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Abstract—Monitoring extreme values (maximum or mini-
mum) is important to many applications in wireless sensor net-
works. A previous work, called Hierarchy Adaptive Threshold
(HAT), proposed a tree-based structure to distribute queries
efficiently and filter out the unnecessary data updates that are
not extreme values. In this paper, a data reduction algorithm
is presented to reduce energy consumption of the HAT due to
network transmission. The proposed method utilizes historical
information of extreme values and their corresponding node
ID to adjust the reporting rate of sensors properly and eases
the burden of the parent of extreme nodes by balancing the
packets from extreme nodes to all their possible parents. We
evaluate the performance of the proposed algorithm by NS-
2 network simulator and real-world data traces. The results
indicate that the overall network packets are reduced to 80%
with 1% data error in comparison with HAT.

Keywords-sensor networks; extreme values; data reduction.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely ap-
plied to many current and envisioned applications, including
vehicle tracking and habit monitoring [1], [2], nuclear reac-
tors, test areas, disaster management, combat field surveil-
lance, factory temperature monitoring, border control and
so on. A maximum (or minimum) query is a query, which
continuously requests the sensor node with the maximum
(minimum) sensor reading. That is, a maximum query con-
tinuously maintains the (node id, value) pair in the network.
Monitoring maximum (or minimum) value is important for
detecting abnormal or extreme behavior in many sensor
network applications. For example, monitoring maximum
temperature in a factory is essential to improve production
yield, or finding out the node and its corresponding areas
with the highest pollution index for the purpose of pollution
control. A minimum query, on the other hand, can be
requested to continuously monitor the sensor node with the
least residual energy so that it can be instructed to adapt its
sampling rate (or transmission rate) for extending network
lifetime. Since the discussions of maximum and minimum
queries are similar, in the following we will only focus on
answering the continuous maximum monitoring problem.

The difficulty of answering a maximum query is unable
to know the sensors that constitute high values in priori.

Hierarchy Adaptive Thresholds (HAT) was proposed to mon-
itor the maximum query efficiently [3]. HAT prevents the
nodes which will not be maximum nodes from transmitting
by giving constraints on nodes such as filter threshold.
However, there is a penalty where additional queries are
required to be issued when the sink cannot definitely decide
the current maximum value. Moreover, the performance
of HAT highly depends on the update strategy of filter
thresholds at nodes. On the basis of HAT, a novel filter-based
monitoring algorithm is proposed in this paper. According
to the observations on real data, the locations and values of
the maximum nodes are usually stable. That is,

1) Parts of nodes inside the network become the maxi-
mum node more often than the others. This suggests
that some nodes are always likely to become the
maximum node, and in contrast, some are unlikely
to be the maximum one.

2) The maximum node often remains unchanged for
some consecutive time intervals (i.e., temporal cor-
relation between sensor readings).

3) When a new maximum node emerges, it is often
nearby the previous maximum node (i.e., spatial
correlation among nearby nodes).

In light of the phenomenon above, the proposed algorithm
utilizes historical information of the past maximum values
and the nodes that generate them. Specifically, the algorithm
measures the probability of a node being the maximum node
by using historical information. The quantitative relationship
between reporting rate and filtering interval is also mea-
sured. According to the probability, nodes are dynamically
instructed to re-adjust their filtering threshold so as to meet
the required reporting rate (e.g., decrease the reporting rates
of nodes with lower probability and increase the reporting
rates of those with higher probability). The typical goal is to
prolong the network lifetime by reducing unnecessary data
updates.

The rest of this paper is organized as follows. The related
work is given in Section 2. Section 3 presents the proposed
algorithm. Simulation results are described in Section 4.
Finally, the conclusion is drawn in Section 5.

6Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications



II. RELATED WORK

Monitoring aggregation functions (such as average, max-
imum, and minimum) in sensor networks have received
extensive attention in the past few years. However, the main
focus has been on how to establish the communication
structure and how to apply aggregation techniques to re-
duce network traffic [5], [6]. Work has also been done on
compressing historical sensor readings for transmission [7],
[8]. These methods are applicable to archival data collec-
tion where the application wants to log historical sensor
readings and analyzes them later. In contrast, we consider
monitoring applications that continuously request up-to-
date sensor readings. Approximate monitoring schemes have
been proposed for average and sum aggregates in [9], [10].
Yoon and Shahabi [11] proposed a clustered aggregation
(CAG) algorithm for approximate query processing. CAG
reduces network traffic by forming clusters of nodes where
the cluster heads are responsible for aggregating the readings
of their children.

Another work for approximate query processing is range
caching. There is a value range installed at each node and
the base station caches all the values of ranges at nodes.
A node updates its new reading with the sink only if
the difference between the new value and the previously
reported value beyond the range. The nodes are sorted by
range upper bounds, and on receiving a maximum query, the
sink searches each node in order one by one. This approach
is costly and inefficient because it does not take aggregation
into consideration. A maximum query can be a special case
of top-k query, and studies on evaluating snapshot top-k
queries in distributed networks are included in [12]–[15].

In this paper, we are interested in monitoring a continuous
maximum query. Although continuous monitoring could be
simulated by repeatedly executing a snapshot query, many
snapshot queries would be costly and inefficient if the
answers remain unchanged. Recent work on monitoring con-
tinuous top-k queries in distributed networks are described
in [3], [16]–[19]. In [18], a filter-based approach called
FILA was proposed to exploit the semantics of top-k query.
The basic idea of FILA is to install a filter at each sensor
node to suppress unnecessary sensor updates. Silberstein et
al. [3] explored techniques for continuously monitoring a
maximum query, with the objective of minimizing network
traffic. They proposed a HAT approach, which use suitable
constraint settings to prevent nodes unlikely to have the
maximum value from transmitting. However, HAT does not
take historical information of the maximum values into
account.

III. THE PROPOSED ALGORITHM

As mentioned above, the purpose of the proposed algo-
rithm is to reduce network packets when running HAT. The
proposed monitoring algorithm of extreme values is on the
basis of HAT algorithm. The significant improvement of the

proposed method over the HAT is that it utilizes historical in-
formation of the maximum values (and the maximum nodes)
to measure the probability of a node being the maximum
node. The quantitative relationship between reporting rate
and filtering threshold is also measured. According to the
probability, nodes are dynamically instructed to re-adjust
their filtering thresholds so as to meet the required reporting
rate.

Consider a wireless sensor network that includes n fixed
location sensors. The network is rooted at the sink with a
continuous power supply, and the sensor nodes are powered
by battery. It is assumed that there is a tree-based com-
munication infrastructure installed on the network by which
nodes beyond the transmission range of the sink can send
their data to the sink [31]. Each sensor is assumed to peri-
odically sample the local phenomenon, such as temperature,
humidity and pollution index, at a fixed rate. Without loss of
generality, the period between two successive samplings is
assumed to be one time unit (round). That is, we assume the
query is processed repeatedly over a series of rounds, where
each node generates a value in each round. Each round is
long enough for all necessary messaging to occur in order
to complete the query.

In this paper, we consider a maximum query that contin-
uously queries the sensor node with the maximum sensor
reading at each round. The maximum query is to continu-
ously maintain the (node id, value) pair for the node with
the maximum value in the network. The monitoring result
is logged at the sink and provided to external users. The
monitoring algorithm of extreme values is to control when
and how sensor readings should be sent to the sink to
continuously generate maximum query results.

A. Procedure of the proposed algorithm

1) Initialization: Let Ci denote the set of the immediate
children of a sensor node si and pi denote the parent node of
si in the network communication infrastructure, respectively.
Denote the reading of sensor i and the maximum value at
the t-th round as vit and vmax

t respectively. Initially, each
sensor node sends its reading to its parent node. When an
internal node si receives all readings of its child nodes, it
obtains the maximum value in the sub-tree rooted at si by
sorting the sensor readings, including its own reading. That
is, node si aggregates the messages of its child nodes and
itself by only passing the packet with the highest value since
it is impossible for those values to be the maximum. Then
the node si computes a filter threshold for itself and each
of its child nodes. The thresholds are sent to all of its child
nodes. Similarly, we denote hjt as the filter threshold of node
sj at the t-th round. Note that the filter threshold of a node
is by known to both itself and its parent node. This message
aggregation is bottom-up, beginning at leaf nodes until the
sink is reached. Accordingly, the sink obtains the initial
query result, i.e., vmax

0 , by collecting the readings from all
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sensor nodes. Once a maximum node is obtained, the sink
will also send a message to designate the node reporting the
maximum value as the current maximum node, denoted by
smax
0 .

2) Sequential Rounds: Each subsequent round proceeds
in three stages: node-initiated report, root-initiated query
and reporting rate adjustment.

Node-initiated report: If a node sk is the designated
maximum at the last round (t-th round), i.e., sk = smax

t , it
transmits an update containing the (node id, new value) pair
to the sink only if vkt+1 6= vmax

t . (i.e., the new gathered value
vkt+1 differs from the maximum value in the last round.) For
a node sj , sj 6= smax

t , if the new reading at the (t + 1)th
round is smaller than its filter threshold hjt , then no update
is sent to its parent node. Otherwise, an update is sent to its
parent node. When an internal node si receives any update
from its child nodes, it computes the new maximum value
v∗i in the sub-tree rooted at si. If v∗i > hit, an update with
the new value v∗i is sent to its parent; otherwise, all packets
in the sub-tree rooted at si will be filtered out to reduce
network traffic. Namely, node si aggregates the messages
of it child nodes by only passing the packet if the highest
value breaks its filter threshold. Then si will also update its
threshold hit+1 and the filter thresholds hjt+1 for its child
nodes that send an update by sending a threshold update
packet to them. Obviously, the threshold hjt+1 is known to
both sensor sj and its parent node si.

Root-initiated query: If the designated maximum node
smax in the last round do not report, it can be known in
the sink that the reading of smax remains unchanged in the
current round. Then the stored value of vmax in the last
round can be used to evaluate the new maximum value.
Once all of the update packets are received at the sink,
it determines v∗sink from the set of all returned values. It
can be verified easily that if the reading of smax stays the
same or rises, then v∗sink is the maximum value since all
values higher than v∗sink will definitely overtake their filter
threshold. On the other hand, a node can become the new
maximum node without breaking its filter threshold only if
the old maximum value falls. In the case, it is possible that
the new maximum value can only be discovered through
root-initiated querying process. More specifically, the root
sends query messages containing the temporary maximum
value v∗sink to those of its child nodes with filter threshold
greater than v∗sink. In turn, each node receiving a query
packet only forwards it to its child nodes with thresholds
greater than v∗sink. On receiving the query packet, only those
nodes with values greater than v∗sink send their new readings
to the sink. Similarly, all reply messages are aggregated
at internal nodes along the transmission path and only the
maximum of them is forwarded upward. Moreover, the filter
thresholds of nodes along the transmission are also updated
accordingly.

Reporting rate adjustment: Here we assume that the

Table I
GLOBAL MAXIMUM TIMES TABLE FOR 70 ROUNDS

Node 1 2 3 4 5 6 7 8

Frequency 5 0 5 0 0 0 40 20

sink maintains a probability value γit for each node si at
the t-th round. (We postpone the detailed discussion of γit
in the next subsection.) After deciding the maximum value
in the current round, the sink will re-evaluate γit and check
whether γit < γ or not for all nodes in the network, where γ
is a given system parameter. If γit < γ, then si is classified
as an unimportant node that has very low probability to
become the maximum node in the next round. Therefore,
the sink sends a reporting rate adjustment packet containing
γit to the nodes with γit < γ. On receiving an reporting rate
adjustment request, node si raises its filter threshold by

hit+1 = (1− γit) · vmax
t + γit · hit (1)

B. Classification of Important and Unimportant Nodes

In this subsection, a strategy will presented to classify the
nodes as important and unimportant nodes. In real world,
most scenarios, the locations where the maximum values
occurred are quite stable (i.e. the distribution of monitored
value would not change rapidly). For example, the maximum
temperature of a factory usually stays in the same region and
the maximum humidity of a rainforest may stay in the same
region as well. With this observation, we can take advantage
of this phenomenon. We endow the sink node with the ability
to learn the importance of all nodes. In short, we deem that
a node is important if it becomes maximum node frequently.
Similarly, a node is classified as an important node if it has
very low chance to become maximum node. Hence, the sink
node will keep a maximum times table used to store the times
of each node being the maximum node.

According to this maximum times table, the sink node
could differentiate important nodes from all nodes. However,
in most cases, recent observations are much more important
than older observations. Therefore, an additional table is
also utilized to store recent observations in the sink node.
The older observations are in global maximum times table,
and the recent observations are stored in temporal maximum
times table. Table I and Table II show an example of
global maximum times table and temporal maximum times
table. By using the maximum times tables, a node could be
classified by computing the important factor as follows.

γi = w · P (Gi) + (1− w) · P (Ti), w ∈ [0, 1] (2)

γi represents the importance of a node (the probability
of this node to become maximum node). P (Gi) and P (Ti)
denote the probabilities of node si being the maximum node
in Global Maximum Times Table and Temporal Maximum
Times Table, respectively. And w is the weight of Global
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Table II
TEMPORAL MAXIMUM TIMES TABLE FOR RECENT 20 ROUNDS

Node 1 2 3 4 5 6 7 8

Frequency 0 0 0 0 0 0 15 5

Figure 1. Sensor deployment in Intel Berkerly lab dataset.

Maximum Times Table. In practice, we would set a threshold
to γi. A node si would be classified as an important node,
if γi break this threshold. Otherwise, it would be classified
as an unimportant node.

C. Adjustment Strategy of Reporting Rate

Three strategies will be adopted in the proposed method
to dynamically adjust the reporting frequency of sensors
according to their classification [21]–[30].

1) Round basis: The round basis strategy is to transmit
the regulation packets periodically. Although this strategy
could response the burst traffic in time, it also incurs a
lot of control overheads. Furthermore, this strategy may
transmit redundant control messages when the maximum
value decreases.

2) Linear regression: As mentioned previously, the HAT
would generate a lot of update messages when the maximum
value suddenly increases since many nodes break their local
filters. In other words, the sink node could send control
messages only if the maximum value increases aggressively.
Base on this observation, linear regression approach could
be utilized to compute the trend of maximum values.

3) Cumulative Sum (CUSUM): CUSUM is a popular
method used for change detection. Before change detection,
the exponential weighted moving average could be applied
to the historical maximum values to smooth short term
fluctuations. This paper utilized CUSUM to detect if the
smoothed values increase aggressively.

IV. PERFORMANCE EVALUATION

In this section, several simulation results will be presented
to demonstrate the performance of proposed algorithm. The
NS-2 network simulator [20] was used to simulate a wireless
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Figure 4. Number of network packets transmitted by nodes 1-4.

network environment. The temperature-data traces provided
by the Intel Berkeley Lab Dataset [4] were used as the
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Table III
THE OCCURRENCE HISTOGRAM OF MAXIMUM VALUES

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Frequency 185 0 0 433 0 0 20 0 0 0 0 0 0 19 37 0

test data on which to run the proposed algorithm. The
data traces consist of temperature readings, which were
regularly collected from 54 nodes spread around the lab, as
depicted in Fig. 1. However, there are some missing values
for a few of nodes in the original data traces. Therefore,
the missing values were replaced with the average value
from the previous and subsequent readings. The simulated
network topology was depicted in Fig. 2, which consists of
the sink node and 16 sensor nodes. The 802.11 and UDP
network protocols were used as the simulated MAC protocol
and communication protocol, respectively. The sensor nodes
were assumed to have a maximum transmission range of
25m.

In the simulations, every four seconds are called a round,
and the maximum query is executed round-by-round, i.e.,
the maximum query is executed every four seconds. The
sampling rate and reporting rate are set to two packets per
second. Two data segments of Intel Berkeley Lab Data [4]
were selected randomly as the input data in each simulation,
and the simulator was executed 20 times to obtain the aver-
age results. Each data trace contains nearly 5500 temperature
values (i.e., simulation time is about 2700 seconds). The
length of Temporal Times Table is set to 10 to store ten
historical values. The Global Times Table was set to contain
all historical data except the data recorded in Temporal
Times Table. The weight of the past data of the weighted
exponential moving average is set to 0.2. If the importance
of a node i is smaller than 0.2, the reporting rate of the
node will be set to 2/5 packets per second as compared to
the original reporting rate. If the importance of a node i is
between 0.2 and 0.35, the reporting rate of the node will
be set to 2/3 packets per second. Otherwise, the reporting
rate keeps unchanged, i.e., two packets per second. The
regulation packets will be sent once the classification of
nodes has been changed since last transmission. The first 50
rounds are training stage that the initial regulation packets
will be sent after the training phase. When the maximum
node consistently replies their readings to the sink node,
it will result in heavy loads on its parent node. We adopt
a simple balance traffic mechanism which can share these
traffics among all possible parent nodes of the maximum
node.

Firstly, we demonstrate the basic function of HAT in
Fig. 3. Hence, we set slow sampling rate and regulation
rate (0.33 packet/second) with an attempt to illustrate the
results clearly. In Fig. 3, we observed that at the first time

Table IV
ERROR RATE COMPARISON

Method Round basis Linear regression CUSUM

Maximum error 0.102 0.102 0.06

Average error 0.04 0.05 0.04

Error rate 1.34 % 0.89 % 0.45 %
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Figure 5. Number of network packets transmitted by nodes 5-9.
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Figure 6. Number of network packets transmitted by nodes 10-14.

unit there are only five packets received by the sink node
instead of 16 packets. As mentioned previously, HAT is
a double sided filter which can remove the values having
no chance to compete for maximum. Thus, there are only
five packets can break the thresholds along the path to
the root. After the decision of maximum, the sink node
sends a maximum designated packet to the node having
maximum value. After receiving the maximum designated
packet, the maximum node reports its readings if it has
changed since last transmission. Thus, we can notice that
the readings of maximum node are transmitted to the sink
node continuously. Besides, after the first time unit, there
are no other packets received by the sink node except the
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packets generated by the maximum node. The reason of this
phenomenon is that the temperatures sensed by these nodes
are decreasing. Hence, they cannot break their thresholds
resulting in no other packets arrived at the sink node.

In the following, the proposed method with these three
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Figure 10. Control overhead.
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Figure 11. Packet reduction on node 15 and node 16.
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Figure 12. Packet reduction on nodes 10-14.

adjustment strategies of reporting rate is evaluated. In Fig. 4,
it can be seen that the reduction on network traffic is
nearly equal using the three adjustment strategies. This is
because that these nodes become maximum node frequently,
as shown in Table III. Hence, their reporting rates will be
kept as normal reporting rate in order to reduce error rate.
In Fig. 5, the three strategies obviously reduce the network
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traffic as compared with no regulation. This is because the
sensed data of the nodes have little chance to become the
maximum one. Accordingly, the reporting rate of the nodes
will be reduced with an attempt to save energy.

In Fig. 6, the three adjustment strategies incur additional
network traffic at node 12 as compared with no adjustment.
The reason why our methods generated more packets at node
12 is that we adopt a traffic balance method which can share
the traffic loads generated by the maximum node to all of
its possible parents. For instance, when node 4 becomes the
maximum node, it will transmit its data values continuously
to all of its possible parents (i.e., nodes 10, 11, 12) instead
of putting all loads on its direct parent (node 11). Thus,
a lot of network packets could be avoided on the direct
parent of the maximum node. The same phenomenon can
be observed in 7. Fig. 8 shows the total number of reduced
network packets. Fig. 9 suggests that the proposed strategies
could obtain nearly 15% packet reduction. Among the three
adjustment strategies, Round Basis has the highest percent
of reduction. However, it also incurs the most overhead as
well in Fig. 10.

The control overhead of Linear Regression method and
CUSUM detection method is 41% and 36% as compared to
Round Basis. After the illustration of packet reduction, we
illustrate error rate, maximum error and average error due to
packets reduction in Table IV. From Table IV, we can notice
that the highest error rate is Round Basis. This is because
that Round Basis reduces the most packets among the three
regulation policies. Thus, it incurs the highest error rate. In
addition to the error rate comparison, we further compare the
method with traffic balance and without balance in Fig. 11
and Fig. 12.

In Fig. 11, node 15 and node 16 are two nodes one-hop
away from the sink. In Fig. 12, nodes 10-14 are the nodes
two-hop away from the sink. As can be seen, the reporting
rate regulation combined with traffic balance scheme could
achieve better balance than only reporting rate regulation
methods. Furthermore, if we purely implement reporting rate
regulation but not combined with traffic balance scheme,
the extended life time of this network is limited. This is
because that the nodes regulated to slow reporting rate are
always the nodes with low probability to become maximum
node. Hence, if we do not combine our method with a traffic
balance scheme, the improvement of life time is limited.

V. CONCLUSIONS

The performance of the proposed algorithm was evaluated
using NS-2 network simulator [20] and real-world data
traces. The results indicate that the overall network packets
are reduced to 80% with 1% data error in comparison with
HAT. Besides, this paper also further keeps the error caused
by reduced packets transmission below 1%.

According to our observation, a node will likely become
the maximum node in the subsequent rounds once it is

designed as the maximum node in the current round. This
suggests that the maximum node would put heavy loading
on its immediate parent due to continuous monitoring (re-
porting) of the maximum node. As a result, some nodes in
the network would exhaust their power more quickly than
the others. In this case, the balancing of communication tree
should be taken into consideration in the proposed method
in the future.
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