples.

the rule of minimizing the number Carthesian products)
whose execution scales well when executed in parallel.
Also, incorporating FILTER operation into the final join,
which would otherwise create a Carthesian product, reduces
intermediate data size and speeds up query evaluation.

Queries Q6, Q7 and Q8 enable us to create bushy trees, so
their computation is well handled in parallel. As a result of
this, Bobox outperforms Sesame in Q6 and Q7, being able
to compute larger documents until the query times out. The
authors of the SP2Bench suggest reusing graph patterns in
description of the queries Q6, Q7 and Q8 [5]. However, this
is problematical in Bobox. Bobox processing is driven by
the availability of the data on inputs but it also incorporates
methods to prevent the input buffers from being overfilled.

Pattern reusing can result in the same data being sent along
two different paths in the pipeline running at a different
speed. Such paths may then converge in a join operation.
When the faster path overfills the input buffer of the join
box, the computation of all boxes on paths leading to the
box is suspended. As a result, data for the slower path will
never be produced and will not reach the join box, which
results in a deadlock. We intend to examine the possibility
of introducing a buffer box, which will be able to store
and provide data on request. This way, the Bobox SPARQL
implementation will be able to reuse graph patterns.

Overall, results of the benchmarks indicate good potential
of the Bobox framework when used as an RDF query engine.
It is often comparable to the Sesame framework and in
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SELECT DISTINCT ?name1 ?name2 Q4
WHERE { ?article1 rdf:type bench:Article.

?article2 rdf:type bench:Article.
?article1 dc:creator ?author1.
?author1 foaf:name ?name1.
?article2 dc:creator ?author2.
?author2 foaf:name ?name2.
?article1 swrc:journal ?journal.
?article2 swrc:journal ?journal
FILTER (?name1<?name2) }

SELECT DISTINCT ?person ?name Q5a
WHERE { ?article rdf:type bench:Article.

?article dc:creator ?person.
?inproc rdf:type bench:Inproceedings.
?inproc dc:creator ?person2.
?person foaf:name ?name.
?person2 foaf:name ?name2
FILTER(?name=?name2) }

Figure 5. Examples of the benchmark queries.

some benchmarks it was able to process larger documents
and/or outperform it. However, there are still some scenarios,
in which Sesame performs better and we are working to
improve our implementation to handle these cases better.

VI. CONCLUSION AND FUTURE WORK

In the paper, we presented a parallel SPARQL processing
engine that was built using the Bobox parallelization frame-
work. Our main focus was on efficient query processing:
parsing, optimization, transformation and parallel execution.
To store the data, we implemented a simple in-memory
triple store. To test performance of our pilot implementation,
we performed multiple experiments. We have chosen an
established framework for RDF data processing Sesame as
the reference system.

The results seem very promising; using SP2Bench queries
we have identified that on simple queries we are in most
cases comparable to Sesame. For more complicated queries
like Q4, Q5, Q6 or Q7 we are able to process larger
documents than Sesame. These queries let us produce richer
execution plans; we are able to incorporate FILTER ex-
pressions into computation better and together with the use
of fast merge joins their execution in parallel gives better
performance. However, we also detected some bottle-necks.
Our heuristics sometimes result in long chains but streamed
processing and fast merge joins minimize this disadvantage.
Also, some proposed methods, such as graph pattern reuse
are not applicable in our system. During the benchmarking
we also discovered some new ideas of how to increase
performance of generated plans by query modification and
also better use of statistics. We are, therefore, convinced that
there is still space for optimization in RDF processing.

We proved that the parallel approach to RDF data pro-
cessing using the Bobox framework has potential to provide
better performance than current serial engines.
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