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Abstract—In this paper, we describe and evaluate DataBearings,
which is a lightweight platform for heterogeneous data integration
from various sources such as databases, Web services, and files.
DataBearings is based on an efficient semantic data virtualization
and federation mechanism. We demonstrate that DataBearings
is as fast as non-semantic data integration solutions such as
Denodo Platform, making it the first practical semantic alter-
native to those, given that the comparable semantic solutions
such as Virtuoso and TopBraid Composer fall well behind in
terms of their run-time performance. We also demonstrate that
DataBearings is very lightweight, as well as provides some unique
functional features allowing easier and cheaper development and
maintenance of data integration systems.
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I. INTRODUCTION

Enterprises own an ever-growing number of databases with
heterogeneous data originating from different business func-
tions or processes. Emerging Internet of Things technologies
(wireless sensors, etc.) enable enterprises to collect a variety
of real-time data from the physical world, pushing the number
of heterogeneous datasets even further. In addition, due to
globalization and the pervasiveness of the Internet, different
supply chains are increasingly integrated with each other and
transforming into supply networks, requiring the information
systems of different enterprises to work together, with this
issue being increasingly significant not only for large scale
enterprises but for companies of all sizes [1]. In other words,
data relevant to an enterprise operation are often found not
only in in-house databases but also in external data sources,
which can be the business partners’ sources (usually exposed
as Web services) or even Open Data sources on the Internet.
In the market, there is a great need for novel applications and
better capability to provide services to customers in order to
differentiate and compete. As a result, enterprises are seeking
possibilities to exploit ever-growing and diverse data efficiently
and dynamically to provide new and better services.

Several approaches to tackling the data integration problem
have been developed, including integrated packages (e.g.,
SAP), messaging (e.g., WS-* services), data warehouses (also
known as Extract-Transform-Load, ETL), and the Enterprise
Information Integration (EII) approach [2, sec.7]. The two
former approaches require implementing a custom software
adapter or wrapper for each constituent data source, while
the two latter approaches aim at providing a generic platform
which can be configured for a particular integration case
without a programming effort.

The vision underlying EII is to provide tools for integrating
data from multiple sources without having to first load all
the data into a central warehouse [2, sec.1]. The two central
problems in EII are data virtualization and data federation. The
former is about accessing data without requiring knowledge
of how they are formatted or where they are physically
located. The latter is about retrieving data from multiple
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non-contiguous data sources with a single query, even if
the constituent sources are heterogeneous. EII generalizes on
the principles of federated databases [3], that is, it involves
creating a unified data model that encompasses the schemas
of participating data sources. Users or applications formulate
their queries in terms of this unified model, and each query
is automatically reformulated into one or more queries to the
data sources.

Data virtualization provides the business benefits of reduc-
ing the integration costs by allowing leveraging existing data
sources in new ways without data replication or software devel-
opment expenses, enabling new applications on the intersection
of existing data sources, including external ones, as well as
access to live data. When considering integration with external
data sources, especially when their interfaces constantly and
independently evolve, virtualization may be the only approach
viable. Replicating all external data into own warehouse may
just not be possible, while hard-coded adapters to external
sources are expensive to maintain.

In this paper, we describe and evaluate DataBearings, a
lightweight data integration platform that is based on an effi-
cient semantic data virtualization and federation mechanism.
The evaluation is done comparatively to three commercial
data integration products, non-semantic Denodo Platform by
Denodo Technologies, and semantic Virtuoso by OpenLink
Software and TopBraid Composer by TopQuadrant. This eval-
uation is concerned with the run time performance, memory
footprint, as well as virtualization-related functional features.

Denodo is a leading tool in data virtualization. It is
based around the relational data model. Both Virtuoso and
TopBraid are semantic solutions that enable virtualization of
non-semantic data, in principle. Both realize it via a query-
time ETL, where all source data is transformed into Resource
Description Framework (RDF) and loaded into a temporary
RDF storage, just to be read from there in the next step that is
the execution of a SPARQL query. In contrast, DataBearings
realizes a more pure data virtualization approach. It does not
transform the source data into RDF, but rather searches for the
answer to the target semantic query directly from non-semantic
source data. To the best of our knowledge, DataBearings is the
only semantic data virtualization solution available at present
that is not based on ETL while also being capable of working
with Web data and not only relational databases.

We demonstrate that DataBearings is very fast, running as
fast or even faster than the non-semantic Denodo, and much
faster than the comparable semantic solutions such as Virtuoso
and TopBraid. Moreover, DataBearings is very lightweight,
with a significantly smaller memory footprint than other sys-
tems. Finally, in addition to providing known evolution-related
benefits of the semantic technology, DataBearings enables
even easier and cheaper development and maintenance of data
integration systems through a set of advanced features not
available in Virtuoso, TopBraid, or Denodo.

The comparative evaluation of systems, reported in this
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paper, uses a very simple and understandable data integration
case. A description of more complex and practical cases that
were realized with DataBearings for the parking domain can
be found in [4], [5].

The rest of the paper is structured as follows. Section II
describes a simple data integration scenario that we use as
a running example, as well as an evaluation case. Section
IIT analyses the existing data virtualization approaches and
example systems, both non-semantic and semantic, including
how our running example is handled in these. Section IV
describes the DataBearings platform, while Section V provides
a comparative evaluation of DataBearings in terms of its run
time performance. Finally, Section VI concludes the paper.

II. RUNNING EXAMPLE

As a running example, as well as a comparative evaluation
case, we use the following simple data integration scenario
that involves two data sources.

The Finnish state-owned railway monopoly,
VR, publishes data on their trains via a feed at
http://188.117.35.14/TrainRSS/TrainService.svc/AllTrains
?showspeed=true. The content is XML, with a record
about a train found at XPath /rss/channel/item. A record
includes such elements as the train identifier, category,
origin, destination, current location and speed. A specific
complication comes from the fact that a location is given
within a single XML element as a whitespace-separated string
of a latitude and a longitude, e.g., <georss:point>60.91658
26.17051</georss:point>, instead of two separate elements
for the latitude and the longitude. Henceforth, we refer to this
data source as DSI.

The second data source, DS2, contains data, which we
collected ourselves, on all major cities of Finland and the
approximate bounding rectangles of their metro areas. The
data is published in a simple comma-separated-values (CSV)
format, with a row, e.g., Tampere, 61.615563, 23.424657,
61.378988, 24.145634 (name, north, west, south, east).

The data integration task is then to extend the train records
with an additional attribute containing the name of the city, in
the metro area of which the train is currently located. That is,
a join of two data sources is to be performed with the fol-
lowing condition: dsl.lat>=ds2.south & dsl.lat<=ds2.north
& dsl.Ing>=ds2.west & dsl.Ing<=ds2.east.

III.RELATED WORK

EII industry was born in late 90’s and branded as a market
category in 2002 [2, ch.6]. In the present, a number of big IT
companies provide a data virtualization solution, with notable
examples being IBM Cognos, Cisco Composite Information
Server, and Denodo Platform by Denodo Technologies. Some
products, e.g., IBM Cognos, only support databases but not
Web services, while others, e.g., Denodo, are able to virtualize
data from a variety of sources including relational and NoSQL
databases, Web Services, files including CSV and MS Excel,
and even some semi-structured and non-structured sources.
Due to its rich feature set and the availability of an evaluation
version (Denodo Express), we use in this paper Denodo Plat-
form as a representative example of this category of products.

Denodo, as other traditional EII products mentioned above,
works within the relational data model. This means that every
constituent data source is represented by a relational view (a
virtual relational database table) and all the following oper-
ations including data integration are performed as Structured
Query Language (SQL) commands (Denodo defines an SQL
extension called Virtual Query Language, VQL).
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As to our running example, the DS2 CSV data source
on cities, after connecting it to Denodo, is straightforwardly
represented by a virtual table view ds2 with five columns. The
DS2 XML data source on trains is also automatically given a
virtual table view ds/ with seventeen columns, of which twelve
correspond to the elements of a train record and the other five
repeat for each record the values of the elements and attributes
of encompassing rss and channel XML tags. As the current
location of a train is given with a single whitespace-separated
value, we need to define a secondary projection/selection
view p_dsl, in which we define two new columns: ’lat’
as cast(’float’, substring(dsl.point, 0, instr(dsl.point, ’ ’)))
and ’Ing’ as cast('float’, substring(dsl.point, instr(dsl.point,
* ’)+1)), as well as preserve only the columns of in-
terest. Finally, we define a join view p_join, with inner
join conditions p_dsli.lat>=ds2.south, p_dsl.lat<=ds2.north,
p_dsl.lng>=ds2.west and p_dsl.Ing<=ds2.east. An execu-
tion of this view produces the result we seek.

While providing an efficient solution to our integration
problem, the main disadvantage of this approach is low mod-
ifiability. This is due to the fact that the relational model
always requires an explicit schema (even if it is automatically
produced by Denodo) and the links between views are hard-
coded to that schema via SQL constructs. In fact, in Denodo,
after renaming a few output fields in ds/, we were just not
able to fix the case without completely removing and re-doing
p_dsl and then p_join.

Several authors in [2] argued for a need to exploit the
benefits of the semantic technologies in EIl. One reason for
applying semantics to the data integration problem is a ’softer’
nature of links in semantic models, as links and entities can be
added or removed without breaking the rest of the model. This
enables an agile and interactive evolution of data integration
and integrated data analytics cases, with a faster return on
investment [6].

In [2, ch.6], it was stated that none of the existing at
the time EII tools used formal semantics, but predicted that
EII will adopt the foundational technologies of the Semantic
Web. Efforts towards semantic EIl were reviewed later in
[7], referencing, however, only a handful of research projects.
Even at the time of writing this paper, to the best of our
knowledge, the only available practical semantic data virtu-
alization solutions are those that only support working with
relational databases as virtual RDF graphs and cannot be used
for access to Web data, such as D2RQ [8]. All solutions that
support a variety of data source types rely on ETL instead,
that is extraction of non-semantic data from their original data
sources, explicit transformation of those data into RDF, and
loading it into an RDF data warehouse. Notable commercial
products include Data Unleashed Federator by Blue Slate
Solutions, Virtuoso by OpenLink, and TopBraid Composer
by TopQuadrant, with Linked Stream Middleware [9] and the
ontology-based mediator in [10] deserving a mention on the
research side.

We use in this paper Virtuoso and TopBraid as represen-
tative examples of the state-of-art in semantic data integration
of heterogeneous data. Both come the closest to being data
virtualization products as they support query-time ETL. That
is, after a SPARQL query is received, they access relevant data
sources, transform received data into RDF, load RDF into an
in-memory RDF storage, and then execute the query on that
storage. The repetition of the ETL step is avoided for static
sources that did not change since the last query.

Let us use TopBraid to explain the specifics. As to our
running example, the DS2 CSV data source is mapped to
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RDF via SemTables, which is TopBraid’s own simple on-
tology consisting of three properties: sheetIndex, rowlndex,
and columnlndex. With this approach, mapping data onto an
arbitrary semantic structure is not supported, but only onto
the most straightforward one: each data sheet corresponds to a
class, every row to an instance of that class, and every column
to a property of that class. Each data row in DS2 is, thus,
transformed into RDF (Turtle notation) as follows: [a c:City]
c:name “Tampere”; c:north 61.615563; c:west 23.424657;
c:south 61.378988; c:east 24.145634. DS1 XML data source
is mapped to RDF via SXML, which is also TopBraid’s own
ontology for describing the structure of XML documents.
The resulting semantic structure is rather complex and not
flexible, with train attributes represented as classes rather than
properties, as follows (only the id and the location attributes
included): [] a vr:item; composite:child [a vr:guid; compos-
ite:child [sxml:text "ICI107]]; composite:child [a vr:point;
composite:child [sxml:text ”60.37992 25.09723”]].

After both data sources are mapped to RDF, the target
integration case is realized via the multi-graph SPARQL query
in Figure 1 (simplified here by selecting only the id and the
location of a train plus omitting the full URIs of the two
graphs). Submitting this query to the TopBraid’s SPARQL
endpoint produces the result we seek.

SELECT *
WHERE {
GRAPH <ds1> {
[ ]a vritem;
composite:child [a vr:guid; composite:child [sxml:text ?id]];
composite:child [a vr:point; composite:child [sxml:text ?loc]].

]}SIND (xsd:decimal(strbefore(?loc,” *)) as ?lat) .
BIND (xsd:decimal(strafter(?loc,” *)) as ?Ing).
GRAPH <ds2> {
[ ] c:name ?name; c:north ?n; c:south ?7s; c:west ?w; c:east ?e

}.

BIND (xsd:decimal(?n) as ?no). BIND (xsd:decimal(?s) as ?so).

BIND (xsd:decimal(?w) as ?we). BIND (xsd:decimal(?¢e) as ?ea).
FILTER (?lat<=7™no && ?lat>=7s0 && ?lng>="7we && ?Ing<="7ea).

Figure 1. SPARQL query for the running example.

The main disadvantages of this approach are low perfor-
mance and scalability (due to the nature of ETL) and a need to
mix all processing and integration steps in a single SPARQL
query. Note the explicit instructions for splitting the location
into the latitude and the longitude, which are now part of the
final query, while in the case of a relational tool like Denodo
hidden into an intermediary projection view. For data statically
residing in the TopBraid RDF storage, one could implement
this step with inference rules, but this option is not available for
data loaded on-demand from external non-semantic sources.
The need to explicitly address the graphs corresponding to
each data source is also a disadvantage as it does not allow
protecting a user from data distribution details.

IV.DATABEARINGS APPROACH

To the best of our knowledge, DataBearings is the only
available at present semantic solution for data integration
which is not based on an explicit extract-transform-load of
data as RDF while also being capable of working with Web
data and not only relational databases. Another distinctive
feature is that, instead of restricting itself to the capabilities
of standard semantic technologies such as RDF and SPARQL,
DataBearings uses a more expressive and powerful data model,
Tim Berners-Lee’s Notation3 (N3) [11]. N3 can be easiest ex-
plained as RDF with nesting. Each N3 statement is necessarily
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an RDF triple, but the subject and/or object of it are allowed to
be nested N3 models containing other statements (see Figure
3 for an example of N3 data). An important convention is
that only statements at the top level are treated as facts, while
statements in a nested model are considered only in the context
set by the containing statement.

DataBearings features a fast in-memory N3 data storage,
which can contain RDF or N3 data, data source annotations,
as well as production rules and other imperative constructs in
N3-based Semantic Agent Programming Language (S-APL).
S-APL is developed around the central idea of N3Logic [12],
that is to have N3 as a single data model for all of data, queries,
and rules. However, S-APL drops the monotonicity assumption
of N3Logic and, similarly to SPARQL, includes constructs for
negation, solutions aggregation, as well as for facts removal.
S-APL was introduced in [13] and later formalized in [14].

An overview of the DataBearings’ semantic data virtual-
ization and federation approach is given in Figure 2. In [5],
we provided a detailed description of how this approach is
realized exploiting the capabilities of S-APL. In this paper,
we focus rather on the practical aspects and benefits of using
DataBearings for implementing data integration cases.

Data source
annotations

Local data

Integration
logic

Solutions

Query Decomposer
Query Executor JSON plugin

niversal Adapter —

Figure 2. Semantic data virtualization in DataBearings.

SQL plugin
SOAP plugin
XML plugin

Not unlike other data virtualization systems, DataBearings
features a central component, we refer to as Universal Adapter,
with dynamically loaded adapter plugins for different types of
data sources. DataBearings currently comes with plugins for
SQL databases, SOAP Web services, XML/JSON/CSV Web
services or local files, as well as MS Excel files, and provides
an API for developing additional plugins. A plugin is instan-
tiated using an explicit N3-based data source annotation, an
example of which, for DS/ from our running example, is given
in Figure 3. Such an annotation specifies the class of the plu-
gin (o:type), class-specific connection parameters (o:service),
class-specific data syntax (d:tree in o:semantics), data mapping
to an ontology (the rest of o:semantics), an applicability-to-
query pattern (o:getPattern) and, optionally, an applicability
precondition (o:precondition). Instantiated adapter plugins that
act as ontological virtualizations of data sources we refer to
as ontonuts, a concept we first introduced in [15].

The data source annotation for DS2 is done in a similar
fashion. It uses sapl.shared.eii.CsvOntonut plugin, describes
the syntax via d:table, d:row, and d:value properties and
maps data to the following semantic structure: [a ex:City]
ex:hasName ?name; ex:hasBounds [ex:north ?n; ex:south ?s;
ex:west ?w; ex:east ?e].

This data source mapping approach alone offers a num-
ber of advantages over the rigidness of mapping in existing
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ex:VR_Ontonut a o:Ontonut
; o:type “sapl.shared.eii.XmlOntonut”
; o:service [ o:uri “http://%%ip% %/ TrainRSS/...” ]
; o:precondition { ex:VR ex:hasIP ?ip }
; o:semantics {

* ditree { * dirow {
[ d:element “rss”] d:branch {
[ d:element “channel” ] d:branch {
[ d:element “item” ] d:branch {
[ d:element “guid”] d:branch {* d:value ?id}.
[ d:element “point”] d:branch {* d:value ?loc}.
FrE )
7at s:expression substring(?loc,0,indexOf(?loc,” *))”.
7lng s:expression “substring(?loc,indexOf(?loc,” *)+1)”.
P=>{
[a ex:Train] ex:hasID ?id; ex:hasLocation [ex:lat ?lat; ex:Ing ?Ing]

; o:getPattern { * a ex:Train } .

Figure 3. A data source annotation for the running example.

products like TopBraid, Virtuoso, or Denodo (see Section III):
e  The explicit variable-based mapping allows data to be
mapped to arbitrary semantic structures as dictated by
target ontologies. This is in contrast to being forced to
deal with over-simplified (for DS2) and over-complex
(for DSI) temporary semantic structures, created just

for the integration job, in TopBraid or Virtuoso.

e  Transformations like splitting a location into latitude
and longitude can be handled already at the data
source mapping level. Note the two s:expression op-
erations in Figure 3. This, again, allows mapping
data to existing ontologies, as well as in contrast to
having to carry these operations into the final SPARQL
query in TopBraid or handling them in an intermediary
projection view in relational systems like Denodo.

e  Data source requests can be parametrized with values
obtained from local data (via a precondition as in Fig-
ure 3 or via a local starter query, see below). This is in
contrast to always having to specify the URISs statically
in all of TopBraid, Virtuoso, and Denodo, even while
most practical cases require parametrization.

After providing the data source annotations, the S-APL
production rule that obtains the result we seek in our running
example is as in Figure 4. As can be seen from Figure 4,
an additional advantage of DataBearings is that, unlike in
TopBraid, a data user is completely insulated from the data
distribution details. A person or system specifying a query or
a production rule as above does not need to know whether all
needed data is found from a single data source or is distributed
among two sources. If the situation changes in this regard (data
sources are combined or split), only the ontonuts’ definitions
have to be updated while the queries and rules are not affected.

[a ex:Train] ex:hasID ?id; ex:hasLocation [ex:lat ?lat; ex:Ing ?Ing].
[a ex:City] ex:hasName ?name; ex:hasBounds

[ ex:north ?n; ex:south ?s; ex:west ?w; ex:east ?e ].
Nat <= "n. ?2lat >= 7s. Nng >= ?w. ?at <= ?e.

P=>{..}

Figure 4. S-APL query for the running example.

The Query Decomposer part of the Universal Adapter
analyses a query found in the head of a production rule against
data source annotations, pre-selected using their applicability-
to-query patterns (o:getPattern). Based on this analysis, all
query statements are split into the following groups:
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1)  Statements covered by one or more ontonuts.

2)  Statements which are covered by an ontonut, but
could not be handled by that ontonut (e.g., a filter
on a property value can always be handled by an
SQL source, but by a Web service only if its request
interface includes a corresponding parameter).

3) Inter-ontonut join conditions.

4)  Local starters: statements not matching any ontonut’s
semantics that will be run as a query against the
local data at the beginning of the execution. The
obtained solutions may be used by ontonuts for
parametrization.

5)  Local join conditions: explicit conditions for perform-
ing join of ontonuts-produced solutions with solutions
obtained at the beginning via local starters.

6) Local finalizers: statements that will be handled at
the end of the execution. These are either solution
aggregators (count/min/max/sum) or selection state-
ments (from local data) that depend on variable values
produced in ontonuts.

The Query Executor part of the Universal Adapter performs

a query evaluation process, in which all the involved statements
are handled in the following order: (1) local starters, (2)
ontonuts’ preconditions, (3) covered statements combined and
translated into ontonut-specific form, e.g., SQL, SOAP, HTTP
GET, (4) ontonuts’ post-processing operations (e.g., splitting
a location into latitude and longitude), (5) covered but not
handled statements, (6) join conditions (also implicit join by
a common variable value is supported, as well as the union
operation), (7) local join conditions (again, including implicit),
(8) local finalizers. Note that, in this process, at no point
external non-semantic data is transformed into RDF. Rather,
a semantic query is answered on the combination of external
non-semantic and local semantic data. The step 3 is based on
a relevant sub-query transformation, not data transformation.
This step outputs directly a set of solutions, i.e., a list of
variable-value mappings. For SQL sources, this step actually
involves translating an S-APL sub-query into SQL. For simple
Web services like in our running example, this step involves
matching the sub-query with the data source syntax, requesting
data, and then picking up relevant values from data and
assigning them to variables as needed.

The simple example in Figure 4 does not include any local
or not-handled statements, but only ontonut-covered selection
statements (group 1) and inter-ontonut join statements (group
3). However, local statements appear in most practical integra-
tion cases. Based on a specific question in hand, or the current
situation, some initial solutions (via local starters) may need
to be obtained and used to determine (via preconditions) what
exactly external data sources have to be contacted. Solutions
from external sources may need to be filtered locally if the
corresponding source cannot do it (covered but not handled
statements). Finally, after solutions from external sources are
obtained and joined or unionized, one may still want to extend
them with extra attributes from the local data or to group
solutions by a value and, e.g., count. An ability to flexibly
combine virtualized and local data, and, thus, handle these
practical cases, is a powerful feature of DataBearings giving it
an advantage over most other data integration solutions, both
semantic and non-semantic.

V. EVALUATION
A. Integration run-time

In this section, we report on an evaluation of the perfor-
mance of DataBearings, in terms of the integration run-time, in
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comparison to related commercial integration products, namely
non-semantic Denodo 5.5 and semantic Virtuoso 7.2, and
TopBraid 4.6 (see Section III).

For this evaluation, we created files with snapshots of data
from DSI and DS2 data sources of our running scenario (see
Section II). The DSI snapshot contains 75 train records, while
DS2 snapshot contains 25 city records. This gives 1875 join
pairings to examine and results in 27 solutions (trains currently
in a city area). Then, we created copies of the DS/ snapshot
and, by copy-paste of existing data, increased the number of
records in each by a factor from 2 to 200. The largest file
thus contains 15000 train records encoded in 4.5 megabytes
of XML content, and results in 375000 join pairings and 5400
solutions. The same DS2 snapshot was used in all cases.

Denodo run-times are obtained from its execution trace
view. For TopBraid, the integration SPARQL query was used
as a SPIN framework inference rule, because the execution
times of such rules are reported in TopBraid’s SPIN statistics
view. To check whether SPIN results in a significant additional
overhead, we were also submitting the query directly via the
TopBraid’s SPARQL endpoint and observed the response time
(time to first byte) in Chrome browser’s development tools.
To avoid an overhead created by formatting a large response,
the SPARQL query was modified to return only the number of
results instead of the results themselves. We did not observe
any significant deviation between such a response time and the
corresponding SPIN statistics number for any of the input file
sizes, and report the SPIN statistics numbers here. Virtuoso
does not seem to have performance self-reporting, so we
measured its SPARQL endpoint’s response times, same way
as described above for TopBraid.

Both TopBraid and Virtuoso use query-time ETL, that is,
when receiving a SPARQL query, they access and transform
input data into RDF, load it into temporary RDF storage, and
then run the query. If the files, however, did not change since
the last query, the ETL step is skipped. Therefore, we recorded
separately also the run-time of TopBraid and Virtuoso on
previously loaded data, and report these numbers as *TopBraid
(QL)’ and ’Virtuoso (QL)’. This case only involves executing
a SPARQL query on the RDF storage, but requires extracting
all trains and all cities and then doing the cross-join.

All experiments were performed on the same Windows
7 PC with 2.3 GHz CPU and 4GB RAM. All the run-time
numbers reported are averages over 10 execution runs. Table
I and Figure 5 provide the results. The columns correspond
to different replication factors of the DS/ snapshot. Run-times
are reported in milliseconds.

TABLE 1. INTEGRATION TIME FOR THE RUNNING SCENARIO

[ [ T 7 10 T 20 T 50 [ 100 [ 200 ]
DataBearings 14 42 61 140 265 552
Denodo 41 66 78 178 345 555
TopBraid 124 [ 1322 [ 3892 [ 21212 | 79284 | 305832
TopBraid (QL) | 78 537 1042 | 2631 5277 10554
Virtuoso 340 | 1842 | 2999 | 7359 16559 35152
Virtuoso (QL) 25 56 80 156 344 708

As can be seen, DataBearings consistently demonstrates
a performance very similar to that of non-semantic Denodo,
with a roughly-linear increase in the run-time with the data
size growth. In fact, DataBearings even outperformed Denodo
in all our test cases, with a bigger gain for smaller data sizes,
up to three times for the smallest (original) data. Note that
this is achieved even given all the overhead in DataBearings
created by flexible query decomposition and match-making to
the data sources.
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Figure 5. Integration time for the running scenario.

The biggest of the test jobs (15000 train records) is handled
by both Denodo and DataBearings in just over 0.5 seconds.
On the other hand, Virtuoso needs 35 seconds to do the
same job, while TopBraid is out of hand with 5.1 minutes.
Note the logarithmic scale in the figure. Considering SPARQL
performance on already pre-loaded data, TopBraid still needs
10 seconds with the largest data set, which is surprisingly poor.
Virtuoso, however, needs just 0.7 seconds, which is comparable
to the total performance of DataBearings and Denodo, but can
work only in a static data case.

B. Memory footprint

In addition to measuring the run-time performance, we also
measured the memory footprints of DataBearings, Denodo,
and TopBraid when executing our running example. These
three systems are Java-based, which gives us a possibility to
precisely measure their footprints. Virtuoso was excluded from
this comparison as it is a native Windows application. We can
only say that its total memory footprint, as can be observed in
the Windows resource monitor, was always rather significant
during the tests, with values in the range of 200 to 800 MB.

The total memory footprint includes permanent generation
memory (the program code), which is constant regardless of
the handled data size, as well as allocated memory (the heap)
which grows with the handled data size. Table II and Figure
6 provide the results, in MB. The first column in the Table II
shows the permanent generation footprint alone, while the rest
of columns are sums of permanent generation and allocated
footprints. As before, all the numbers reported are averages
over 10 execution runs.

TABLE II. MEMORY FOOTPRINT FOR THE RUNNING SCENARIO

[ [perm [ T T 10 [ 20 | 50 [ 100 ] 200 |
DataBearings 10 17 26 32 48 84 118
DataBearings (GC) 10 15 20 21 41 60 89
Denodo 68 120 | 150 [ 183 [ 280 | 267 | 280
TopBraid 72 241 | 648 | 602 | 622 | 674 | 738

The permanent generation footprint of DataBearings was
measured using Java VisualVM tool, which is a part of
the Java Development Kit. The allocated memory footprint
was measured via calling java.lang.Runtime’s totalMemory()-
freeMemory() from code, for a better precision. Such a reading
was performed in multiple points of the code and the maximum
value was taken. The memory footprints (both permanent gen-
eration and allocated) of Denodo and TopBraid were measured
using Java Visual VM. Note that we left the maximum memory
settings of Denodo and TopBraid as default in these systems,
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which affects the point at which the Java automatic garbage
collection starts (visible in the figure).
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Figure 6. Memory footprint for the running scenario.

As can be seen in Table II, the DataBearings’ code (its
permanent generation footprint) is seven times lighter than that
of Denodo or TopBraid. Also, the total memory footprint of
DataBearings was significantly lower than the total footprints
of Denodo and TopBraid, in all our experiments.

To further demonstrate the light weight of DataBearings,
we used it as a library in an Android application and made a
mobile phone to execute the integration job from our running
example. The experiments were conducted on a Nexus 5
phone. Table III presents the results, while comparing them
to the numbers obtained on a PC (as in Table I).

TABLE III. INTEGRATION TIME ON ANDROID PHONE
| [T ] 2 | 5 [ 10 20 | 5 ] 100 | 200 |

[ PC_ [ 4] 18 [ 27 [ # [ 6l [ 140 | 265 | 552
[[Nexus5 | 72 | 122 | 283 | 501 | 1079 | 2605 | 5313 | 10625 |

Obviously, data integration jobs are better left to be
performed on servers. Yet, using DataBearings, small data
volumes can be integrated even locally within a smartphone
application. So, 1500 trains (factor of 20) x 25 cities are
handled in just over a second, which appears to be still an
acceptable time for a user to wait.

VI.CONCLUSIONS

Supported by the comparative evaluation presented in this
paper, we claim that, to the best of our knowledge, DataBear-
ings is (1) the only semantic data virtualization solution
available at present, which is not emulating virtualization via
query-time ETL while capable of working with Web data and
not only relational databases, (2) the only semantic solution
to the data integration problem that is as fast as non-semantic
ones, and (3) the only data integration solution, semantic or
not, that is so lightweight that it can be run on a smartphone.

Being a semantic solution, DataBearings offers a possibil-
ity to exploit the evolution-related benefits of the semantic
technology. In addition, DataBearings enables even easier
and cheaper development and maintenance of data integration
systems through a set of advanced features not available in
other semantic systems. These include the ability to map data
to arbitrary semantic structures as dictated by target ontologies,
the ability to perform source data transformations prior to
mapping to an ontology, the ability to parametrize data source
requests, as well as the ability to flexibly combine virtualized
and local data.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-420-6

In this paper, we did not touch some other advanced
features of DataBearings that go well beyond capabilities of
existing data integration systems. These include a support for
federated data updates (i.e., write not only read), as well
as for abstraction of virtualized data. A discussion of these
DataBearings’ features can be found in [5].

An interesting result in our experiments was that Virtuoso
and TopBraid performed worse than DataBearings even when
running the job on already transformed into RDF and pre-
loaded data. This indicates that, even when dealing with static
data, when it would be possible to transform all data into
semantic form and store as RDF, it may still be not a good
idea if integration (join) operations cannot be also performed
statically, but have to be done upon a request. Thus, even in
such cases, pure virtualization, as in DataBearings, may be the
most efficient and thus recommended choice.
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