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Abstract—This work presents a general methodology to
perform sensor stream reduction in wireless sensor networks.
This methodology considers the application requirements, the
reduction design, and the data reduce validation. Specifically,
the reduction design, we present a architecture that can be
applied to reduce the data when it is sensed or routed through
to sink. The objective of this work is to show step-by-step
how we can realize reduction applications in wireless sensor
networks by using our methodology. The study cases show the
usefulness of our methodology applied on a general sensing
and a real time scenarios.
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I. INTRODUCTION

A wireless sensor network (WSNs) [1] is a special type
of network represented by a set of sensor nodes, where each
node works by detecting events, performing quick local data
processing, and transmitting data through a ad-hoc wireless
communication. Sensor nodes work in a cooperative way,
and all their measurements are sent to a special node called
sink. WSNs are commonly used in applications such as
environmental, habitat, or industrial monitoring [2]. The phe-
nomena monitored usually require measurements of physical
variables, such as temperature, pressure, and humidity, and
a single node can monitor one or more of these variables.

The data generated by WSNs have particular character-
istics, as they arrive at the sink node in an online fashion,
are unlimited, and there is no control in the messages order
of arrival. This type of data is nowadays referred as data
stream [3]. Besides the usually characteristics of any data
stream, a sensor data stream has other peculiar features,
since it represents only a sample of the entire population, is
usually imprecise and noisy, and of moderate size.

There would be no problem in collecting, processing
and transmitting a data stream if a WSN was not limited
by a series of imposed restrictions. WSNs have a limited
energy source (being a microelectronic device, a sensor
node can be only equipped with a limited power source),
low computational power, and reduced bandwidth, plus the
weakness of a wireless medium communication. From these
restrictions, the energy is the most critical, as the sensor
lifetime strongly depends on the battery lifetime, and in

some applications renewal of power resources might not be
possible.

In these conditions, dealing with all the data stream
becomes an unfeasible task. If the sensor node transmits
all its measurements, it spends a lot of energy, and there is
no guarantee that the data will not be delayed or lost. In
order to respect the WSN restrictions, many strategies for
data processing were proposed, including data aggregation,
data fusion and data reduction.

The simplest strategy of the aforementioned is data ag-
gregation [4]. Data aggregation reduces the data consid-
ering some application requirement, for example the data
location. The main objective of this approach is to reduce
the network data traffic by reducing the number of packets
by aggregating them, regardless of data semantics. Data
fusion [5], in contrast, is a more sophisticated strategy that
focuses on processing data gathered by sensor nodes by
benefiting from their processing capability. By exploiting
the synergy among the available data, fusion techniques can
reduce the amount of data traffic, filter noisy measurements,
and make predictions and inferences about the monitored
entity. Finally, the sensor stream reduction [6] strategies
take advantage of the data stream algorithms characteristics
to allow an online reduction of the data sensing based on
application requirements, and are simple to implement.

From the three strategies, considering the application
restrictions and the advantages of online data processing,
we focus on sensor data stream reduction. Regarding the
WSN application restriction, its use is motivated by three
main factors. First, data transmission requires more energy
than data measurement. Hence, reducing the data transmit-
ted reduces the energy spent. Second, in order to reduce
the data, the sensor node needs to perform constant and
quick large local data processing, which requires simple
and smart reduction strategies. Reduction strategies based
on data streams are suitable here since they process the
data locally and independently of previous data, avoiding
the complete data storage and/or preprocessing. At last, as
we have reduced bandwidth, sending large amounts of data
can be problematic, causing excessive delay in response time
and invalidating the data.

Although there are many sensor stream reduction strate-
gies available in the literature [3], they usually consider ap-
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plication specific conditions in their implementation, turning
their portability to different scenarios a difficult task. Hence,
every time a new application comes at hand, a lot of work
is involved in adapting these technics to the new scenarios.
In this direction, this paper proposes a general framework
for sensor data stream reduction. The framework takes into
account the reduction methodology design, which shows
how to reduce data as it is sensed or routed through the sink,
and the reduced data validation process, which assesses if
the reduced data is as representative as the original data.

The remainder of this article is organized as follows. We
first describe the reduction design focusing in the architec-
ture reduction. We show some data reduce validation that can
applied. We present some specifics study case showing the
efficiency of our methodology afterward. Finally, the open
issues and conclusions are discussed.

II. REDUCTION ARCHITECTURE DESIGN

This section presents a general architecture for sensor
stream reduction that can be easily applied to any WSN
scenario aiming to reduce its energy consumption and data
delay. The way the streams are reduced depends on the
moment the reduction is going to be performed, i.e., during
sensing or routing streams, and the type of data stream we
are dealing with, i.e., the number of phenomena monitored
by the stream generated by the sensor node.
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Figure 1. General architecture

The proposed methodology is illustrated in Fig. 1. As
observed, the input streams can have been originated by
the phenomena (sensing stream) or sent to the sensor node
by another node (routing stream). The sensing reduction
is recommended when the sensor device gets an excessive
number of samples, and cannot be dynamically calibrated to
deal with more data than it currently deals with. The routing
reduction, in contrast, is performed when the network does
not support the amount of data being transmitted. For
instance, if the application has some requirements regarding

the amount of data supported by each sensor node, data
stream reduction can avoid uncontrolled data loss while
guaranteeing the application requirements. Note that the
sensing stream arrives in the application layer, while the
routing stream arrives in the network layer.

When data arrives in the network layer, the network
packets first need to be unpacked, separating the data stream
from the header (that may contain some specific application
information/restriction). Once it is unpacked, it is sent to
the application layer, to be processed in the same way that
sensing streams. At the same time, stream information is
given to a cross-layer (labeled in Fig. 1 as “stream infor-
mation”), responsible for making the interface between the
application and network layers. The “stream information”,
highlighted in Fig. 1, is responsible for choosing which
reduction algorithm should be executed and its parameters.
The information stored in this cross-layer includes:

• Feedback: Data received from other sensor nodes in
order to perform the reduction calibration in an online
fashion. For example, if the data reduction is dynamic,
other nodes can inform the current node if more or less
data can be propagated.

• Application information: Data received from the net-
work layer when the stream is unpacked. Examples
of application information are the deadline to stream
delivery or global energy constraints.

• Data stream type: Data received from the application
layer after the data stream is classified, and can be
univariate or multivariate.

• Reduction parameters: Data given to the application
layer in to guide it to perform the more appropriated
reduction, considering the “application information”
and the “data stream type”. Examples of reduction
parameter is Use a sampling algorithm with 50%
reduction.

• Reduction information: Data received from the appli-
cation layer after the reduction. Examples of reduction
information are the reduction level achieved or the
reduced data size.

• New application information: Data given to the net-
work layer for packing the reduced stream out. Exam-
ples of application information are the updated deadline
for stream delivery, the new global energy constrains,
or the new data stream size.

When data streams arrive to the application layer, they
first have to classified according to the number of variables
they monitor. In this context, data streams can be univariate
or multivariate. Univariate streams are represented by a set
of values read by a unique type of sensor, e.g., a sensor node
that monitors only environmental temperature. On the other
hand, multivariate streams are represented by a set of values
coming from different sensors of the same sensor node, e.g.,
a node that monitors temperature, pressure and humidity
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simultaneously, or by a set of measurements coming from
the same sensor type located in different sensor nodes, e.g.,
a node that processes data from different nodes monitoring
only temperature. This classification is important because the
data reduction process itself depends directly on the stream
type.

After the stream type is known, we have to choose
an appropriated stream reduction algorithm to effectively
perform the reduction. There are various types of data stream
reduction methods, such as online samples, histograms built,
and sketches [3]. The reduction algorithms available in our
API are depicted in Fig. 2, and explained below:

• Random sampling: This algorithm initially builds an
histogram from the original stream. Then, for each his-
togram class, random elements are chosen to compose
the reduced stream. The objective of this algorithm is
to reduce the data keeping the class frequencies of the
original histogram unchanged. It reduces the network
energy consumption and delay by reducing the trans-
mitted data while keeping its representativeness [6]. In
Fig. 2(a), we show a “stream in” of 100 elements,
from each 50% of its elements are randomly chosen
to compose the “stream out”.

• Central sampling: This algorithm is a variation of the
random sampling. The main difference is that, instead
of performing a random element choice, the central el-
ements of the histogram classes are chosen to compose
the reduced stream. In Fig. 2(b), we have a “stream in”
of 100 elements, 50 of them are chosen considering
the central histogram classes elements, generating the
“stream out”.

• Sketch: A data stream based algorithm that sketches
data, reduce it through a data sketch, e.g., the minimum,
maximum and average of a data or the data frequency.
In our case, the sketch algorithm builds a histogram
from the original stream, and uses the histogram class
frequencies as the reduced data sketch. The sketch
reduces the energy consumption and delay by keeping
a constant transmission data rate, since the sketch size
is fixed. After the histogram sketch arrives to the
sink node, the data represented by the sketch can be
artificially generated without loosing data quality. The
only trouble in this strategy, when compared with the
sampling, is that the sketch looses the sequence of data,
despite of the good approximation when the original
data is regenerated artificially [6]. In Fig. 2(c), we have
a “stream in” with 100 elements, the histogram is built,
and then a “stream out” is generated with the histogram
class frequencies.

• Multivariate sampling: This algorithm uses principal
component analyzes to help multivariate sampling. The
principal components transformation is one of the most
powerful tools for multivariate data treatment [7]. It is a

transformation between γ-dimensional spaces, derived
from the covariance matrix of the input data (in our case
multivariate sensor data), generating a set of new data,
where each resultant value is a linear combination of the
original values. The number of principal components
is equal to the number of dimensions of the original
data and these principal components can be sorted
according their variance. Thus, the first and the last
principal component have the biggest and the smallest
variance, respectively. In our algorithm the principal
components of the original stream are computed. Then,
the first component is sorted and used to rank the
original stream. Based on this ranking and the data
reduction size, the most correlated data are sampled [8].
In Fig. 2(d), we have a “stream in” with 100×5 ele-
ments (where each element represent data coming from
different sensors in the same node or different sensor
nodes), 50% of “stream in” is sampled considering the
raking of first component analyzed, and then a “stream
out” is generated with 50×5 elements.

After the reduced data stream is obtained, if the stream
was being routed, it is passed back to the network layer,
which packs the stream and any information gathered from
the cross-layer, and sends it to the sink.

III. DATA REDUCED VALIDATION

After data stream reduction is performed, it is important
to verify if the data quality of the original stream was
preserved. If a sensor stream item with 100 elements is re-
duced for 50 elements, are these 50 elements representative?.
Most of the time, data reduction validation is application
specific. However, there are some simple tests that can be
performed to validate the reduced data independent from the
target application, considering the distribution of univariate
streams, the variance analysis of multivariate streams, and
the absolute relative error for both types of streams.

The distribution approximation between the original and
reduced item streams can be done by the Kolmogorov-
Smirnov test (KS test) [9]. This test evaluates if two
univariate samples have similar distributions, and is not
restricted to samples following a normal distribution. For
example, if the original univariate stream item follows a
Poisson distribution, this test verifies if the reduced item
stream keeps the distribution characteristics. The analysis of
variance (ANOVA) [10], used to validate multivariate data
reduction, can be used to indicate if there is significant
difference between the variances of the original and reduced
multivariate streams.

It is also important to evaluate the discrepancy of the
values in the reduced streams, i.e., if they still represent the
original stream. Considering univariate data, this discrepancy
can be quantified using the absolute value of the largest
distance between the average of the original data and the
lower or higher confidence interval values of the reduced
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Figure 2. Architecture API.

data average [6]. This same process can be applied to
multivariate data, but in this case the final error used is the
largest error among all relative errors for each variable, i.e.,
the error is calculated for each sensor (or variable) and only
the highest of them will be considered [8].

IV. METHODOLOGY CASE STUDY

In order to illustrate the application of the methodology
proposed, this section presents two problems and the simula-
tions performed to solve them following the steps described
in the previous section. The first problem considers a general
sensor stream application where a scheduled reduction has
to be performed in the source node, i.e. it receives data about
a phenomena for a certain time and then sends it to the sink.
The second problem addresses a real time application where
the reduction is performed during routing. Fig. 3 shows how
the problems are addressed in the phenomenon view and the
routing architectures.

In both scenarios, we consider a flat network that uses
a shortest path tree based routing algorithm. The network
density is kept constant (8 neighbors per node), and all
nodes have the same software and hardware configuration.
The phenomena monitored is always the same, and is repre-
sented by a normal distribution. The evaluation is performed
through simulations using the NS-2 (Network Simulator 2)
version 2.33. Other default simulation parameters, such as
like radio range and bandwidth, were kept as 50m and
250 kbs, respectively. Each simulated scenario was executed
with 33 random topologies.

In the first scenario, the network has 128 nodes, with
different numbers of nodes (1, 5, 10, and 20) generating
256 items (n = 256) every 60s. Note that in this scenario
only the application layer of our architecture is considered
(phenomenon view on Fig. 3). Once the data is sensed,
it is classified as univariate, and this information is sent
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to the “stream information” module, which sets the re-
duction parameters selecting the central sampling reduction
algorithm (Fig. 2(b)), considering a reduction of n/2 and
log n, where n is the size of the stream sensed, i.e., n
temperature or pressure samples. After the reduction step,
the reduced stream is routed to sink. Observe that feedback
and reduction information are not considered in this design,
because the application requires only the local reduction,
i.e., the reduction in sensing moment.

Fig. 4 shows the average value of energy consumption
and the difference in the original e reduced data distribution
using the KS-test with a 95% confidence interval. As showed
in Fig. 4, the sample log n reduces the energy consumption
by reducing the transmitted data. However, the original data
distribution is affected by 20%. This quality is acceptable
by the large majority of applications when the network
restrictions are strong. The sample of n/2 is interesting when
the application does not have strong restrictions.

The second scenario simulated concerned a real time
application, which works in both the application and network
layers (phenomenon and routing view on Fig. 3). Again, only
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Figure 4. Example of data reduction in a general sensor stream application.

univariate data is considered, and processed by the random
and central sampling reduction algorithms, considering a
reduction controlled by stream information. The stream
items arrive in the network layer and is unpacked. The
application information (packet head) is separated from the
data application (stream) and it is passed to the stream
information. However, the stream information receives the
feedback of other nodes to reduce more or less data and the
reduction parameters used. The packing receives from the
stream information the new application information and can
sent some feedback to other nodes.

The real time application operation considers: (i) again
the stream item represents n samples of environment; (ii)
the application has a soft deadline to deliver the stream
item sensed, this deadline is packing with the stream item;
(iii) the stream item is fragmented and routed through to
sink; (iv) the router nodes look each packet and check if the
stream item can be delivered; (v) if the deadline cannot be
achieved the stream item is resembled (remember that it was

fragmented) and reduced according the acceptable amount
of data, e.g., the stream item with 256 elements cannot be
delivered, so the router reduce it to 100 elements that can be
delivered on time; and (vi) the stream reduced is repacking,
now with the new application deadline, fragmented and
forwarded through to sink.

To illustrate the reduction solution in this real time appli-
cations we consider again a flat network that uses a shortest
path tree based routing algorithm, the network density is
kept constant (8 neighbors per node), and all nodes have the
same software and hardware configuration. The phenomenon
monitored is always the same, it is represented by a normal
distribution. Like in general application, we perform our
evaluation through simulations and use the NS-2 (Network
Simulator 2) version 2.33. Each simulated scenario was
executed with 33 random topologies. At the end, for each
scenario we plot the average value with 95% of confidence
interval. Other default simulation parameters are used, like
radio range 50m and bandwidth 250 kbs.

To simulate the real time application we consider a
minimum deadline (get empirical) that the “perfect network”
supports. To force the in-network reduction we use concur-
rent traffic and all router nodes delay the packet fragments
at 0.01% of the initial deadline. We set among the 128
nodes distributed in the network 16%, 20%, 25%, and 33%
of this nodes generating extra traffic. However we stress
the system to consider 2048 elements (n) in stream item.
However, in order to highlighted the importance of the
reduction controlled by stream information, we consider two
estimation way: a simple that analyzes only the local node
time; and a complex that tries to infer what happens during
the data traffic.

In the Fig. 5(a) the application deadline is met in almost
cases. The complex estimation presents a more scalable
behavior considering the percentage of nodes generating
data. This occurs because this estimation infers better the
data traffic behavior during the routing. The Fig. 5(b) shows
the simple and complex estimation using the random and
central sample reduction algorithms. It is showed that in all
cases we have a distribution approximation ≤ 40%. The
central sampling algorithm with the complex estimation has
a smaller error. The reason is that the complex estimation
performs the maximum reduction sooner (the central algo-
rithm is executed once or twice). This result shows that
because fewer successive reductions are performed, more
representativeness is kept in the reduced data, i. e., data
degradation is mitigated.

V. OPEN ISSUES AND CONCLUSIONS

This work presented a general methodology to perform
sensor stream based reduction in WSNs. This methodology
considered the application requirements, the reduction de-
sign, and the data reduce validation. Specifically, to reduc-
tion design was presented a architecture that can be applied
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Figure 5. Reduction in real time stream applications.

to reduce the data when it is sensed or routed through to sink.
The study cases showed the usefulness of our methodology
applied on a general sensing and a real time applications.
Furthermore, the methodology proposed is general enough
to be applied to design reduction scenarios in which we have
some application requirements.

Among some open issues, we can consider a better eval-
uation of the proposed methodology by considering other
network scenarios, and matching the proposed application
level solution with lower level ones. However, consider the
architecture, not only the data from a source is reduced,
but similar data from different sources can be also reduced,
resulting in a more efficient reduction solution.
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