
A Java Library for Event-Driven Communication
in Power-Manageable Reactive Sensor Nodes

Emanuele Lattanzi and Alessandro Bogliolo
Department of Base Sciences and Fundamentals - DiSBef

University of Urbino - Italy
Email: emanuele.lattanzi, alessandro.bogliolo@uniurb.it

Abstract—The energy efficiency of wireless sensor networks
strongly depends on the possibility of exploiting the idleness of
their nodes. In principle, idle periods could be fully exploited
by making use of ultra low power micro controller units
(MCUs) and power manageable network interfaces which
provide a wide range of sleep states with sub micro Watt power
consumption. One of the key issues, however, is to avoid to
keep sensor nodes busy when they could be idle, thus reducing
the opportunity of dynamic power management. This issue is
particularly serious in case of sensor nodes running a virtual
runtime environment, since the virtual machine (VM) is seen
by the scheduler of the underlying operating system (OS) as
a process which is always active in spite of the idleness of the
threads running on top of it. On the other hand, the benefits of
virtualization in terms of abstraction and usability motivates
the development of sensor nodes with power manageable
virtual runtime environments. Promising results have been
recently achieved in this direction by using a modified version
of the Darjeeling VM on top of Contiki OS. This paper moves
a step forward by introducing VirtualSense, an event-driven
communication library for the Darjeeling VM which exhibits
two distinguishing features. First, it is general enough to enable
the implementation of advanced communication protocols in
Java. Second, its event-driven nature makes it possible for a
Java thread to react to incoming messages without keeping the
MCU busy while waiting.

Keywords-Event drive, communication library, reactive sen-
sor, low-power;

I. INTRODUCTION

The energy efficiency of a wireless sensor network (WSN)
depends on the capability of its nodes to adapt to time-
varying workload conditions by turning off unused com-
ponents and by dynamically tuning the power-performance
tradeoff of the used ones. Dynamic power management
(DPM) is a wide research field which has brought, on
one hand, to the design of power manageable components
featuring multiple operating modes and, on the other hand,
to the development of advanced DPM strategies to exploit
them. The best DPM strategy is the one which meets the
performance constraints imposed by the application with
minimum power consumption. Apart from the fine tuning
of the power-performance tradeoff of the active states, the
main power-saving opportunities come from idle periods,
which allow the power manager to take advantage to ultra
low-power inactive modes. Exploiting idleness is mandatory

in wireless sensor nodes, which spend most of their time
waiting for external events or for monitoring requests, and
which are often equipped with energy harvesting modules
which promise to grant them an unlimited lifetime [5] as
long as their average power consumption is lower than the
average power they take from the environment.

A suitable answer to power management needs in WSNs
is provided by state-of-the-art ultra low power micro con-
troller units (MCUs), which feature a wide range of active
and inactive power states while also providing enough mem-
ory and computational resources to run a virtual machine
(VM) on top of a tiny operating system (OS). Virtualization
adds to the simplicity and portability of applications for
WSNs at the cost of increasing the distance between hard-
ware and software, which might impair the effectiveness of
DPM both for the limited control of the underlying hardware
offered by the virtual runtime environment, and for the
limited visibility of the actual activity offered by the VM.
In fact, the VM is usually viewed by the scheduler of the
embedded OS as a process which is always active in spite of
the possible idleness of its threads. Two solutions have been
proposed to address these issues. The first one is provided
by bare-metal VMs, which runs directly on top of the MCU
without any OS [6], [7], [8], at the cost of loosing portability.
The second one is provided by full-fledged software stacks
specifically designed for power manageable sensor nodes in
order to make it possible to take DPM decisions directly
from the runtime environment and to grant to the OS
scheduler full visibility of the idleness of the virtual tasks.
This is the approach adopted in this paper, starting from a
recently proposed architecture [4] base on Darjeeling VM
[2] and Contiki OS [1].

The effectiveness of DPM risks to be impaired, however,
by the paradigm adopted for inter-node communication.
Although a sensor node is primarily designed to sense a
physical quantity and to send a message to the sink to
report the measured value, most of the nodes in the network
act as routers to relay other nodes’ messages towards the
sink. Moreover, in self-adapting sensor networks all the
nodes have to be able to receive interest messages from the
sink and to broadcast them to their neighbors in order to
be assigned a task and to update their own routing tables

112Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

[9]. While all other activities can be either scheduled or
triggered by external interrupts, receiving a message is an
asynchronous event which needs to be carefully handled.
In the Darjeeling VM a thread waiting for a message
is suspended and rescheduled at next timer interrupt (by
default, after 10ms) to look for an incoming message in
the network buffer. This polling mechanism keeps the MCU
busy regardless of the idleness of the node.

This problem could be solved by implementing a smarter
protocol in the Contiki OS, but this would fail in the attempt
of making the sensor node completely programmable in
Java. An alternative approach would consist of increasing
the timer interrupt in order to grant to the OS enough time
to put the MCU into an inactive state, but this would reduce
time resolution and increase the average response time of
the node.

This paper presents a communication library for the
Darjeeling VM which makes available event-driven send and
receive primitives to achieve two goals: to provide the gen-
erality required to enable the implementation of advanced
communication protocols in Java, and to make it possible
for a Java thread to react to incoming messages without
keeping the MCU busy while waiting. Experimental results
show that the proposed library enables the full exploitation
of the low-power states of the MCU with a negligible time
overhead.

The rest of the paper is organized as follows: Section II
presents the architecture of a node with virtual runtime envi-
ronment, Section III introduces the Java library, Section IV
presents a representative case study and some measurements,
Section V concludes the work.

II. NODE ARCHITECTURE

We consider the architecture of a sensor node composed
of: a power-manageable MCU, an embedded OS (namely,
Contiki OS [1]), and a tiny Java-compatible VM (namely,
Darjeeling VM [2]).

As briefly discussed in the introduction, the presence of
an OS provides a suitable decoupling between HW and
SW which makes the approach described in this paper
independent of the underlying MCU. Nevertheless, in the
following we refer to Texas Instruments’ MSP430F54xxa
MCUs, which are highly representative of state-of-the-
art power-manageable MCUs providing four categories of
power states: Active, Standby, Sleep, and Hibernation. In
Standby mode the CPU is not powered, but the clock system
is running and the unit is able to wakeup itself by means
of timer interrupts. In Sleep mode both the CPU and the
clock system are turned off, so that the unit wakes up only
upon external interrupts. In Hibernation even the memory
system is switched off, so that there is no data retention and
a complete reboot is required at wakeup.

Contiki [1] is a real-time embedded OS particularly suited
for sensor nodes. It has an inherent event-driven structure

ab

int.han. OSsch. JVMsch. JVMtaskOSboot JVMboot

abc

a a

acac c

Standby

Sleep

Hibernation

Active

Figure 1. Power state diagram of a power-manageable MCU running the
Darjeeling VM on top of Contiki OS.

which reduces the overhead of periodic wake-ups by making
the interrupt handler aware of the next time at which a pro-
cess has to be resumed by a timer interrupt. This allows the
MCU to go back to sleep without invoking the scheduler in
case of premature wakeup. The only exception is represented
by processes waiting for external events, which need to be
resumed whenever an interrupt arrives.

Darjeeling [2] is a VM for wireless sensor networks which
supports a significant subset of the Java libraries while
running on 8-bit and 16-bit MCUs with at least 10kbytes of
RAM. The VM runs on top of Contiki as a single process, in
spite of its multi-threading support. Hence, the VM has its
own scheduler to switch among the active threads according
to a preemptive round-robin policy. Whenever the running
thread is suspended the scheduler waits for the a timer
interrupt before resuming execution.

A. Power-manageable virtual sensor node

Figure 1 shows the power-state diagram of a power-
manageable MCU running the Darjeeling VM on top of
Contiki OS. All the states aligned at the top of the diagram
represent the macro steps required at wake-up to resume the
execution of a Java thread. Wake-ups can be triggered either
by timing interrupts (solid arrows) or by external events
(dashed arrows). It is worth noticing that self wake-ups are
enabled only in Standby mode, while external events are
required to trigger wake-ups from Sleep and Hibernation.

Contiki puts the MCU in Standby whenever all its running
processes are waiting for external events or timer interrupts.
In order to keep control of the elapsed time it sets a periodic
timer interrupt which wakes up the MCU every 10ms to
allow the interrupt handler to evaluate if there are processes
to be resumed. If this is the case the control is passed to
the scheduler, otherwise the MCU is turned off again. As
previously stated, the VM needs to be resumed at each timer

113Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

Active

Standby.t

Standby.b(T)

Standby.a(T)

c

Sleep

Hibernation

Standby

Standby

Sleep.t

Sleep

Hibernation.t

Hibernation

Busy

Figure 2. Power state diagram of a power-manageable virtual sensor node
[4].

interrupt in order to check for the status of its threads which
are not visible from the OS.

Figure 1 makes use of labels a, b, and c to denote the
transitions taken upon a timer interrupts in case of: a) VM
with no tasks to be resumed, b) OS with no processes to
be resumed, and c) virtual task to be resumed. While case
c) represents a useful wakeup, cases a) and b) should be
avoided in order to save power. To this purpose, a modified
software stack was recently proposed [4] which: i) avoids
periodic wake-ups by making the OS aware of the time of
the next event scheduled by the VM and by tuning the timer
interrupt accordingly, ii) supports hibernation by saving and
restoring the heap of the VM, and iii) maintains timing
information in deeper low power states by means of an
external ultra low-power real-time clock.

The modified software stack builds a power manageable
virtual sensor node which makes directly available from the
Java runtime environment all the power states represented in
Figure 2. The first two Standby states are parameterized by
the timer interrupt (

�
) which can be adjusted to explore the

tradeoff between power consumption and reactivity. Suffix �
is used to denote the usage of the external real-time clock
to provide accurate timing information in spite of the lack
of the internal clock. Table I reports the power-performance
tradeoffs offered by the power states of the software stack

State Power WUt WUe SDt SDe
name [� W] [ms] [� J] [ms] [� J]
Active 6600 � W n.a. n.a. n.a. n.a.
Standby.a(�) ��� �	��
���
�� ������� 23.41 153.57 – –
Standby.b(�) ��� �	�����
�
���� 23.41 153.57 – –
Standby.t ��� �������
 23.41 153.57 – –
Standby 4.5 23.41 153.57 – –
Sleep.t 1.5 � 0.3 23.41 153.57 – –
Sleep 1.5 23.41 153.57 – –
Hibernation.t 0.1 � 0.3 560 2312.8 78.8 606.76
Hibernation 0.1 560 2312.8 78.8 606.76

Table I
CHARACTERIZATION OF THE POWER STATES OF THE VIRTUAL SENSOR

NODE ARCHITECTURE [4] RUN ON A TEXAS INSTRUMENTS’
MSP430F2618 POWERED AT 3V AND CLOCKED AT 16MHZ WITH A

4KBYTE VIRTUAL MACHINE HEAP.

run on top of a Texas Instruments MSP430F2618 MCU
powered at 3V and clocked at 16MHz. Each inactive state is
characterized by: power consumption (Power), wake-up time
and energy (WUt and WUe), and by shut-down time and
energy (SDt and SDe). Transitions energies (times) lower
than 0.01 � J (0.01ms) are not reported. software each power
state

B. Communication issues

Communication across the radio channel is handled by the
Radio class of the Darjeeling VM, which makes available
a receive() method to be invoked by any Java thread
waiting for a message. As soon as the method is invoked,
the Java thread is suspended by the scheduler of the VM. If
there are no other threads ready to execute, the Darjeeling
process is suspended as well and rescheduled by the OS
at next timer interrupt (i.e., at most after 10ms). Referring
to the state diagram of Figure 1, as long as the message
does not arrive, the MCU keeps waking up at each timer
interrupt and executing the interrupt handler routine, the OS
scheduler, and the VM scheduler before deciding to go back
in Standby mode. This is a power-consuming self loop which
is labeled with a in Figure 1 and schematically represented
by macro state Standby.a(T) in Figure 2. No other low power
states can be exploited while waiting for a message.

Looking at Table I, it is worth noticing that power
consumption of Standby.a(T) is several orders of magnitude
higher than that of Sleep and Hibernation. Moreover, the
wake-up time is larger than 10ms, so that the MCU would
stay always while waiting for a message unless a longer
timer interrupt was set in the modified stack. The minimum
timer interrupt which could allow the exploitation of Standby
mode is

���������!
.

The event-driven communication library presented in next
section solves this issue by enabling the exploitation of all
the low-power states of a power-manageable virtual sensor
node waiting for incoming messages.

114Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

Radio MCU Flash Sensors

Darjeeling VM

User app User level

Protocol

Contiki Os

In
te

rr
up

t

Process poll Process poll

Message

System level

Darjeeling threads

Contiki processes

Wait receive Notify receive

Wait for message

process
Radio driver

Radio driver

Figure 3. VirtualSense software architecture

III. VIRTUALSENSE COMMUNICATION

The software architecture of the proposed communication
framework is shown in Figure 3, where arrows are used to
represent the event chain triggered by the reception of an
incoming packet. The figure points out the interactions be-
tween user-level and system-level execution flows, as well as
those between Contiki processes (namely, Radio driver
process and Darjeeling VM) and Darjeeling threads
(namely, Protocol and User app).

While waiting for an incoming packet all the pro-
cesses are blocked and they do not consume any com-
putational resource. When a packet is received by the
radio device, the Radio driver interrupt handler is-
sues a PROCESS_EVENT_POLL for the Radio driver
process which was waiting for it. At this point the sched-
uler of Contiki wakes up the Radio driver process
which: takes the packet from the radio device buffer,
forwards it to the Contiki network stack, issues a new
PROCESS_EVENT_POLL for the Darjeeling VM, and
releases the CPU while waiting for next packet. The CPU
is then taken by the Darjeeling VM process, which
resumes the execution of the Protocol thread which was
blocked for I/O. The Protocol plays the role of consumer
by popping the incoming message from the Contiki network
stack, which acts as a buffer in the producer-consumer
interaction.

The event chain described so far is general enough to
enable the implementation of any kind of communication
protocol either within the Protocol thread or at appli-
cation level. Depending on the protocol adopted and on
its implementation, received packets can either be handled
directly by the Protocol thread or be forwarded to the
User app waiting for them.

Sending a packet is much simpler than receiving it: the
User app which needs to send a message invokes the
send() method of the Protocol, which puts the packet

on the Contiki network stack without involving the Radio
driver process.

In the following we outline the three packages de-
veloped to extend the Darjeeling Java libraries in or-
der to support the event chains described above: i)
javax.virtualsense.radio, containing the static
native methods used to communicate with the radio device;
ii) javax.virtualsense.network, making commu-
nication primitives available to user-level Java threads; iii)
javax.virtualsense.concurrent, providing syn-
chronization primitives. A simplified class diagram is shown
in Figure 4.

A. Radio package

The radio package contains the Radio class (rep-
resented in Figure 4) and some other classes used to
handle exceptions. The Radio class exports static na-
tive methods which directly interact with the platform
radio driver and with the network stack of Contiki OS:
a method to perform radio device configuration and ini-
tialization (init()), unicast and broadcast send methods
(send(), and broadcast()), a blocking receive methods
(receive(), and two methods to get the sender and re-
ceiver IDs (getSenderId() and getReceiverId()).
All the methods are protected, in order to be used only
through the Protocol class, which is part of the network
package.

Unicast and broadcast send methods make use of the
Contiki unicast_conn and broadcast_conn net-
work connections from the rime network stack. The
receive() method suspends the calling Java thread by
putting it in a waiting queue and acquires a lock on the
radio device preventing the power manager to shut down
the network device. Whenever a radio message is received
from the Contiki network stack two different call-backs are
activated depending on the nature of the received message:
broadcast call-back or unicast call-back. Both call-backs
wake up the suspended Java thread, set the senderId and
receiverId attributes, and release the device lock.

B. Network package

The network package acts as a middleware layer which
lies between the system level radio package and user-
level applications. In particular, this package contains an
abstract Protocol class, providing a communication pro-
tocol skeleton, and a Network class, providing a public
interface to make communication primitives available to
user-level threads.

The Network implements the singleton pattern, so that
it can only be instantiated by means of its init() method,
which can be invoked with or without a given protocol (i.e.,
an instance of a subclass of Protocol. If no protocol
is specified, then the NullProtocol is used by default.
After network initialization, user level threads can call

115Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

+ getReceiver() : short
+ getSender() : short
+ getData() : byte[]

javax::virtualsense::network
Packet

NullProtocol

+ packetHandler(Packet p) : void

javax::virtualsense::network

Protocol
javax::virtualsense::network

start() : void

send(Packet p) : void
stop() : void

packetHandler(Packet p) : void

sendBroadcast(Packet p) : void
receive() : Packet
notifyReceiver() : void

Network
javax::virtualsense::network

− Network()
+ init() : void
+ init(Protocol p) : void
+ send(Packet p) : void
+ receive() : Packet

javax::virtualsense::concurrent
Semaphore

+ Semaphore(short premits)

− waitForSemaphore(short id) : void
− wakeupWaitingThread(short id) : void
+ acquire() : void
+ release() : void

getSenderId() : short
init() : void

send(byte[] bytes, short id) : void
bradcast(byte[] bytes) : void

getReceiverId() : short

Radio
javax::virtualsense::radio

− create() : short

receive() : byte[]

Figure 4. VirtualSense communication class diagram. Public methods are denoted means ”+”,l while protected and private methods are denoted by ”#”
and ”-”, respectively.

send() and receive() methods to communicate. These
two methods provide a public interface to the corresponding
methods of the Protocol class.

Protocol is an abstract class which has to be sub-
classed in order to implement specific routing strategies.
The class maintains as local properties the routing table and
the queue of received packets. In order to decouple system-
level and user-level packet reception tasks, the Protocol
class provides a dedicated thread (instantiated and launched
within the class constructor) which runs a loop containing
a call to Radio.receive(). The thread is suspended on this
call until a packet is received, as described in Section III-A.
Upon reception of an incoming packet the thread resumes
execution and it calls the packetHandler() method, an
abstract method that has to be implemented in any Protocol
subclass.

Methods receive() and notifyReceiver() pro-
vide the means for using the event-driven reception mech-
anism from user-level threads. To this purpose, an appli-
cation which needs to receive a packet from the radio
device invokes the Network.receive() method which,
in turn, calls Protocol.receive() which suspends the
calling thread on a counting semaphore. Upon reception
of a packet to be forwarded to the waiting application,
the Protocol invokes notifyReceiver() to release
a permit on the semaphore. From the implementation stand
point, the invocation of notifyReceiver() has to be

placed inside packetHandler(), which is the method
where the actual routing protocol is implemented. The
default NullProtocol does nothing but invoking this
method to forward to the applications all incoming packets.

C. Concurrent package

The concurrent package provides a robust and effi-
cient way to manage thread synchronization. In particular
the Semaphore class implements a standard counting
semaphore based on a waiting queue. Any thread waiting
for a semaphore permit is suspended by the VM and
moved to the semaphore waiting queue. In this way it
allows the power manager to shutdown the MCU. As
soon as a new permit is available on the semaphore,
the waiting thread is woken up by removing it from the
waiting queue. Thread suspension and wake up are imple-
mented through native methods waitForSemaphore()
and wakeupWaitingThread(), respectively, which di-
rectly interact with the VM scheduler and manage thread
displacement.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

In this section we show, with a practical example, how to
use the communication library presented in Section III. We
use as a case study a sensor network programmed to perform
a periodic monitoring task: each node in the network senses
the target physical quantity once per second and sends the

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

measured value to the sink. The sink is nothing but a sensor
node connected to a desktop PC by means of the serial port.
All other sensor nodes act also as routers, implementing a
self-adapting minimum path routing protocol.

01 import javax.virtualsense.network.*;
02
03 public class MinPathProtocol extends Protocol{
04
05 private short minHops = Short.MAX_VALUE;
06 private short epoch = 0;
07
08 protected void packetHandler(Packet p){
09 if(p instanceof InterestMsg){
10 InterestMsg interest = (InterestMsg)p;
11 if(interest.getEpoch() > this.epoch){
12 this.epoch = interest.getEpoch();
13 super.bestPath = -1;
14 this.minHops = Short.MAX_VALUE;
15 }
16 if(interest.getHops() < this.minHops){
17 this.minHops = interest.getHops();
18 super.bestPath = interest.getSender();
19 interest.setHops(interest.getHops()+1);
20 super.sendBroadcast(interest);
21 }
22 }else if(p instanceof DataMsg) {
23 DataMsg data = (DataMsg)p;
24 if(data.toForward())
25 super.send(data);
26 else
27 super.notifyReceiver();
28 }
29 }// end method
30 }//end class

Figure 5. Minimum path algorithm implementation

The sink collects all the measurements and triggers period
updates of the routing tables by sending an broadcast interest
message (InterestMsg) to the network according to a
directed diffusion paradigm [9]. The interest contains a
progressive counter, called epoch, which is used by the
nodes which receives and forward the interest message to
verify its freshness. In addition, it contains the number
of hops from the sink, which is incremented at each hop
to allow sensor nodes to identify the best path. Figure 5
reports the Java code of the MinPathProtocol class
which extends the Protocol and overrides abstract method
packetHandler() to implement the minimum path di-
rected diffusion algorithm.

Whenever a new packet is received, the
packetHandler() checks if it contains an interest
message (Figure 5, line 09) or a data message (line 22). In
case of an interest, its epoch is compared with the previous
one (line 11) in order to reset the routing table in case
of new epoch (lines 12-14). In the directed diffusion min
path protocol the routing table is nothing but the ID of the
neighboring node along the best path to the sink. Such an
ID is stored in bestPath, which is updated with the ID
of the sender of last interest message whenever the number
of hops annotated in the message is lower than the current
value of minHops (lines 16-19). In this case the interest
message is also forwarded (line 20).

Data packets are either to be forwarded to the sink

through bestPath (line 25) or to be notified to user-level
applications possibly waiting for them (line 27). According
to the directed diffusion algorithm sensor nodes never play
the role of recipients of data messages. Nevertheless, line
27 has been added in Figure 5 as an example of user-level
communication.

A. Performance overhead

The proposed architecture was instrumented in order to
measure the software overhead introduced by the high-level
implementation of the communication protocol.

In particular we measured Contiki and Darjeeling execu-
tion times as separate contributions to the reception event-
chain starting from the sleep state. Contiki overhead was
measured as the time between the reception of a radio
interrupt and the corresponding Darjeeling VM process poll.
Darjeeling overhead was measured as time between the wake
up of Darjeeling VM process and the delivery of the incom-
ing packet to the user-level application. The results obtained
in a prototyping board equipped with an MSP430F5435a
running at 16MHz where respectively 3.7ms and 14.4ms
for Contiki and Darjeeling software overheads resulting in
a total overhead of 18.1ms.

On the other hand the software overhead introduced by
the proposed Java library in the sending chain was of 3.4ms.

It is worth mentioning that the Java library introduced
in this paper allows the power manager to exploit the
waiting times to put the sensor nodes either in Sleep or
in Hibernation, depending on the DPM policy adopted. For
instance, in case of a sensor node acting as a router handling
on average two data packets per second, the exploitation of
the Sleep state would reduce the power consumption from
the 6600 � W of the Active state of our MCU to a measured
value of 1620 � W, which would tend to a few � W as the
monitoring rate decreases.

This example shows how the proposed network library
allows the programmer to implement a routing protocol with
a few lines of code, enabling the full exploitation of the low-
power states of the MCU without impairing the reactivity of
the sensor node.

V. CONCLUSION

The availability of ultra low-power MCUs able to run
a virtual machine makes it possible to design power man-
ageable sensor nodes that can be programmed in Java. The
separation between the virtual runtime environment and the
underlying MCU has been recently bridged by means of
a modified software stack which retains the key benefits of
virtualization without impairing the effectiveness of dynamic
power management. Any node in a wireless sensor network,
however, spends most of its operating time waiting for
incoming packets. In spite of the idleness of a waiting node,
the capability of reacting to an incoming message is often
implemented by means of polling mechanisms which keep

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

the MCU busy and avoid the exploitation of its low-power
inactive states. This is what happens with the communication
primitives made available by the Darjeeling VM running on
top of Contiki OS.

This paper has presented an event-driven communication
library, called VirtualSense, which provides energy-aware
send() and receive() methods which allow the MCU
to exploit inactive low-power states while waiting for incom-
ing packets and to resume the execution of the Java thread
as soon as a packet is received. A simple case study has
been presented to show that the proposed library makes it
possible (and easy) to implement a communication protocol
on top of the Java runtime environment without impairing
the effectiveness of dynamic power management in ultra
low-power sensor nodes.

ACKNOWLEDGMENT

The authors would like to thank Andrea Seraghiti,
Massimo Zandri, and NeuNet Cultural Association
(http://www.neunet.it/) for their fundamental contribution to
the development of the prototype.

REFERENCES

[1] A. Dunkels, B. Gronvall, and T. Voigt, ”Contiki - a lightweight
and flexible operating system for tiny networked sensors”, in
Proc. of the IEEE Conf. on Local Computer Networks, pp.
455-462, 2004.

[2] N. Brouwers, P. Corke, and K. Langendoen. ”Darjeeling, a Java
compatible virtual machine for microcontrollers”, in Proc. of
the ACM/IFIP/USENIX Middleware Conference Companion,
pp. 18-23, 2008.

[3] Texas Instruments. ”MSP430x5xx/MSP430x6xx Family User’s
Guide”, URL http://www.ti.com/lit/ug/slau208j/slau208j.pdf,
2012.

[4] E. Lattanzi and A. Bogliolo, ”Ultra-Low-Power Sensor Nodes
Featuring a Virtual Runtime Environment”, to be presented at
IEEE ICC E2NETS-2012, 2012.

[5] E. Lattanzi and A. Bogliolo, ”WSN Design for Unlimited Life-
time”, In Yen Kheng Tan (Ed.), Sustainable Energy Harvesting
Technologies: Past, Present and Future, InTech, 2011.

[6] Rene Muller, Gustavo Alonso, and Donald Kossmann. 2007.
”A virtual machine for sensor networks”. SIGOPS Oper. Syst.
Rev, pp. 145-158, 2007

[7] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels,
and Derek White. ”Java on the bare metal of wireless sensor
devices: the squawk Java virtual machine”. In Proceedings of
the 2nd international conference on Virtual execution environ-
ments (VEE ’06). ACM, pp. 78-88, 2006.

[8] Philip Levis, David Gay, and David Culler. ”Active sensor
networks”. In Proceedings of the 2nd Symposium on Networked
Systems Design & Implementation, pp. 343-356, 2005.

[9] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Es-
trin, John Heidemann, and Fabio Silva. ”Directed diffusion for
wireless sensor networking”. IEEE/ACM Trans. Netw. 11, pp.
2-16, 2003.

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

