
Applications Development on a Rule-Based WSN Middleware

Jiaxin Xie, Zixi Yu, Xiang Fei, Partheepan Kandaswamy

Department of Computing,

Coventry University

Coventry, UK

{xiej, yuzi, x.fei, kandaswp}@coventry.ac.uk

Abstract— Wireless Sensor Network (WSN) middleware eases

the WSN application development by providing an application

programming interface (API). Rule-based WSN middleware

enables the applications and users to program the behavior of

the sensor nodes. REED (Rule Execution and Event

Distribution) is such a middleware solution that allows sensor

networks to be programmed at run time. In this paper, we

propose a method of developing WSN applications that uses

finite state machine (FSM) as a bridge between application

logics and the rules running on the REED, and demonstrate

that for applications, if their behaviors can be described using

finite-state machine (FSM), they can be directly described

using the rules and thus implemented on the REED; further,

we argue that rule-based middleware is useful for

implementing bio-inspired mechanisms, such as self-

organization, on WSN systems. Two WSN applications are

implemented, as examples, on the REED: one is the de-

synchronization of sensor nodes, and the other is the

clustering-based self-organization. This paper is not aimed to

study a specific application or control mechanism on WSNs,

but to, via two prototype implementations, show that rule-

based middleware such as the REED is useful and flexible

enough to support the development of WSN applications,

especially for bio-inspired mechanisms.

Keywords-wireless sensor network; rules; finite state

machine

I. INTRODUCTION

The advance in Wireless Sensor Networks (WSN)
technology has led to a variety of WSN applications. One
example is PROSEN [1]

(PROactive SENsing) research

project that aimed at developing a WSN system for proactive
wind farm condition monitoring. The features of WSN
systems, such as the distribution and heterogeneity of sensor
nodes, the constrained processing power, memory, and
energy for each sensor node; and the error-prone wireless
links over which sensor nodes communicate, make the WSN
application development a challenging task [2]-[4]. To ease
the wireless sensor data collection, delivery and query, WSN
middleware is introduced that provides an application
programming interface (API) to shield the application
(developer) from the complexities arising from the WSN.
Rule-based WSN middleware enables the applications and
users to programme the behaviour of the sensor nodes.
Conceptually, a rule takes the form of <event, condition,
action> where:

 an event is received from any other component in the
system. This is can be an event carrying data values,
or other events such as a timeout event, a sleep or
wake-up event, and so on.

 a condition is a Boolean expression that will be
evaluated when the event occurs.

 an action is executed if the above condition is true
when the event is received. The action may
manipulate or store data. It may also generate
another event to other components in the system,
such as an event to trigger other rules.

Fig. 1 shows the general architecture of the rule-based
middleware [7]. The Rule-Base stores all the rules derived
from the application while the Fact-Base stores the states of
the node and the events that have occurred. The Event-
Manager is responsible for receiving events and passing
them to the Rule-Engine. The Rule-Engine, based on the
current event and the states stored in the Fact-Base, executes
matching rules stored in the Rule-Base. The results of the
execution could be the update of the Fact-Base, or sending
an event to other components in the system via the Event
Manager.

Event

Manager

Rule

Engine

Application

Sensor Platform

Fact

Base

Rule

Base

Figure 1. Architecture of rule-based middleware

A Rule Execution and Event Distribution (REED)
middleware, originally for the PROSEN project, has been
designed and implemented. REED is based on the general
architecture described in Fig. 1; but further, enables
programmability at run time, i.e., the system behaviour can
be programmed by applications at run time, so as to be
adaptive to the changing application goals and changing
environment [5][6].

Provided the rule-based middleware such as the REED,
for application developers, their main focus should be on
constructing the rules that describe the logics of the
application tasks, and this leads to the question of how to
effectively and efficiently express the application specific

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

domain behaviour using rules. In this paper, we propose a
method of developing WSN applications that uses finite state
machine (FSM) as a bridge between application logics and
the rules running on the REED. Further, we argue that rule-
based middleware such as the REED is especially useful for
implementing bio-inspired mechanisms for WSNs as bio-
inspired mechanisms imply that only simple rules are needed
to be running on each node in order to achieve the emergent
behaviour (such as self-organization) of the whole WSN
system.

The rest of the paper is organized as follows: Related
work is discussed in Section II. Then, the REED for the
PROSEN project is briefly described in Section III. In
Section IV, a general method of constructing WSN rules is
proposed, followed by explaining the advantages of rule-
based middleware for bio-inspired WSN mechanisms. The
implementation of two bio-inspired mechanisms on the
REED, i.e. sensor nodes clustering and de-synchronization,
are described in Section V and tested and evaluated in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Fei and Magil [5] and Fei and Yu [6] have listed the
related work on the rule-based middleware for WSNs,
including a general architecture of the rule-based middleware
proposed by Terfloth, Wittenburg, and J.Schiller [7]. Fei and
Magil [5] also developed a rule-based middleware, called
REED, for the PROSEN project. In addition, a survey across
a broad array of WSNs and middleware including rule-based
middleware has been provided by Mottola and Picco [2]. A
systematic study on the same topic has been given in
Terfloth [10]. As mentioned in Section I, for application
developers, directly constructing rules for the WSN systems
is still non-trivial. Using FSM, a primitive and useful graphic
model for describing system behaviours, as a bridge between
application logics and the rules running on the WSN systems
will make it more straightforward for the application
developers to construct rules running on the rule-based WSN
middleware such as the REED. To the knowledge of the
authors, this paper is the first to build up the relationship
between FSMs and the rules running on the WSN systems.

Some bio-inspired mechanisms on WSNs have been
proposed. The biologically-inspired clustering algorithm
proposed by Wokoma, Shum, Sacks and Marshall [11] was
inspired from quorum sensing, a biological process that is
carried out within communities of bacterial cells. Based on
how fireflies and neurons spontaneously synchronize,
Geoffrey, Geetika, Ankit, Matt and Radhika [12] developed
a fully distributed time synchronization mechanism among
TinyOS-based motes; likewise, Julius, Ian, Ankit and
Radhika [13] developed a fully distributed time de-
synchronization mechanism. Boonma and Suzuki [14]
developed the BiSNET, a biologically-inspired sensor
networking architecture, to address issues such as scalability,
energy efficiency, self-healing, etc. However, they were not
implemented on rule-based middleware. We argue and
demonstrate in this paper that rule-based middleware, plus
the FSM-based rules construction method, will ease the
applications development on WSN systems.

Jacobsen, Zhang and Toftegaard [15] provided an
overview of bio-inspired principles and methods applicable
to sensor network design. This overview also mentions that
by using simple rules for the behaviour and the interaction
among individuals a global optimum can be achieved on a
large, system-level scale. However, no real case of rule-
based bio-inspired mechanism is provided. In this paper, two
bio-inspired mechanisms will be implemented on a rule-
based middleware to demonstrate the effectiveness of the
rule-based bio-inspired mechanisms development on WSNs.

III. REED FOR PROSEN

A. PROSEN Architecture

Fig. 2 illustrates the system architecture for PROSEN
where REED lies in. The system consists of a Policy Server
(PS), a PN (Processing Node) for each wind-turbine, and
sensors to measure parameters such as temperature, wind-
speed, wind-direction, and gearbox temperature. The PS
interacts with users and operators to obtain the goals for the
system. Such goals might describe a desirable power output
or response to poor weather conditions. The PS converts the
goals to a set of policies. These policies in turn are converted
to low-level rules. These rules are then distributed to the
REEDS on the PNs.

For the Rule-Engine, in addition to executing the rules in
response to received events as described in Section I, in order
to support on-line programmability, its functionality also
includes:

 Managing a rule database to allow the adding,
removing, and overriding of rules

 Verifying rule consistency

 Merging and filtering rules.
For detailed information on the REED and its language

description, refer to [5].

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule-Engine

SetEvent/
NtfEvent

Sensor …
Sensor Sensor

PN REED
Middware

Policy

Store

User/

Operator

Policy

Policy

Server

SetEvent/
NtfEvent

Processing Nodes

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule-Engine

SetEvent/
NtfEvent

Sensor …
Sensor Sensor

PN REED
Middware

SetEvent/
NtfEvent

SetEvent/
NtfEvent

PN level App.

Sensor Rule-Engine

SetEvent/
NtfEvent

Sensor …
Sensor Sensor

PN REED
Middware

Figure 2. PROSEN system architecture

B. General Prototype Structure

The general prototype system structure, as shown in Fig.
3, consists of one PC functioning as a PS, one PC as a
Gateway [6] and PNs that are the combination of PCs (as PN
emulators) and a GumstixTM [8]. GS400K-XM is a
miniature full function Linux motherboard based on low

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

power Intel XScale® technology. It has 16MB flash memory
which can accommodate JamVM [9], which is a compact
JVM (Java Virtual Machine). REED is developed using Java
and running on PNs (PCs and the Gumstix). The PS and the
gateway are connected via the Internet, and the Gateway and
the PN are connected via a 174MHz wireless link. The
sensor reading is simulated via random number generator.

Gumstix

174MHZ
Wless board

Figure 3. General prototype system structure

IV. APPLICATIONS DEVELOPMENT ON THE REED

A. A General Method of Constructing WSN Rules

Rule-based middleware, such as the REED, to some
extent ease the development of WSN applications However,
as each rule is encoded by a structure of textual data format;
application developers may still face difficulties in
constructing the rules that describe the behaviour of the
application tasks. For them, graphical models, such as FSMs
and UML statechart diagrams, are the convenient ways of
expressing the behavior of the application. We argue that the
FMS as shown in Fig. 4 has the direct relationship with the
rules supported by the REED, and the mapping from the
FMS to the rules are as follows:

 The Event part in the FSM can be mapped to the
event of a rule;

 The State part in the FSM can be mapped to the
condition of a rule;

 The Action part in the FSM can be mapped to the
action of a rule plus an extra action that is to update
the current state;

 The number of the Action

Event

 in the FSM is equal to
the number of the rules for an application.

So, as long as the application behaviour can be described
using finite-state machine (FSM), the construction of rules
from FSM is straightforward. Two cases in Section V
provide examples of how to construct rules via FSMs.

State1 State2

Event 2

Action 2

Event 1

Action 1

Event 3

Action 3

Figure 4. Finite state machine

B. Support for Bio-inspired WSN Mechanisms

Biological systems achieve complex goals reliably via
the collaboration of a large number of cheap, unreliable
components. Such collaboration is based on each component
executing simple tasks in respond to the stimuli. For WSN,
sensor nodes share the similar features with the components
in biological systems: distributed, resource limited,
unreliable, and etc.

Bio-inspired mechanisms, such as self-organization, have
been applied to WSN. If the simple tasks executed on each
node in response to the stimuli can be expresses as a small
set of rules, as mentioned above, rule-based middleware
such as the REED will be advantageous in facilitating the
implementation of the bio-inspired mechanisms on WSNs.
Both two cases in Section V are bio-inspired.

V. TWO CASE STUDIES

A. Rule-Based Sensor Nodes Clustering

Clustering sensor nodes is one of the self-organisation
mechanisms applied to WSNs. There exist quite a few
clustering mechanisms for WSNs [11]. The clustering
algorithm implemented in this paper features first the clusters
are formed dynamically and updated periodically; second,
the process overhead imposed on the cluster heads is
balanced among all the sensor nodes.

To describe the behaviour of the clustering algorithm, its
FSM is drawn first as in Fig. 5. As „UpdateCurrentState‟ is
the default action, due to limitations of space, it is not listed
in the action part of the rules. According to the Section IV,
the rules can be directly derived from the FSM as shown in
Table 1. Further, it is found that if the action set for an event
is always the same across the whole states, the condition part
of the rules for that event can be simply replaced by
“TURE”; this is especially the case if for an events, it occurs
only when the PN is in a specific state. This replacement not
only makes the rule set concise, but also reduce the
processing time for the PNs to check the condition part of the
rules. So for R1, R2, and R3, their condition part is simply
“TRUE”.

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

Idle

HeadElection

PowerOn

 Initiate (RandomizedHeadElectionTimer)

 Initiate (HeadUpdateTimer)

ClusterHead

SensedData

 Aggregate(SensedData)

ClusterMember

HeadBeacon

 Clear (HeadElectionTimer)

SensedData

 ForwardToHead (SensedData)

HeadUpdateTimeOut

 Initiate (RandomizedHeadElectionTimer)

 Initiate (HeadUpdateTimer)

RandomizedHeadElectionTimeOut
 Broadcast (HeadBeacon)

 Initiate (RandomizedHeadElectionTimer)

 Initiate (HeadUpdateTimer)

Figure 5. FSM for the clustering algorithm

B. Rule-Based Sensor Nodes De-synchronization

De-synchronization implies that sensor nodes perfectly
interleave periodic events to occur in a round-robin schedule.
It is useful in that it enables the sensor nodes to evenly
distribute sampling burden in a group of nodes, schedule
sleep cycles, or organize a collision-free TDMA schedule for
transmitting wireless messages [13]. DESYNC, proposed by
Julius, Ian, Ankit and Radhika [13], is a biologically-inspired
self-maintaining algorithm for de-synchronization in a
single-hop network. In this paper, the algorithm of the
DESYNC will is implemented on the REED. Due to
limitations of space, for detailed description of the
DESYNC, please refer to [13].

Fig. 6 describes the behaviour of each sensor node in
order to achieve de-synchronization, from which it can be
seen that only four rules running on each node are enough to
achieve the emergent de-synchronization of the sensor nodes
in a fully distributed way. Table 2 lists the four rules derived
from Fig. 6.

TABLE I. RULES FOR SENSOR NODES CLUSTERING

Rule 1 is triggered when the sensor node is powered on.

R-1 = power_on

[TRUE; Initiate (RandomizedLeaderElectionTimer),

 Initiate (LeaderUpdateTimer)]

Rule 2 is triggered for cluster head election.

R-2 = leader_election_timeout

[TRUE; Broadcast (LeaderBeacon)]

Rule 3 is triggered for cluster members.

R-3 = leader_beacon

[TRUE; Clear (LeaderElectionTimer)]

Rule 4 is triggered for cluster head to aggregate data.

R-4 = sensed_data

[Head; Aggregate (SensedData)]

Rule 5 is for cluster members to send data to its head.

R-5 = sensed_data

[Member; ForwardToHead (SensedData)]]

Rule 6 and 7 are triggered for cluster head updating.

R-6 = leader_update_timeout

[Head; SendToHost (AggregatedData),

 Initiate (RandomizedLeaderElectionTimer),

 Initiate (LeaderUpdateTimer)]

R-7 = leader_update_timeout

[Member; Initiate (RandomizedLeaderElectionTimer),

 Initiate (LeaderUpdateTimer)]

Idle

PowerOn

 Initiate (SelfFireTime, PreFireTime,

NextFireTime, alpha)

 Initiate (SelfFireTimer)

BeforeFire AfterFire

FireFromMembers

 PreFireTime = CurrentTime

SelfFireTimeOut

 SelfFireTime = CurrentTime

 Broadcast (SelfFire)

FireFromMembers

 NextFireTime = CurrentTime

 SelfFireTimer = SamplePeriod +

(1- alpha)*SelfFireTime +

alpha*(PreFireTime +

NextFireTime)/2 – CurrentTime

 Initiate (SelfFireTimer)

Figure 6. FSM for the de-synchronization algorithm

TABLE II. RULES FOR SENSOR NODES DE-
SYNCHRONIZATION

Rule 1 is triggered when the sensor node is powered on.

R-1 = power_on

[TRUE; Initiate (SelfFireTime, PreFireTime,
NextFireTime, alpha),

 Initiate (SelfFireTimer)]

Rile 2 is triggered when the sensor node receives firing

signals from its neighbour before it fires

R-2 = fire_from_members

[BeforeFire; PreFireTime = CurrentTime]

Rile 3 is triggered when the sensor node fires

R-3 = self_fire_timeout

[TRUE; SelfFireTime = CurrentTime]

Rile 4 is triggered when the sensor node receives a firing

signal after its neighbour before it fires

R-4 = fire_from_members

[AfterFire; NextFireTime = CurrentTime,

 SelfFireTimer = SamplePeriod + (1 -
alpha) * SelfFireTime + alpha *

(PreFireTime + NextFireTime)/2 –
CurrentTime,

 Initiate (SelfFireTimer)]

109Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

VI. PROTOTYPE IMPLEMENTATION AND

EVALUATION

The prototypes of the two cases have been implemented
based on the general structure as shown in Fig. 3. To ease the
implementation, the gateway is not included and the
underlying communications among the PS and PNs are
TCP/IP. However, the interfaces provided by the REED
middleware are kept the same.

A. Evaluation of the Clustering Algorithm

To evaluate the rule-based clustering mechanism, a
prototype containing three PNs in a single-hop network has
been implemented. The cluster head update period is set as
12 seconds and the sampling period is 5 seconds. Two tests
are carried out:

1. Formation of cluster heads: Fig. 7 shows the
debugging information on the clustering algorithm,
from which it can be seen that in this specific period,
node A, with its ID being 101.0, becomes the cluster
head/leader, and aggregated information (average of
the sensed data) has been collected and sent by node
A, the cluster head/leader.

2. Distribution of the cluster head: the system is tested
for one hour and 20 minutes which equals to 400
cluster head update periods. Fig. 8 provides the
information on the distribution of the cluster head
across the PNs, where Node A was elected 135
times, Node B 138 times and Node C 137 times. It
presents an overall uniform distribution which
demonstrates that the process overhead imposed on
the cluster heads are balanced among all the sensor
nodes.

3. The test results show that the clustering mechanism,
with the features being those mentioned in Section
V, has been implemented on the REED.

Figure 7. Debugging information on the clustering mechanism

Distribution of the cluster head

0

20

40

60

80

100

120

140

160

Node A Node B Node C

N
o

.
o

f
o

c
c
u

re
n

c
e
s

Figure 8. Distribution of the cluster head

B. Evaluation of the De-synchronization Algorithm

To evaluate the de-synchronization algorithm, a
prototype containing three PNs in a single-hop network has
been implemented. The sampling period for each PN is set as
12 seconds and alpha is set as 0.95. By dividing the sampling
period by the number of the PNs, the desired time slot size,
which in this case is 4 seconds, can be obtained. Fig. 9 shows
the debugging information on the de-synchronization
algorithm, from which the firing time difference between
two time-wise adjacent nodes, i.e. the time slot size, can be
derived. Time slot size is the core evaluation metric for the
de-synchronization mechanism.

Fig. 10 illustrates the firing time differences between two
PNs over time. It can be seen that at the very beginning,
deviation from the desired slot size is non- negligible. This is
because each PN initially starts their sampling tasks at
random time. By running the de-synchronization algorithm,
the firing time differences converge to the desired slot size
quickly.

Figure 9. Debugging information on the de-synchronization

110Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

Figure 10. Firing time differences between two nodes

The system was running for 10 hours to test the dynamic
behaviour of the de-synchronization algorithm. It was
observed that the time slot size may oscillate when reaching
the desired value, as shown in Fig. 11. This is mainly due to
the choice of alpha, the degree of accuracy provided by the
Java libraries, and etc. To get rid of the oscillations, for R-4,
no adjustment on the next firing time will be applied if:

Threshold

meNextFireTiePreFireTimmeSelfFireTi

 2/)(

In our case, the threshold is set as 55 milliseconds. After
this modification, on noticeable oscillations were observed
when the system is running for 10 hours.

Figure 11. Oscillations of the time slot size

It should be noted that to realize the bio-inspired de-
synchronization, only four rules are needed to be running on
each node, which makes easier developing bio-inspired
mechanisms on resource constraint sensor nodes.

VII. CONCLUSION AND FUTURE WORK

In this paper, the REED, a rule-based WSN middleware
is briefly described. A general method to develop WSN
applications is given which uses FSM as a bridge between
application logics and the rules running on the REED.
Especially we argue that rule-based middleware is especially
useful for implementing bio-inspired mechanisms, such as
self-organization, on WSNs. Prototypes of two WSN
applications: sensor nodes clustering and de-synchronization,
are implemented on the REED following the proposed
developing method. The test results demonstrate the usability
of the REED, the effectiveness of the proposed developing
method, and especially the advantages of the rule-based

realization of bio-inspired mechanisms. Further, we stress-
out that the REED provides a framework that makes the
application development more straightforward.

To further evaluate the effectiveness of the application
development method proposed by this paper, in the future,
we aim to extend our research by on the one hand,
implementing more existent bio-inspired mechanisms on the
REED; and on the other hand, developing real-world
applications using the proposed FSM-based rules
construction method.

REFERENCES

[1] PROSEN: http://www.cs.stir.ac.uk/~kjt/research/prosen/ [retrieved:
August, 2012]

[2] L. Mottola and G. P. Picco, “Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art”, ACM
Computing Surveys (CSUR) Volume 43 Issue 3, April 2011

[3] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey”, Computer Networks,Vol. 52 , Issue 12, pp. 2292-2330, 2008

[4] M. Kuorilehto, M. Hannikainen, and T. D. Hamalainen, “A Survey of
Application Distribution in Wireless Sensor Networks”, Journal on
Wireless Communications and Networking, Vol. 5, pp. 774–788,
2005

[5] X.Fei and E. Magil, “Rule Execution and Event Distribution
Middleware for PROSEN-WSN”, SENSORCOMM-2008, pp.580-
585, 2008

[6] X. Fei and Z. Yu, “Development of a Rule-Based Wireless Sensor
Network Middleware”, Proceedings of the 16th International
Conference on Automation & Computing, pp. 13-18, Sept. 2010

[7] K. Terfloth, G. Wittenburg, and J.Schiller, “FACTS - A Rule-Based
Middleware Architecture for Wireless Sensor Networks”,
COMSWARE 2006, New Delhi, India, January 2006

[8] Gumstix: http://gumstix.com/ [retrieved: August, 2012]

[9] JamVM: http://jamvm.sourceforge.net/ [retrieved: August, 2012]

[10] K. Terfloth, “Doctoral Dissertation: A Rule-Based Programming
Model for Wireless Sensor Networks”, Freie Universitat, Berlin.
June 2009.

[11] I. Wokoma, L. Shum, L. Sacks, and A. Marshall, “A Biologically-
Inspired Clustering Algorithm Dependent on Spatial Data in Sensor
Networks”, Proceeedings of the Second European Workshop on
Wireless Sensor Networks, pp. 386 - 390, 2005

[12] W. A. Geoffrey, T. Geetika, P. Ankit, W. Matt, and N. Radhika,
“Firefly-Inspired Sensor Network Synchronicity with Realistic Radio
Effects”, Sensys‟05, pp. 142–153, November, 2005

[13] D. Julius, R. Ian, P. Ankit, and N. Radhika, “DESYNC: Self-
Organizing Desynchronization and TDMA on Wireless Sensor
Networks”, IPSN, pp. 11-20, April 2007.

[14] P. Boonma and J. Suzuki, “BiSNET: A biologically-inspired
middleware architecture for self-managing wireless sensor networks”,
International Journal of Computer and Telecommunications
Networking, Vol. 51 Issue 16, pp. 4599-4616, November, 2007

[15] R. H. Jacobsen, Q. Zhang, and T. S. Toftegaard, “Bioinspired
Principles for Large-Scale Networked Sensor Systems: An
Overview”, Sensors, Vol. 11, pp. 4137-4151, 2011

111Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

