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Abstract— Wireless communication itself consumes the most 
amount of energy in a given WSN, so the most logical way to 
reduce the energy consumption is to reduce the number of 
radio transmissions. To address this issue, there have been 
developed data reduction strategies which reduce the amount of 
sent data by predicting the measured values both at the source 
and the sink, requiring transmission only if a certain reading 
differ by a given margin from the predicted values. While these 
strategies often provide great reduction in power consumption, 
they need a-priori knowledge of the explored domain in order 
to correctly model the expected values. Using a widely known 
mathematical apparatus called the Least Mean Square 
Algorithm (LMS), it is possible to get great energy savings 
while eliminating the need of former knowledge or any kind of 
modeling. In this paper with we use the Least Mean Square 
Algorithm with variable step size (LMS-VSS) parameter. By 
applying this algorithm on real-world data set with different 
WSN topologies, we achieved maximum data reduction of over 
95%, while retaining a reasonably high precision.  

Keywords-Wireless Sensor Network; Data Prediction; Least 
Mean Square Algorithm; Time Series Forecasting. 

I.  INTRODUCTION 

By being inherently distributed systems, WSN allow not 
only measuring the temporal progression of the ascertained 
quantity but also provide the ability to take the spatial 
progression of this quantity as well. By reporting data 
measurement at each interval, the node itself consumes a 
great deal of energy, thus, it vastly reduces its lifetime and 
creates sufficient communication overhead. 

There are several techniques that have been developed to 
overcome these problems i.e., to lower the communication 
overhead, to increase energy saving and maximize CPU 
utilization.  

Since wireless communication itself consumes the most 
amount of energy in a given WSN, the most logical way to 
reduce the energy consumption is to reduce the number of 
radio transmissions.  

Data-reduction techniques aim to reduce the data to be 
delivered to the sink. These techniques can be divided into 
three main groups (Fig. 1): data compression, data 
prediction and in-network processing [1].  

Data compression is applied to reduce the amount of 
information sent by source nodes. This scheme involves 

coding strategy used to represent data regardless of their 
semantics. 

In-network processing performs data aggregation while 
data is routed towards the sink node. Data aggregation aims 
to transform the raw data into less voluminous refined data. 
It can be achieved with summarization functions (minimum, 
maximum and average). For applications that require 
original and accurate measurements, such a summarization 
may be inappropriate since it represents an accuracy loss 
[2].  

 
 
Fig. 1. Data-driven approach for energy saving in WSN [1]. 
 

Data prediction techniques usually maintain two 
instances of a model in the network, one residing at the sink 
and the other at the sensor. The model at the sink can be 
used to answer queries without requiring any 
communication, so the original data can be easily 
reconstructed within a certain degree of precision. To avoid 
a rapid deterioration in the predicted values, such 
approaches thus need their models to be periodically 
validated and correspondingly updated, implying again 
increased communication costs. 

Data prediction techniques can be divided into three 
subclasses: stochastic approaches, time series forecasting 
and algorithmic approaches, which are application specific 
(Fig. 1).  

Stochastic approach is used when sensed phenomena can 
be considered as a random process by means of probability 
density function. Although this approach is general, its 
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computational overhead makes it inappropriate for tiny 
sensors with limited computational capacities. 

The most appropriate models for data prediction in WSN 
are those based on time series forecasting. Moving Average 
(MA), Auto-Regressive (AR) or Auto-Regressive Moving 
Average (ARMA) models are simple, easy for 
implementation and provide acceptable accuracy [3][4] 

In this paper, we investigated time-series forecasting 
technique for WSN based on LMS algorithm with variable 
step size (LMS-VSS). Least-Mean-Square (LMS) adaptive 
algorithm as a data-reduction strategy in WSN has been 
firstly proposed by Santini and Römer [5]. The advantages 
of LMS algorithm is that it does not require any a priori 
knowledge or modelling of the statistical properties of the 
observed signals, thus providing great flexibility and 
domain independence. Santini and Römer in [5] reported 
maximum data reduction of 92% for the temperature 
measurements (on Intel Berkeley Lab dataset [6]) while 
retaining an accuracy of 0.5°C.  

The fact that a great percentage of the real-world wireless 
sensor networks are multi hop and hierarchy based, 
motivated us to exploit LMS-VSS on two different network 
topologies: star topology and cluster-based topology. The 
proposed algorithm is tested on real data obtained from the 
Intel Berkeley Research Laboratory sensor deployment [6]. 
LMS-VSS produce maximum data reduction of 95% for 
error margin of 0.5°C (for star topology) and around 97% 
when data aggregation was taken into account (cluster-based 
topology). 

The rest of the paper is organized as follows: the next 
section explains least mean square algorithm. Section three 
of this paper describes the LMS-VSS. The fourth and the 
fifth section explore LMS-VSS on star network and cluster-
based topologies respectively. Finally, we conclude this 
paper in section six. 

II. LEAST MEAN SQUARE ALGORITHM 

In this section, we present a brief explanation of the least 
mean square algorithm. A thorough explanation can be found 
in [6]. 

A linear adaptive filter samples a data stream/input 
signal at an instant n, which we will denote as u[n] and 
calculates a prediction i.e., the output of the filter as y[n] = 
wT[n]·u[n],  which effectively is a linear combination of the 
previous N samples of the data stream (denoted as the vector 
u which is of length M), weighed by the corresponding 
weight vector w[n] (also of length M). M is an integer 
parameter that the filter uses and it determines the 
“memory” of the filter i.e., how many previous input sample 
it will use.  

The output y[n] is then compared to the input signal or 
the sample of the data stream the filter tries to adapt to, 
denoted as d[n]. The prediction error e[n] is then computed 
as: e[n] = y[n]−d[n] and fed into the adaptation algorithm, 
so the filter weights can be updated. The vector w[n] i.e., the 
weights are modified at each time step n in order to 
minimize the mean square error. 

 
Fig. 2. A) Basic structure of an adaptive filter; B) Adaptive 

filter used for prediction.   
 

One of the most extensively used adaptive algorithms is 
the Least-Mean-Square algorithm (LMS). Although it is 
extremely simple, it has quite good performances and has 
found implementation in a variety of applications. [7][8]. 
The LMS algorithm is defined through the three equations: 

1. The filter output: 
y[n] = wT[n]·u[n], 

2. The estimation error: 
e[n] = d[n] – y[n] 

3. The weight adaptation: 
w[n+1] = w[n] + µ·u[n]·e[n] 

 
where w[k] and x[k] denote the M × 1 column vectors: 

 
w[k] = [w1[k],w2[k], . . . ,wN[k]]T ; 
u[k] = [u[k − 1], u[k − 2], . . . , u[k − M]]T . 

 
With simple modification the filter structure from Fig. 

2(A) to the so-called predictive structure of Fig. 2(B), the 
LMS algorithm can be used for prediction. Central to the 
successful prediction is delaying the current input value u[n] 
by one time instance and use it as the reference signal d[n]. 
The filter then computes an estimation û[n] of the input 
signal at time instance n, as a linear combination of the N 
previous readings. Subtracting the prediction signal from the 
desired signal gives the value of the error which is fed back 
to adapt the filter weights.  

Two parameters need to be defined for the adaptation 
process: the filter length M and the step-size parameter µ, 
which is important for updating the filter weights. 

Given that w and u are M × 1 vectors, it can easily be 
concluded that the LMS algorithm requires 2M + 1 
multiplications and 2M additions per iteration. [7]. 

The practical implementation of the LMS algorithm in 
the prediction scheme in WSN was introduced in [5] where 
identical predictive filters were introduced both at the 
source and at the sink. LMS dual prediction scheme 
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(henceforth referred to as LMS-DPS) consists of 
simultaneously running an instance of the filter on both the 
node and the sink. There are three distinct modes of 
operation: initialization, normal and stand-alone. A node 
goes through the first only at the beginning and then 
switches between the normal and stand-alone modes. When 
a node is in the stand-alone mode it does not report its 
readings to the sink and this is where the energy savings are 
made.  

The detailed description of each of the modes is as 
follows: 

A.  Initialization mode:  
First, the step-size parameter µ must be determined. A 

certain amount of data must be collected in the beginning, 
so a proper estimation of the step-size can be made. At this 
time, the node keeps sending the data to the sink without 
making predictions. Both the node and the sink compute the 
value of µ. To ensure convergence [7][8] it must satisfy: 

xE
2

0 ≤≤ µ    (2) 

where: 

∑
=

=
N

n
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][
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Ex is the mean power input and N is the number of iterations 
used to train the filter. Since the input mean power Ex is 
continually dependent on time, we can approximate Êx by 
computing over the first M samples i.e., N data readings and 
easily obtain the upper bound of (2). 

After the initialization phase, both the node and the sink 
will continue to execute the predictive algorithm and node 
will be switching between the following two modes of 
operation. 

B. Normal mode:  
Both the node and the sink simultaneously execute the 

predictive algorithm and make a prediction for the following 
reading by using the last M readings and accordingly update 
the filter weights on the prediction error. As stated in [7], if 
no a priori knowledge is present, the initial weights should 
be zero. This is rather important, because:  
a) we do not possess any a priori knowledge of the data; 
b) setting the initial weights to zero (and using the same 
values for the step-size parameter and for the filter length), 
ensures that any instance of the LMS will behave exactly 
the same at any arbitrary point of time tn. 

The node will stay in normal mode (collecting data and 
reporting it to the sink) as long as the prediction error is 
greater than the maximum error budget emax. When the error 
drops below emax for M consecutive iterations, then the node 
switches to stand-alone mode i.e., stops reporting the 
readings and consequently stops updating the weights. 

C. Stand-alone mode:  
In this mode, the node still collects data and makes 

predictions, but if the prediction error is below emax, instead 
of the reading u[n], it feeds the filter with the prediction 
y[n], discards the real reading u[n] and does not send it to 
the sink. This enables both instances of the filter to be 
consistent and no update of the weights is needed (the error 
is zero) thus reducing the computational overhead. 

If the prediction error exceeds emax the node switches to 
normal mode and reports the reading. When the node is in 
this mode, the filter instance at the sink side uses only the 
predicted readings as an approximation of the real value. 

III. LEAST MEAN SQUARE ALGORITHM WITH VARIABLE 
STEP SIZE 

The step-size parameter µ is critical for the convergence 
of the algorithm i.e., it determines the convergence speed, so 
choosing the right value for µ is of critical importance [9]. 
As we explain later on, there are practical boundaries for the 
values that µ can receive and with a simple estimation 
technique, we can determine them. And as we show in this 
section, we introduce a specific improvement to the LMS-
DPS algorithm regarding the step-size parameter µ. 

Since LMS-DPS uses single value for the step-size µ, a 
further improvement can be made, with the introduction of a 
least mean square algorithm with variable step-size (which 
we will refer to as LMS-VSS henceforth), where the step-
size parameter µ has two distinct values: 
1. Until a certain number of good predictions are made, µ 
has the maximum value according to (3) and two orders of 
magnitude smaller to ensure robustness [8]. 
2. After µ has sufficiently learned what kind of data the 
filter receives, it switches to a stable value, that is: 

M
old

new

µµ =  

where M is the filter length, and µold = 2·Ex
-1·10-2. 

This improvement accelerates the initial adaptation to the 
data, so an additional 3-5% reduction can be gained where 
the maximum error is sufficiently small, as can be seen in 
Fig. 4.  

A crucial aspect is when the switch should be made. The 
best value for the number of consecutive iterations in stand-
alone mode can be found as: 

2MnM ≤≤  
where M is the filter length and n is the number of 
consecutive readings in stand-alone mode. The value n=M3/2 
yielded best results since it suited best both lower and 
higher filter lengths. For instance, if M = 4, using n = M2 = 
16 consecutive good predictions as a switch point is a good 
choice, but for M = 10, n = M2 = 100 consecutive good 
predictions may never be reached, thus compromising 
performance. In this case, the choice n = M = 10 would be 
much more optimal. Also, note that the point of switching is 
determined such that both the node and sink can execute it 
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at the same time and thus retain consistency of both 
algorithm instances. 

One of the advantages of having only two distinct values 
for the step-size parameter, one to accelerate the initial 
weight adaptation and another for fine-tuning the weights 
after the adaptation is that it contributes to the overall data 
reduction without creating additional computational 
overhead to the algorithm. Additionally, without using a 
specific heuristic for a particular type of data, it can be used 
in other schemes. 

In order to compare LMS-VSS and LMS-DPS, both 
algorithms were implemented in MatLab. For algorithms 
evaluation, a set of experimental data from Intel Berkeley 
Research Lab network [6] was used. The 54 Mica2Dot 
sensors deployed in the laboratory were equipped with 
weather boards and measured humidity, temperature, light 
and voltage values once every 31 seconds. The 
measurements were collected between February 28th and 
April 5th, 2004. The dataset includes 2.3 million readings 
collected from these sensors. For our evaluation we use only 
temperature and humidity readings at different locations in a 
lab space. We run the simulations for 50 different error 
margins eMax (raging from 0.1°C to 5°C). 

Metrics used for measuring algorithms performance 
varies from author to author. Some authors tend to reduce 
the number of transmissions, thus they count the number of 
sent massages from the sensor node to the sink node [5]. 
Here, the metric is the reduction of transmissions in 
percentage. Another way used for evaluating algorithm 
performance is by measuring the difference between the 
predicted and the true value, i.e., mean square error (MSE) 
or root mean square error (RMSE)[4]. In our case, the first 
metric is used, assuming that every transmission requires an 
equal amount of energy. 

 

 
Fig. 3. Star network topology (left), Clustered-based 

network topology (right). 
 

We consider two basic network topologies on which we 
evaluated the LMS-VSS algorithm (Fig. 3). The first is the 
star topology, where every node sends its readings directly 
to the sink. The advantage of this topology is its simplicity 

and low latency communications between the sensors and 
the sink, but the sink must be within radio transmission 
range of all the individual sensors. If this is not possible, 
cluster-based network topology is a suitable alternative.  

IV. THE LMS-VSS ALGORITHM IN STAR  TOPOLOGY 

 
If a star network topology is considered, LMS-VSS 

algorithm achieves considerable reduction in number of 
transmissions. We use data readings from [6] and assume 
that each sensor sends its reading to the sink node. Fig. 4 
shows the reduction gain when using LMS-DPS and LMS-
VSS algorithms. The results are average for all 54 nodes 
from the Intel Berkeley Research Lab network [6]. LMS-
DPS uses only one fixed step size µ=1.2·10-5 and filter 
length M=4 and obtain the average savings in the entire 
network of around 88% for error margin of 0.5°C. LMS-
VSS uses the same filter length, but uses the first M=4 data 
readings to calculate the initial value of µ and then after M3/2 
readings switches to µnew = µold·M

-1. LMS-VSS obtain 
average savings in the entire network of around 92%. 

 
Fig. 4. The improvement of LMS-VSS over LMS-DPS 

algorithm for the entire Intel network (temperature). 
 

In Fig. 5, we can see the improvement of LMS-VSS 
over the LMS-DPS algorithm for particular nodes. We 
chose these nodes because node 11 performs the best results 
(95% reduction for 0.5°C) and node 49 the worst (90% 
reduction for 0.5°C).  

In addition, we investigated humidity readings from the 
same Intel network [6], where humidity is temperature 
corrected relative humidity, ranging from 0-100%. The 
results for node 20 and node 10 are shown on Fig. 6 and 
Fig. 7 respectively. As it can be seen from the figures, LMS-
VSS performs more than 5% better results compared with 
LMS-DPS for error margin of 0.5°C, and more than 10% 
better results for error margin of 1°C and greater. For node 
10, root mean square error is given for both algorithms 
(Fig.7). As can be seen from the figure, our algorithm gives 
smaller RMSE. 
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Fig. 5. Improvement of LMS-VSS over the LMS-DPS 

algorithm, filter length M = 4 (temperature). 
 

 
Fig. 6. Improvement of LMS-VSS over the LMS-DPS 
algorithm for humidity (node 20), filter length M = 4. 

 
Fig. 7. Improvement of LMS-VSS over the LMS-DPS 
algorithm for humidity (node 10), filter length M = 4. 

V. THE LMS-VSS ALGORITHM IN CLUSTER-BASED 
TOPOLOGY 

Nodes clustering represents another way of prolonging 
WSN lifetime. Here, the sensor nodes are geographically 
grouped into clusters. In each cluster one representative 
node is chosen to be a cluster-head. Other nodes in the 
cluster are called members of the cluster and they report 
their readings to their cluster head, and cluster head 
forwards the messages directly to the sink. Note that except 
for the sink, we consider that all the nodes in the network 
have exactly the same characteristics, so even when a node 
is a cluster head, it still acts as a sensing node (and its 
readings are included in the computations for its respective 
cluster), with the additional duty to forward readings from 
cluster members. An example of such clustered-based 
network is given in [6], as presented on Fig. 8. 

Our LMS-VSS algorithm was evaluated in this case by 
using MatLab simulation tool on the same Intel network [6]. 
We assume that each sensor sends its reading to the cluster 
head, and then cluster head resends the reading to the sink. 
As a result, each reading is sent twice, except the readings 
taken at the cluster heads.  The clustering method we used is 
the simple k-means clustering, with k = 10. The value k = 10 
was selected on a purely intuitive basis and it produced 
satisfactory results. Other clustering methods may be used as 
well. As it can be seen from Fig. 8, the clustering parameter 
was geographic position, i.e., Euclidian distance.  
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Fig. 8. A clustered view of the Intel Berkeley Research Lab 
wireless sensor network [6] (cluster heads are circled). 

 
Additionally, we simulated data aggregation technique at 

cluster heads. In this scenario, every message carries exactly 
the same amount of data, since the cluster head aggregates 
the messages from its cluster members using a certain 
aggregation function (Average, Minimum, Maximum, etc) 
and forwards the aggregate to the sink. 

The step size was µ = 1.2·10-5 and the filter length was 
M = 4 for all the nodes, although changing the step-size or 
the length of the filter for a specific cluster can further 
improve the performance and the results.  

 

 
Fig. 9. Various savings in the cluster containing the nodes: 

7, 8, 9, 10, 11, 53 and 54 (temperature). 
 

We used the cluster containing nodes: 7, 8, 9, 10, 11, 53 
and 54. As displayed in Fig. 9, the averages for this cluster 
show that there is a substantial gain of 5% when using the 
LMS-VSS algorithm over the LMS-DPM algorithm. When 
data aggregation is assumed to be implemented in the 
cluster, the reduction is far greater and when it is used 
alongside the LMS-VSS algorithm it results in 97% 
reduction of the total messages sent for the given error 
margin of 0.5C. 

VI. CONCLUSION 

In this paper, we investigated time-series forecasting 
technique for WSN based on LMS algorithm with variable 
step size (LMS-VSS). Santini and Römer in [5] reported 
maximum data reduction of 92% for the temperature 
measurements (on Intel dataset [6]) while retaining an 
accuracy of 0.5°C.  

We exploited our LMS-VSS on two different network 
topologies: star topology and cluster-based topology. We 
evaluated the LMS-VSS on Intel dataset [6]. Our algorithm 
outperforms LMS-DPS in terms of data reduction and root 
mean square error for all evaluated nodes. LMS-VSS 
performs data reduction of around 92% for error margin of 
0.5°C (for the entire Intel network using star topology), and 
maximum data reduction of around 95% for particular nodes. 
In cluster-based topology, when data aggregation was taken 
into account LMS-VSS achieves data reduction of around 
97%.  

From the simulated results, we can conclude that star 
network is the most suitable network topology by means of 
energy saving, since each reading is sent only once. If 
sensors are not within each other radio range, cluster-based 
topology could be used, where each reading is being resend 
by the cluster head. By applying data aggregation at cluster 
head, this topology can achieve even greater data reduction 
in scenarios where loosing data precision is affordable. It is 
obvious that the trade-off is application specific. 

For future work, we intend to investigate our LMS-VSS 
on tree-based network topology, and to evaluate the results 
using different datasets (from Intel and other networks). We 
also plan to explore machine learning techniques for 
choosing the best values for the parameter µ or implement a 
scheme that will dynamically readjust the filter length. 
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