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Abstract—In this work, the condition of a metallic structure
is classified based on the acquired sensor data from a surface-
mounted piezoelectric sensor/actuator network. The structure
under consideration is an aluminum plate with riveted holes
and possible crack damage in these holes is investigated. The
sensor/actuator network uses diagnostic signals injected to
piezoelectric actuators and received sensor signals to detect the
crack. The damage classification system consists of three major
components: sensitive signal acquisition, principal feature ex-
traction and damage classification. An appropriate sine wave
burst is used as diagnostic signals for actuators to transmit
to sensors in order to detect the integrity of the structure.
The combination of time-domain S0 waves from all sensitive
sensor signals is directly used as features to detect damage.
Since the time sequence of the extracted S0 waves is selected
as the feature and has a high dimension, principal component
estimation is applied to reduce the data dimension before
entering the neural network training. Finally, in structure
condition classification, a LVQ (learning vector quantization)
neural network is used to classify structure conditions as
healthy or damaged. In this paper, a number of FEM (finite
element modeling) simulation results of sensor signals are
taken as inputs to the neural network for training, since it
is found that the FEM results have a good agreement with the
experimental testing results on real plates. The performance of
the classification is then validated by using these testing results.

Keywords-active sensing; damage classification; feature ex-
traction; finite element modeling; Lamb wave; principal com-
ponent analysis; structure health monitoring; sensor network.

I. INTRODUCTION

Early detection of damages such as cracks in metallic

structures due to cyclic loads and environmental corrosion is

critical for preventing catastrophic failure and prolonging the

life of aircraft structures. To reduce the cost of maintenance,

structural health monitoring (SHM) has been proposed as an

alternative approach to replace traditional time-consuming

inspection for maintenance. The wave propagation method

for structural health monitoring has been demonstrated to be

effective in detecting debonding in composites and cracks in

metallic structures. Therefore, in this work, wave propaga-

tion method based on surface-mounted piezoelectric sensor

arrays is adopted to monitor crack growth at riveted holes.

In general, the structural health monitoring system con-

sists of two major parts: hardware and software. The

hardware includes the distributed sensor network and the

data acquisition system. In this work, the active sensing

network with actuators excited by known diagnosis signals is

adopted. And the software part for diagnosis includes signal

analysis for sensitive feature extraction and intelligent al-

gorithms for damage interpretation and classification, which

actually result in the physical condition of a given structure

from the raw sensor measurements. Our research reported in

this paper is concentrated on feature extraction and structure

condition classification.

Neural network methods are widely used to solve clas-

sification problem, since when properly trained they eas-

ily map the extracted feature space to structure condition

space. Designing an effective neural network has always

been a challenging task. In [6], a three-layer propabilistic

neural network is applied to classify the sensor data into

several categories relative to the damage location in the

circular plates using resonance frequency shifts of E/M

(electro/mechanical) impedance as damage features. In [7],

a backpropagation neural network is trained to categorize

cracks according to their lengths using FE modeling data for

scattering of ultrasound by the cracks emanating from rivet

holes in a thin aluminum plate. An impedance-based damage

detection combined with a backpropagarion neural network

is developed in [8] to locate and identify the structure

damages. In [9], with independent component analysis for

vibration features, a multi-layer perceptron neural network,

trained using an error backpropagation algorithm, is able to

detect the undamaged and damaged states with very good

accuracy and repeatability.

Lamb wave is much more sensitive to structure dam-

ages than other structural responses such as modal shape,

natural frequency, etc., and the artificial neural network

technique based on Lamb wave testing is able to lead to

precise identification of the damages. In [10], the authors

developed an identification technique for debonding in ad-
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hesively bonded joints using Lamb wave signals interpreted

by neural network training. In [11], different crack lengths

at four locations in a PVC sandwich panel were numerically

simulated and the percentage shifts in structural energy

were used to train a backpropagation neural network. Good

identification precision was achieved for another numerically

simulated damage cases, while poor precision was attained

using measurement signals. In [12], the so-called DDFs

(digital damage fingerprints) are extracted from the spec-

trographic characteristics of Lamb wave signals and serve

as damage features. Various numerical simulation results

are employed to train the NN (neural network) and then

experimentally validated by identifying cylinder through-

holes and delamination in the composite laminates. In most

of these papers, the artificial NN employs the method of

supervised feedforward backpropagation.

This paper presents a method based on neural network

for the classification of an aluminum plate with and without

crack damage at reveted holes. The time-domain sensor

signals are directly used as damage features, and key fea-

tures having reduced data size are extracted after principal

component estimation. The estimated key features are then

considered as the input at the neural network, which is

trained according to the learning vector quantization method.

The NN training uses FEM (finite element modeling) data of

Lamb wave propagation in the active sensor network system,

and the classification performance is evaluated through the

validation using the experimental testing data.

II. ACTIVE SENSING SYSTEM FOR STRUCTURE CRACK

DETECTION

Figure 1. Active sensing system for an aluminum plate with riveted holes
with cracks.

The aluminum plate with riveted holes illustrated in Fig. 1

is studied on crack detection using the active sensing system,

which consists of sensors denoted as s1, s2, · · ·, s7, and

actuators denoted as a1, a2, · · ·, a7. The cracks in the hole

are indicated in Fig. 1 with length l. The actuators excited by

the diagnosis signal, which is here the windowed sinewave

burst as shown in Fig. 2, transmit the signal to the sensors.

The received signal on the sensor contains the information

about the integrity of the structure between the actuator and

the sensor, and will be used to detect any crack occurrence

by investigating any change in the received signal. Based

on the analysis of the sensor signals, information can be

retrieved concerning the extent of the damage and used to

assess and classify the health condition of the structure.

In this work, we take actuator a4 as one case which is

excited by the diagnosis signal in Fig. 2. Signal propagation

is simulated with FEM method, and will be verified by

testing on real plates.
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Figure 2. 400 kHz sinewave burst injected to the actuator in simulation.

A. FEM simulation

The FEM result of sensor signals for the pristine plate

is shown in Fig. 3. The fundamental symmetric (S0) mode

is widely used to detect surface crack in metallic structures

due to its sensitivity to crack growth [1] and thus in this

work it is utilized for crack detection. As indicated in Fig.

3, S0 wave is obviously fetched by the sensors.

When the plate has a crack with l=6mm at the hole #4,

the signals of sensors 1 to 4 are shown in Fig. 12. It is

obviously noticed that the S0 wave amplitude of sensor 4

is reduced compared with that of the pristine plate. In this

case, because sensors s5, s6 and s7 are symmetric to sensors

s3, s2 and s1, their signals are respectively the same as those

of sensors s3, s2 and s1 and thus omitted here.

With different crack lengths, the maximum amplitude of

S0 wave of each sensor signal is plotted in Fig. 5. As

expected, sensor s4 is most sensitive to crack at hole #4,

which is proved from Fig. 5 as the curve corresponding to

s4 drops most significantly even for a small crack l=2mm.
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Other sensors s2 and s3 are sensitive to bigger cracks, while

s1 signal does not change much and thus it is not able to

detect the crack at hole #4.

Simulation results of sensor signals for cracks located

respectively at holes # 3, 2 and 1 have been obtained. The

S0 wave maximum amplitude versus different crack lengths

is displayed in Fig.s 6-8. In Fig. 6, s3 and s2 are most

sensitive to cracks, and s1 is also possibly useful to detect

crack. In Fig. 7 for the crack at hole #2, s1 and s2 are

able to detect it. However, for crack at hole #1, none of the

four sensors is capable of detecting the crack. This implies

that excitation to an actuator closer to it is required. In this

work, we study the case of actuator a4 excited. As for other

actuators, the processing to sensor signals is similar.
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Figure 3. Sensor signals for the pristine plate.
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Figure 4. Sensor signals for the plate with crack l=6mm at hole#4.

The above analysis shows that the sensors are all useful

to crack detection. It is also noticed that S0 wave amplitude

as well as its time delay (or, time of flight [2]) relative to

actuator signal are sensitive to the crack. Therefore the time
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Figure 5. Maximum amplitude of S0 wave versus crack length for crack

at hole #4.
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Figure 6. Maximum amplitude of S0 wave versus crack length for crack
at hole #3.
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Figure 7. Maximum amplitude of S0 wave versus crack length for crack
at hole #2.
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Figure 8. Maximum amplitude of S0 wave versus crack length for crack
at hole #1.

sequences of S0 waves of sensors s1-s4 will be used as

features for classification in this paper. Take the crack at hole

#4 as an example. The combined S0 wave time sequence

of sensors s1-s4 is shown in Fig. 9.
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Figure 9. S0 waves for crack at hole #4.

B. Experimental verification

The experimental setup consists of an Arbitrary Wave

Generator (AWG) 2041, PZT driver, sensor signal ampli-

fiers, and a programmable GAGE Compuscope 82G card

connected to a PC running Labwindows/CVI. The actuation

and the sensor signals are amplified by high bandwidth

amplifiers. The data acquisition subsystem includes a PCI

interface controlled with the PC running Labwindows/CVI,

and the data are saved in PC through the GAGE card. The

schematic diagram of the experimental setup is shown in

Fig. 10.

Figure 10. Experimental setup.

Experimental testing on a real plate has been conducted.

Circular transducers as sensors and actuators are mounted to

the surface of the plate by using epoxy. Excitation signal to

the actuator is the same as that in Fig. 2. The sensor signal is

collected via the data acquisition card with 20MHz sampling

rate. For the pristine plate, sensor signals are displayed in

Fig. 11, which agrees well with the simulation results in Fig.

3. We take the plate with crack l=6mm at hole#4 as one

example with crack. Fig.s 12-13 show the simulation and

experimental results, where it is observed that the S0 mode

agrees quite well to each other.
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Figure 11. Experimental sensor signals for the pristine plate.

Since the FEM result agrees well with the experiment

data, in the next section the FEM results together with some

of the experiment data will be used in the neural network

training for damage classification.

III. CLASSIFICATION ARCHITECTURE

This section presents the system architecture being used

for the crack classification methodology. The key steps
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Figure 12. Simulated sensor signals for the plate with crack l=6mm at
hole#4.
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Figure 13. Experimental sensor signals for the plate with crack l=6mm
at hole#4.

involved in the methodology are 1) S0 wave extraction, 2)

Estimation of principal components, 3) Structure condition

classification using a neural network.

The proposed approach makes use of an architecture that

consists of a neural network to classify different structure

conditions. The scheme employed in the approach is shown

in Fig. 14, and is detailed in subsequent sections and outlined

below.

Figure 14. Classification architecture.

The first step of the methodology involves the extraction

of S0 wave. The time sequences of S0 waves from several

sensors are used as inputs to the stage of principal com-

ponent estimation. This step directly uses the time-domain

signal of the sensors, which reduces the processing time for

the sensor signals.

The second step given in the proposed approach involves

the dimension reduction of the sensor signal using Principal

Component Estimation. Principal component analysis (PCA)

is a statistical technique used for data compression by

determining a linear transformation matrix W ∈ Rm×n

(m < n). The data X ∈ Rn×1 is compressed and a lower

dimension data y ∈ Rm×1 is yielded and given by

y = WX. (1)

The PCA technique is to reduce the number of features

representing a data by discarding the ones which have small

variance and retains only those that have large variance. It

uses singular value decomposition method in calculating the

eigenvectors of the co-variance matrix formed by analyzing

the sensor data. Only those eigenvectors are selected which

give the maximum information about the data. These chosen

eigenvectors form the matrix W .

The last and the main step of classifying structure condi-

tions are obtained from the methodology of neural network.

The neural network is based on Learning Vector Quantiza-

tion (LVQ) nets. The LVQ network is trained using Kohonen

learning rule to classify structure conditions.

IV. CLASSIFICATION PERFORMANCE ANALYSIS

The time domain data of S0 waves from sensors 1 to 4

discussed in Section II is used as feature to classify the cases

into categories relative to the structure condition. In this

paper, two classes are assigned: 1 representing no damage,

and 2 representing damage with crack.

As shown in Table 1, the shaded parts are the types of

plates under investigation. It is shown that the data used for

principal component estimation and neural network training

are mostly coming from FEM results. Only one case is

from a real specimen as the pristine plate. For principal

component estimation and neural network training, these

data are expanded as 1019 pristine plate and 736 damaged

plates, which means the sensor data for pristine plate is

repeatedly used for 1019 times, and the sensor data for each

damaged case is repeatedly used for 46 times. The dimension

of S0 wave combination from the four sensors is 1684. After

principal component estimation, the dimension is reduced

from 1684 to 13.

The used LVQ neural network (’newlvq’ function in Mat-

lab) is a a two-layer network. The first layer is a competitive

layer that uses the compet transfer function and calculates

the distance from an input to each row of the input weight

matrix. The second layer is a linear layer having purelin

neurons. In this application, the number of hidden neuron
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of the first layer is 4 and the class percentages are 45% and

55%.

As shown in Table 1, testing results from 10 real plates

(indicated by the shadow) are used to verify the classifica-

tion method. Based on the trained LVQ neural network, 8
plates are classified correctly, and 2 plates are not classified

correctly. It is noted the NN training is mainly based on

the FEM simulation results. The trained NN leads to such a

classification results for the tested specimens is acceptable

and promising. It is also noticed that the trained NN is

potentially able to identify combined cracks, although it is

solely based on the single crack cases.

V. CONCLUSION

In this paper, the aluminum plates with the riveted holes

and possible crack damage at these holes have been studied

and the surface-mounted piezoelectric sensor/actuator net-

work has been utilized to detect the crack. The 400 kHz

sine wave burst has been used as diagnostic signals and

injected to actuators and it propagates to sensors in order

to detect the integrity of the structure. The combination of

time-domain S0 waves from all sensitive sensor signals has

been directly used as features to detect the crack damage.

After the principal component estimation, the reduced-size

data work as input for the LVQ neural network training.

The neural network training has utilized a series of FEM

simulation results, since it has been found that the FEM

results have a good agreement with the experimental testing

results on real plates. The performance of the classification

has been finally validated by using the testing results from

10 real plates.
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