
Performance Analysis and Optimization of Semantic Queries

Philipp Hertweck

Fraunhofer IOSB
Karlsruhe, Germany

Email: philipp.hertweck@iosb.fraunhofer.de

Erik Kristiansen

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: erik@kristiansen.de

Tobias Hellmund

Fraunhofer IOSB
Karlsruhe, Germany

Email: tobias.hellmund@iosb.fraunhofer.de

Jürgen Moßgraber

Fraunhofer IOSB
Karlsruhe, Germany

Email: juergen.mossgraber@iosb.fraunhofer.de

Abstract—Recently, the usage of triplestores has increased in
complex computer systems. Traditionally, they are used for
representing static knowledge. In the last years, systems started
using semantic triplestores in highly dynamic scenarios, e.g., in
the context of civil protection. In these use cases, performance
characteristics are more and more important. There are various
aspects influencing the query performance. We have noticed that
already the query structure has a significant impact on the
execution time. SPARQL Protocol And RDF Query Language
(SPARQL) is a widely used standard for querying triplestores.
In this work, we have developed SPARQL query patterns and
evaluated their performance characteristics. For this, a literature
review was done to select a suitable benchmark. As a result,
we provide eight recommendations for formulating SPARQL
queries. These can be easily used by everybody without a deeper
knowledge about the implementation of the triplestore, which
contains the desired data.

Keywords–SPARQL Performance; Triplestore; Benchmark;
Query optimization.

I. INTRODUCTION

The World Wide Web was originally designed to be used
by humans; to foster machine understanding of the incompre-
hensible large amount of data in the web, the Semantic Web
was envisioned. This vision focuses on the reuse, availability
and interoperability of data. A milestone on the path to reach
this vision is the Resource Description Framework (RDF
[1]), which defines a data model that encompasses Unique
Resource Identifiers (URIs) and requires data structured as
triples. A triple is a statement about data that consists of
subject, predicate and object. Since all three are identified
by an URI, they can be uniquely recognized and linked by
machines. For example, the Linked-data project [2] started to
link and structure the semantic data available on the Internet.

A set of RDF triples forms a graph. These graphs are
stored in so-called triplestores. To systematically retrieve data
from such stores, the World Wide Web Consortium (W3C)
standardized SPARQL [3], a declarative query language for
RDF based data. There are other query languages for data
represented in RDF, but as SPARQL is the de-facto standard
query language for the Semantic Web, we do not consider

other languages. Since the implementation of triplestores varies
from product to product, the performance of each is different
as well. Since a growing amount of (critical) information
systems integrate data in form of triples, the performance
of SPARQL queries is increasingly important. The following
two examples show the wide range of usage of semantic
technologies. Semantic integration [4] [5] can be applied in
the context of crisis response to support decision support [6].
Another example shows the implementation of semantic data
to protect cultural heritage [7].

There are several possibilities to optimize the execution
of SPARQL queries. Either on the data (representation) itself,
the triplestore’s implementation (internal representation, query
execution, query optimization, etc.) or on the usage of the
triplestore. In this paper, we are focusing on the later. We
examine: are there some easily applicable rules an end-user
should follow while formulating SPARQL queries?

To approach this question, first a literature review of
existing triplestore benchmarks was conducted (Section III).
Different query patterns were developed (Section IV). Those
were compared by executing them, with the help of the selected
benchmark against a triplestore. Our evaluation (Section V)
uses Apache Fuseki, since it is a commonly used, open source
triplestore implementation. With this evaluation, the influenc-
ing factors within a SPARQL query were elaborated and eight
recommendations (Section VI) for query formulations were
derived.

The contributions of this paper are: 1) A literature review
of existing SPARQL benchmarks and a selection, which can be
used to evaluate the performance of different SPARQL query
patterns. 2) Definition of multiple SPARQL query patterns,
to determine the performance implications of different query
characteristics. 3) Derivation of eight easily applicable recom-
mendations for formulating SPARQL queries.

II. RELATED WORK

Evaluating and optimizing the performance of SPARQL
triplestores is not new. Inspired by numerous existing optimiza-
tions for relational databases (internal representation, query

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-813-6

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

execution, query optimization, etc.), lots of work was done
in improving triple store performance by optimizing the query
execution. For example, Weiss et al. [8] propose a sextuple-
indexing storage scheme to enhance query processing. Atre
et al. [9] focus on a Bitmatrix to optimize Join-Operations
in RDF data query processing. Having knowledge about the
distribution of the triplestores contained data, heuristics can
be used to reorder query patterns [10] to optimize the query
execution.

All of these approaches focus on optimizing the triplestore
implementation, either by applying automated query optimiza-
tions or by optimizing the storage or representation of the
RDF triples. Usually this happens in the background without
the need of any interaction of the user of the triplestore. In
contrast, this work focuses on the user side. Daily work showed
that performance characteristics of SPARQL query patterns
are widely unknown for triplestore users. Rietveld et al. [11]
showed in their evaluation that 72.66% of their analyzed user
queries are formulated inefficiently. This is taken into account
by the work of Loizou et al. [12]. The authors describe
five heuristics for creating performant queries. Although their
work is based on a formal evaluation of SPARQL queries,
their results are five easily applicable heuristics, namely: 1)
minimize optional graph patterns 2) use named graphs to
localize SPARQL sub-graph patterns 3) reduce intermediate
results 4) reduce the effects of cartesian products 5) specify
alternative URIs.

In addition to these heuristics which should be considered,
users should keep in mind that there might exist equivalent
(or nearly equivalent) SPARQL queries wich are often ex-
changable in applications. An easy to use guideline, helping to
choose the more performant variant is not available until now.
To bridge this gap, we are taking a triplestore implementation
and evaluate, which SPARQL query patterns are influencing
the execution performance. We are aware that the triplestore
implementation automatically optimizes the internal execution.
Nevertheless, we still expect some aspects a user should be
aware of, when formulating queries. These are taken into ac-
count for recommendations on formulating SPARQL queries.

III. SPARQL BENCHMARKS

A. Evaluation Criteria for the Review of SPARQL Benchmarks
To find a suitable SPARQL benchmark for our evaluation,

we performed a literature review of existing benchmarks. In
combination with the work of [13], we then developed a
categorizing schema that helped identify a suitable benchmark
for this work.

• User defined ontology: Is it possible for a user to use
an arbitrary ontology in the benchmark?

• Data generator: Is there a generator available to
generate new triples to easily scale the data set?

• Query generator: Is there a tool available, which can
dynamically generate queries or is there a fixed set
of queries? Are the performed queries statically or
dynamically generated?

• User defined queries: Is it possible to run user defined
queries?

• Query execution: Is a query execution driver (running
the SPARQL queries on a triplestore) available? Does
it return performance metrics?

• Code availability: Is the benchmarks source code
publicly available?

• Last update: Date of last change in the benchmarks
source code.

• License: Under which license is the source code
published?

To make use of an existing benchmark in the context of
this work, some of the just mentioned features are mandatory.
First of all, the code must be available under an appropriate
license. To scale the data set a data generator is needed.
Since we want to compare different SPARQL queries, it must
be possible to use user defined queries. To simplify the usage
a query execution component is needed. The other features
are beneficial though not mandatory.

B. SPARQL Benchmark Selection
To select a suitable benchmark, we started our literature

review with the W3C list for RDF store benchmarking [14].
Those benchmarks were evaluated, using the just mentioned
criteria. The results are presented in Table I.

For the sake of brevity, only a few benchmarks are in-
troduced in the text. Further information can be found in
the sources. The Lehigh University Benchmark (LUBM) [16]
offers an ontology about universities. Data scaling is conducted
by adding new universities, whereas newly added data has
no interconnections with the previous data. The benchmark
is highly quoted (1500 direct quotes). The Berlin SPARQL
Benchmark [15] is built around an e-commerce system with
different products, vendors and consumers and other common
information, such has reviews. The benchmark dynamically
creates queries during the runtime [29]. The introducing paper
is quoted over 650 times. ’SP2Bench: A SPARQL Performance
Benchmark’ [21] models the behavior of people within a social
network with actions such as ’Likes’, group management, and
befriending persons. The paper is cited nearly 500 times. ’DB-
pedia SPARQL Benchmark – PerformanceAssessment with
Real Queries on Real Data’ [30] created its queries from
real-application queries distilled from the dbpedia-log [31]
and performs these on the dbpedia data set. To this date, the
benchmark nearly reached 300 cites. The Social Intelligence
Benchmark (SIB) simulates the social media network of users
and their interaction [22]. The project is not supported any-
more. IGUANA [28] is the successor of this project. The paper
was quoted 60 times to this date.

The Berlin SPARQL Benchmark BSBM, Lehigh University
Benchmark LUBM as well as LinkBench fulfill our require-
ments. For this work, we decided to use the BSBM, since
it is newer than the LUBM, but also widely used. Although
the BSBM doesn’t have a query generator, it implements a
query templating engine, which allows to put placeholders in
SPARQL queries, which again are substituted during query
execution. This allows to generate different queries with the
same structure.

IV. QUERY PATTERNS

After a benchmark was selected in the last section, the
different SPARQL query patterns, used to derive the recom-
mendations, need to be selected. Subsequently, we characterize
and select the patterns for evaluation.

25Copyright (c) IARIA, 2020. ISBN: 978-1-61208-813-6

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

TABLE I. CONSIDERED BENCHMARKS

Name
User

ontology
Data

generator
User

queries
Query

generator Executor Code
available

Last
Update License

Berlin SPARQL
Benchmark BSBM [15] No Yes Yes No Yes ! 2012 Apache 2.0

Lehigh University
Benchmark LUBM [16] No Yes Yes No Yes ! 2004 GPL 2.0

FedBench [17] No No No No Yes ! 2013 LGPL
Feasible [18] No No Yes Yes No ! 2018 AGPL
LargeRDFBench [19] No No Yes No No ! 2018 AGPL
University Ontology
Benchmark UOBM [20] No Yes No No No % 2005 GPL 2.0

SPARQL Performance
Benchmark [21] No Yes No No No ! 2009 Berkeley License

Social Network
Intelligence Benchmark [22] No Yes No No Yes % 2015 GPL 3.0

Linked Data
Integration Benchmark [23] No Yes Yes No No ! 2012 BSD

Linked Open Data
Quality Assessment [24] No No No No Yes ! 2012 BSD

LinkBench [25] Yes Yes Yes No Yes ! 2015 Apache 2.0
Waterloo SPARQL Diversity
Test Suite [26] No Yes Yes Yes No ! 2014 MIT

Semantic Publishing
Benchmark [27] No Yes No No Yes ! 2019 Apache 2.0

IGUANA [28] Yes No Yes No Yes ! 2019 AGPL

A. Identifying Query Patterns
We studied the syntactical elements of SPARQL queries

and developed variants of query patterns. Those query variants
either make use of the SPARQL algebra equivalences or use
specific elements of the SPARQL query language. In the first
case we are expecting only small differences in performance,
since triple store-internal optimizers already make use of se-
mantic equivalences. The second case might show differences,
due to the different query results. In some use-cases these
different results matter, whereas there are use-cases where
only the user’s negligence or unawareness causes inperformant
SPARQL queries. The results of this work should call the
user’s attention as well as provide easy usable guidelines for
formulating performant queries.

To gather SPARQL patterns, queries used in various past
projects were considered. In addition, informal interviews
and discussions with users (colleagues, students, etc.) were
conducted. This approach showed that the main focus while
formulating SPARQL queries is on writing syntactically cor-
rect queries returning the right values. Performance impacts
were rarely considered. As a result of the discussions, a
list of query patterns causing uncertainty in their expected
performance characteristic were developed. It is to be noted
that the semantics of the compared query patterns might not
be completely the same; yet, on the data set they are applied
on, their result is expected to be the same.

To determine the influence of these patterns, we formulated
two variants of each SPARQL query. Those pairs are used as
query templates filled by the BSBM. With the concept of query
templates, BSBM allows to use placeholders in a SPARQL
query, which are replaced by random values before the query
is executed. This allows to slightly change the content of
the query, without changing its structure to avoid caching
mechanisms in the triple store, which otherwise would tamper
our results. Based on the execution times of those variants, we
identified eight simple and applicable recommendations.

As an example: the first query variant of Filter size looks

like this:

select ?review ?rating2 where {
?review bsbm:rating1 ?rating1.
?review bsbm:rating2 ?rating2
filter (?rating1 >= %rating1% &&

?rating2 < %rating2%)
}

Listing 1. Variant 1 of Filter size

where %rating1% and %rating2% are placeholders, replaced
by BSBM during execution. The performance of this variant
is compared with the following one:

select ?review ?rating2 where {
?review bsbm:rating1 ?rating1.
filter (?rating1 >= %rating1%)
?review bsbm:rating2 ?rating2.
filter (?rating2 < %rating2%)

}

Listing 2. Variant 2 of Filter size

B. Patterns for Evaluation
We identified the following query patterns, with the de-

scribed variants:

• Number of results: Querying instances with a large
amount of instances (1) (Those numbers are used
in Section V to identify the variants) or with a low
number of instances (2).

• Limiting results: Getting all results (1) or limiting the
number of results, using the LIMIT operator (2).

• Projection: Using a projection allows to specify the
needed variables. Either selecting all SELECT * (1)
or only one variable SELECT ?var (2), or only the
number SELECT(count(?var)) of results (3).

26Copyright (c) IARIA, 2020. ISBN: 978-1-61208-813-6

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

• String functions: Either filtering a variable based on
a regular expression (1) or using one of the string
functions, e.g., STRSTARTS (2).

• Filter size: Providing all expressions in one filter term,
combined by the logical AND (1) or having multiple
smaller filter expressions (2).

• Filter position: Since a SPARQL query contains a set
of triple patterns, the position of the filter statement
in this set can be changed: having the filter at the end
(1) or at the beginning (2) of the query.

• String filter: Filtering for numerical (1) or text based
values (2).

• Inverse: Specifying the triple forward ?r rev:reviewer
?p (1) or inverse ?p r̂ev:reviewer ?r (2).

• Variable types: The rdf:type of subject and object
are specified by the predicate’s definition, meaning
it is implicitly available (1). Therefore, adding this
type of information explicitly to the query is worth
investigating (2).

• Optional: Querying triple patterns usually requires
matching all variables. Some of the variables might
be optional. There are two possibilities querying op-
tional variables: using the OPTIONAL statement (1)
or UNION the triples with and without the variable
(2).

• Graph structure: An object of a triple might be either
an instance of another type or a primitive data value.
By this, a query can filter for instances (querying the
RDF graph structure) (1) or for a data value (2).

• Triple order: The order of triple patterns in a
SPARQL query is arbitrary. In the first variant the
first pattern matches a large amount of triples and
the second pattern reduces the result (1). The second
variant is the opposite; the first triple pattern already
limits the result to a small amount (2).

• Limit in subselect: SPARQL supports splitting a
query into multiple select statements. This enables the
user to already LIMIT the result of the subselect. In
this case we compare selecting products and labels,
with limit 5 (1) and subselecting 5 products and then
selecting the corresponding labels (2).

• Distinct: The DISTINCT keyword can be used to
eliminate duplicates in the result (1). As a variant the
weaker REDUCED can be used (which might remove
duplicates, but there is no guarantee) (2).

• Minus: Using not exists allows to filter for triples that
do not match (1):
?product rdfs:label ?label
filter(not exists {?product bsbm:number ?n})
As an alternative the MINUS operator allows to re-
move triple from the result that match a given triple
(2):
?product rdfs:label ?label
MINUS {?product bsbm:number ?n}

• Path: Querying a path can be either done by explicitly
querying the relation (1) or by using a property path
sequence, e.g., b̂sbm:reviewFor/rev:reviewer (2).

Having a basic understanding of triple stores or relational
databases in mind, it is clear that some of the variants are faster.

This is especially the case when the final or intermediate data
set is reduced. Although this is obviously clear, we decided to
keep them in our list, on the one hand to quantify the difference
and on the other hand to return this to the users mind.

As part of the query execution, a triple store has to parse
the SPARQL query into an abstract representation. Usually
this is done by an internal optimizer, which makes use of
equivalences in the SPARQL algebra to change the queries
to an equivalent representation. This is especially expected for
the variants of Filter size, Filter position and Triple order.
We validated our assumption by parsing our queries with the
Apache Jena query parser [32], which is also part of the Fuseki
triple store. This showed for Filter size that big filters are split
into multiple single filters, therefore internally the two variants
are processed the same way. Also a comparison of the Filter
position variants showed that in the internal representation
the filters are moved to the same place. However, the triple
order was not changed. In addition, we noted that querying
the inverse relation leads back to the forward relation.

V. EVALUATION

In our evaluation, we compare the query execution time
of the previously described query pattern variants. In the
following, we briefly introduce our system set-up before giving
the results of the performance analysis.

A. System Set-Up and Experimental Procedure

We executed the queries presented in the previous section
using the Berlin SPARQL Benchmark and a Fuseki triple store
hosting a BSBM data set. The benchmark as well as Fuseki
were running on commodity hardware: Laptop with Intel i7
CPU and 16GB of RAM. As explained in section III, the Berlin
SPARQL Benchmark offers the possibility to generate data sets
of arbitrary size. In first tests 1.8 million triple showed useful
for a smaller data set: not too big, but already showing effects.
For a bigger data set, we decided to use 4 million triples, since
this still allowed the execution on our hardware in a reasonable
time.

First tests showed that the Heap-Space, available for the
Fuseki triple store process, is an important factor: the com-
bination of too many triples with a small Heap-Space results
in exceptions thrown by the triplestore. 1.1 GB and 2.25 GB,
respectively, turned out to be the minimum Heap-Space sizes
for our data sets.

For our evaluation, we rely on the available features of the
Berlin SPARQL Benchmark (BSBM): BSBM ontology, BSBM
data generator and BSBM query execution. The BSBM query
execution takes a set of SPARQL query templates. Parameters
were replaced with a set of predefined values and sent to
a SPARQL endpoint. As a result the individual execution
times, together with number of Queries Per Second (QPS)
are returned by the benchmark. Our evaluation is based on
QPS as an average over multiple queries. In addition to the
benchmark, small scripts were developed to ease the execution
of the different query variants and to store the results in an
ordered manner. To initialize the triplestore correctly (e.g.,
creating indices, caches, etc.) a warm up phase of 30 queries
was introduced for each variant. For the test run, each query
variant was executed 150 times.

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-813-6

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

TABLE II. EVALUATION OF QUERY VARIANTS

Query Pattern 4 million 1.8 million

7 GB 2.45 GB 7 GB 4 GB 1.11 GB VI

Number of results !2 !2 !2 !2 !2 1
Limiting result !2 !2 !2 !2 !2 1
Projection !3 !2 !3 !3 !3 2
String functions !2 !2 !2 !2 !2 6
Filter size % % % % % -
FilterPos % !2 % % % -
String filter !1 !2 !1 !1 !2 5
Inverse % % % !1 % -
Variables type !1 !1 !1 !1 !1 4
Optional % % !1 !1 % -
Graph structure !2 !2 % % % -
Triple order !2 !2 !2 !2 !2 3
Limit in subselect !1 !1 % % % -
Distinct % !2 !2 !2 !2 7
Minus !2 !2 !2 !2 !2 8
Paths % % % % !2 -

B. Results
Table II summarizes our evaluation results. Each column

shows a configuration of the triplestore (available Heap-Space
and number of inserted triples). If there was not a significant
difference (10 %) in the execution time of the query variants it
is marked with the %sign. A !indicates a difference, where
the subscript points out, which of the variants had the better
performance. The last column anticipates the recommendation,
presented in the following Section VI.

Unsurprisingly, the basic rule of thumb - limiting the result
set size - proved to be true. The query returning less data was
faster for all variants: Number of results, Limiting result and
Projection. Like described in the previous Section IV there
was no difference for Filter size. Only one configuration for
FilterPos showed a difference. These results were expected,
due to the same internal representation. There are some pat-
terns where a difference was noted only in one configuration
(FilterPos, Inverse, Paths). So, those patterns generally do not
have a significant impact on the queries’ performance. The
example of FilterPos (having the same internal representation,
but performance difference in one configuration) shows, there
are additional (not further analyzed) influencing factors.

There seems to be no big difference between Optional and
Union. In two configurations the use of Optional was slightly
faster than Union. Also filtering a Graph structure doesn’t
show a clear difference. For the larger data set of 4 million
triples, filtering for a graph structure was a bit slower than
filtering for data values.

As known from relational data bases, filtering for text based
values (String filter) is slower (although it seems that this
effect only appears for larger data sets). If searching in text
is needed, then the functions provided by SPARQL should be
preferred over generic regular expressions (String functions).
It also showed that using specially provided functions (like
Reduced instead of Distinct or Minus instead of not exists)
can improve the query performance.

Surprisingly, it is to be noted that providing additional
type information (Variables type) can slow down the query
execution. It seems that adding this type information results

in additional checks during the query execution and does not
support the query optimization as one might expect.

Regarding the result of the query, the triple order is
arbitrary. In any case, it is shown that this holds not valid
for the performance: more selective triple patterns should be
stated first. Unexpectedly, the triples were not automatically
reordered during the execution by the triplestore based on
heuristics of the contained data. Since reordering triples results
in equivalent results and users often have knowledge (or at least
some idea) about the selectivity of a triple pattern, they should
be careful about the order. Reducing the intermediate result
by Limiting a subselect does not provide any performance
optimization in our tests. Surprisingly, a subselect without
a Limit was faster in two configurations; we expected the
performance impact of a limited result set to be higher, than
that of a subselect.

VI. RECOMMENDATIONS

Based on the previously presented evaluation, the follow-
ing recommendations should be kept in mind when writing
SPARQL queries:

1) Small result set: If possible, limit the returned result.
If the complete result is not processable by the client,
make use of LIMIT and get the next chunk of data
by using OFFSET.

2) Use projections: Clearly specify the variables of
interest and do not select everything (SELECT *). If
only the number of results is of interest, make use of
COUNT.

3) Reduce intermediate results: If known, list the most
selective triple query pattern first.

4) Do not add additional types: Do not add rdf:type
triples if they aren’t needed.

5) Avoid filtering for text: If possible prefer filtering
for numbers instead of text.

6) Use String-functions: Prefer to use the SPARQL
STR-functions instead of regular expressions.

7) Use reduce: If duplicates in the result are tolerable,
use REDUCE instead of DISTINCT.

8) Minus-Operator instead of Filter: Express your
filter expression in a MINUS and avoid FILTER in
conjunction with not exists.

VII. CONCLUSION

The execution time of SPARQL queries often is crucial
for applications relying on semantic data stores. Only a few,
easily applicable guidelines are available for users writing
performant SPARQL queries. In this work, we closed this gap
by 1) selecting a SPARQL benchmark, to compare different
variants of SPARQL queries 2) extracting common patterns
in SPARQL queries and formulating variants to determine
their impact on performance 3) providing eight easily appli-
cable recommendations that can be considered while writing
SPARQL queries.

In comparison with Loizou’s work [12], we can confirm
his findings 1) and 3) and expand the suggestions with our
findings.

Besides the provided recommendations, the evaluation
showed that the results vary from configuration to configu-
ration. There are many factors that influence the execution

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-813-6

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

time of SPARQL queries. Therefore, the presented recommen-
dations can be used as hints and thumb rules to guide users
through formulating SPARQL queries, without the need of any
specialized knowledge. If the performance of specific queries
is crucial for a system, dedicated benchmarking tests needs to
be done with the given data set and triplestore implementation.
Our extension to the BSBM and benchmark execution can be
used to simplify further evaluations.

Future work can extend the evaluation to other triplestore
implementations and data sets, as well as the comparison of
different triplestores among each other. Notably, an analysis of
different query patterns on different triplestores is interesting
as well, to find out if our suggestions hold valid on different
triplestore implementations. Some of the recommendations
change the result of the SPARQL query, whereas it should
be noted that some of the tips result in equivalent queries. In
future work these recommendations can be implemented into
the triplestore’s optimizer to automatically transform into more
efficient, but semantically equivalent queries.

REFERENCES

[1] World Wide Web Consortium (W3C), “Rdf 1.1 concepts and
abstract syntax,” 25.02.2014, retrieved 09. 2020. [Online]. Available:
https://www.w3.org/TR/rdf11-concepts/

[2] “The Linked Open Data Cloud,” retrieved 09. 2020. [Online].
Available: https://lod-cloud.net/

[3] World Wide Web Consortium (W3C) , “Sparql 1.1 overview,”
21.03.2013, retrieved 09. 2020. [Online]. Available: https://www.w3.
org/TR/sparql11-overview

[4] E. Kontopoulos et al., “Ontology-based representation of crisis manage-
ment procedures for climate events,” in 1st International Workshop on
Intelligent Crisis Management Technologies for Climate Events (ICMT
2018), colocated with the 15th International Conference on Information
Systems for Crisis Response and Management (ISCRAM 2018), 2018,
pp. 1064–1073.

[5] T. Hellmund, M. Schenk, P. Hertweck, and J. Moßgraber, “Employing
geospatial semantics and semantic web technologies in natural disaster
management,” SEMANTICS Posters and Demos, 2019.

[6] P. Hertweck et al., “The backbone of decision support systems: The
sensor to decision chain,” International Journal of Information Systems
for Crisis Response and Management (IJISCRAM), vol. 10, no. 4, 2018,
pp. 65–87.

[7] T. Hellmund et al., “Introducing the heracles ontology—semantics for
cultural heritage management,” Heritage, vol. 1, no. 2, 2018, pp. 377–
391.

[8] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple indexing
for semantic web data management,” Proceedings of the VLDB En-
dowment, vol. 1, no. 1, 2008, pp. 1008–1019.

[9] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix bit loaded: a
scalable lightweight join query processor for rdf data,” in Proceedings
of the 19th international conference on World Wide Web, 2010, pp.
41–50.

[10] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds,
“Sparql basic graph pattern optimization using selectivity estimation,”
in Proceedings of the 17th international conference on World Wide Web,
2008, pp. 595–604.

[11] L. Rietveld and R. Hoekstra, “Yasgui: feeling the pulse of linked data,”
in International Conference on Knowledge Engineering and Knowledge
Management, 2014, pp. 441–452.

[12] A. Loizou, R. Angles, and P. Groth, “On the formulation of performant
sparql queries,” Journal of Web Semantics, vol. 31, 2015, pp. 1–26.

[13] M. Saleem et al., “How representative is a sparql benchmark? an
analysis of rdf triplestore benchmarks,” in The World Wide Web
Conference, ser. WWW ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1623–1633. [Online]. Available:
https://doi.org/10.1145/3308558.3313556

[14] World Wide Web Consortium (W3C), “Rdf store benchmarking,”
20.10.2018, retrieved 09. 2020. [Online]. Available: https://www.w3.
org/wiki/RdfStoreBenchmarking

[15] C. Bizer and A. Schultz, “The berlin sparql benchmark,” International
Journal on Semantic Web and Information Systems (IJSWIS), vol. 5,
no. 2, 2009, pp. 1–24.

[16] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl knowledge
base systems,” Journal of Web Semantics, vol. 3, no. 2-3, 2005, pp.
158–182.

[17] M. Schmidt et al., “Fedbench: A benchmark suite for federated semantic
data query processing,” in International Semantic Web Conference,
2011, pp. 585–600.

[18] M. Saleem, Q. Mehmood, and A.-C. N. Ngomo, “Feasible: A feature-
based sparql benchmark generation framework,” in International Se-
mantic Web Conference, 2015, pp. 52–69.

[19] M. Saleem, A. Hasnain, and A.-C. N. Ngomo, “Largerdfbench: a
billion triples benchmark for sparql endpoint federation,” Journal of
Web Semantics, vol. 48, 2018, pp. 85–125.

[20] L. Ma et al., “Towards a complete owl ontology benchmark,” in
European Semantic Web Conference, 2006, pp. 125–139.

[21] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “Spˆ2bench:
a sparql performance benchmark,” in 2009 IEEE 25th International
Conference on Data Engineering, 2009, pp. 222–233.

[22] M.-D. Pham, P. Boncz, and O. Erling, “S3g2: A scalable structure-
correlated social graph generator,” in Technology Conference on Per-
formance Evaluation and Benchmarking, 2012, pp. 156–172.

[23] C. R. Rivero, A. Schultz, C. Bizer, and D. Ruiz Cortés, “Benchmarking
the performance of linked data translation systems,” in LDOW 2012:
WWW2012 Workshop on Linked Data on the Web (2012), 2012.

[24] P. N. Mendes, H. Mühleisen, and C. Bizer, “Sieve: linked data quality
assessment and fusion,” in Proceedings of the 2012 Joint EDBT/ICDT
Workshops, 2012, pp. 116–123.

[25] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,
“Linkbench: a database benchmark based on the facebook social graph,”
in Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, 2013, pp. 1185–1196.

[26] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress
testing of rdf data management systems,” in International Semantic Web
Conference, 2014, pp. 197–212.

[27] V. Kotsev et al., “Benchmarking rdf query engines: The ldbc semantic
publishing benchmark,” in BLINK@ ISWC, 2016, pp. 1–16.

[28] F. Conrads, J. Lehmann, M. Saleem, M. Morsey, and A.-C. N. Ngomo,
“Iguana: a generic framework for benchmarking the read-write per-
formance of triple stores,” in International Semantic Web Conference,
2017, pp. 48–65.

[29] C. Bizer and A. Schultz, “Benchmarking the performance of storage
systems that expose sparql endpoints,” in Proc. 4 th International Work-
shop on Scalable Semantic Web Knowledge Base Systems (SSWS),
2008, p. 39.

[30] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “Dbpedia sparql
benchmark–performance assessment with real queries on real data,” in
International semantic web conference, 2011, pp. 454–469.

[31] “DBpedia,” retrieved 09. 2020. [Online]. Available: https://wiki.
dbpedia.org/

[32] “Apache Jena,” retrieved 09. 2020. [Online]. Available: https:
//jena.apache.org/documentation/query/index.html

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-813-6

SEMAPRO 2020 : The Fourteenth International Conference on Advances in Semantic Processing

