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Abstract— As Wireless Sensor Network (WSN) has become a MAP [9]. Henceforth, we will refer to our approacs

key technology for different types of smart enviroment, nodes
localization in WSN has arisen as a very challenginproblem
in the research community. Most of the applicationgor WSNs
necessitate a priory known nodes positions. In thipaper, we
propose an algorithm for three dimensional (3D) nods
localization in surface WSN based on multidimensical scaling
(MDS) technique. Using extensive simulations, we \iestigated
in details our approach regarding different network topologies,
various network parameters and performance issuesThe
results from simulations show that our algorithm pmoduces
small localization error and outperforms MDS-MAP in terms
of accuracy.

Keywords-wireless sensor networks; multidimensional
scaling; 3D surface localization; nodes positioning.

l. INTRODUCTION

A wireless sensor network (WSN) is a network
autonomous distributed sensor devices that obtaiiows
measurements of different real-life occurrencef2]1After
taking samples of physical or environmental condsi at
different locations (light level, air temperatudeyumidity,

Improved Multidimensional Scaling Algorithm (IMDS).

The rest of this paper is organized as follows. Jéeond
section refers to the multidimensional scaling teghe for
nodes localization in 3D-WSN. The third section egiva
detailed explanation of our IMDS algorithm. Sectifour
presents the results provided from our simulatidfisally,
we conclude this paper in section five.

.  THREE DIMENSIONALMDS

Multidimensional scaling (MDS) is a set of analglic
techniques that has been used for reducing the
dimensionality of the data (objects), showing
multidimensional data as points in 2D or 3D sp&jeNIDS
algorithm uses the distances between each paibjettas
input and generates 2D-points or 3D-points as daufploe
input required by MDS should be presented as distan
matrix, representing the distances between thectzbjbat

ofshould be analyzed. The purpose of this methodois t
visualize dissimilarity data in order to better arstand and
comprehend it.

MDS can be easily translated into WSN domain if the
sensor network and distances between neighboridgsnare

etc.), each sensor sends data to its closest ®ighbrgpresented as a graph with its edges respectivelySNs,

responsible for retransmitting the packets [3]. Tl

destination is the sink node responsible for stpdata or for
further processing. Although initially developed fuilitary

applications, today, WSNs are used in many incalsémd
civiian application areas, habitat monitoring, keeare
applications and traffic control [4].

Nodes localization is the basis for maayplications of
WSN, such as event detection and target trackinganual
disposition is impossible not only for large sCAl&Ns, but
also when a WSN is deployed on inaccessible teriie
most straightforward solution to the localizatiomlgem is
to apply Global Positioning System (GPS) receiversach
node [5]. But it is an expensive solution and iregable for
indoor environments [6][7].

Finding out accurate positions of the WSN nodesaouit

MDS performs as centralized, range-based locabizati
algorithm. Distance measurements between each gfair
neighboring nodes will be collected at the sinkewothere,
all available information will be used in order @btain the
unknown distances between non-neighboring nodes.

There are a few well-known techniques for distance
measurement between neighboring nodes [6][7][1i6k |
Received Signal Strength Indicator (RSSI), Timé\oival,
Time Difference of Arrival (TDoA) and Angle of Arral
(AoA). RSSI [10] measurement of distances is often
preferred as it does not require additional hardwRSSI is
based on the phenomenon that the intensity of ednsignal
decreases as the distance from the signal sowreases. If
the function of the attenuation in dependence distance is
known in advance, the distance between the emissiorce

GPS support has been studied for many years. Many,q the receiver can be easily estimated. Therizeded for

different techniques [6][7] have been proposed soiving

a message to travel from one node to another id tse

this problem, but most of them consider only two-p6yide range information in ToA and TDoA technigue

dimensional (2D) network. In this paper, we invgsté
multidimensional scaling technique [8] for nodesdlization

in three dimensional surface WSNs. We also propmse
in distance matrix calculatidmat t

heuristic approach

while AOA is defined as the angle between the pgafian
direction of the wave and some reference direction.

The main advantage of using MDS is its ability to
reconstruct the relative map of the network eveemthere

improves the accuracy compared with well known MDS-
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are no anchor nodes (nodes with a priori knowntioop If This transformation is also known as Euclidean or

given sufficient portion of anchor nodes, MDS perfe very  Rigid transformation, because it preserves theeslhap the

accurate position estimation enabling local map b®  sjze.

transformed into an absolute map [9][11]. There are many algorithms purposed in the litegatur
There are different versions of MDS for nodesthat compute a rigid 3D transformation [14]. The sio

localization in a two dimensional WSN. The most@lapis  eyplored are based on Singular Value Decomposition

MDS-MAP, proposed by Yi Shang and Wheeler Ruml [9],.syp), as it is known to be the most stable [15idig the

where Dijkstra algorithm is used to calculate tmknown ; - ; ;
. . . S optimal rigid transformation with SVD can be brokgown
distances from the distance matrix. In [9] it isowh that into the following steps:

MDS-MAP outperforms other techniques, especiallyemwh . . .
applied on density networks. Other approaches based « Compute the weighted centroids of both point sets
MDS-MAP exist [12], but most of them are complexdan 1N 1N
thus more computationally dependent. In [13], toéhars p :_z p,q= _Zqi’ )
introduce MDS-MAP(P), which is a decentralized i@nsof N 4z N =

irregular network topologies, but requires intemsiv

computational resources at each node. It computeal | p'=p —-P q"=q¢ —7,i=1,...,.N ()
maps at each node in the network and then merged lo

maps into a global map. Using absolute positionghef Compute the 3x3 covariance matrix

anchors, this global map can be easily transforintm an — T
absolute map. ' H _,P Q. ) )
Although a lot of research has been carried ourtkgg where P’ and Q' are the 3xN matrices that have
MDS-MAP for WSN localization, all of the algorithms p.' and q.'as their columns, respectively.
. . . I I '
proposed in the literature based on MDS-MAP comsidy . C te the sinaul lue d ii
two dimensional networks. To the extent of our klealge, ompute the singular value decomposition
this is the first research that extensively in\gstes three H=UsVT )

dimensional surface WSN localization based on MDS.

A. Multidimensional scaling (MDS) for 3D-WSN R=VUT 6
MDS-MAP for 3D WSN consists of 3 steps: . ' . ©
«  Step 1: Calculate shortest distances between every ® Compute the optimal translation as
pair of nodes (using either Dijkstra’s or Floyd% a t=09-Rp. @)
pairs shortest path algorithm). This is the distanc
matrix that serves as input to the multidimensionalC. Time complexity of MDS-MAP for 3D-WSN

scaling in step 2. In step 1, distance matrix construction using Digs or
+ Step 2: Apply classical multidimensional scaling to Floyd's algorithm require®(n®), where n is the number of

the di_stance matrix.. The first?, largest ejgenvalge nodes in the network. In step 2, applying MDS te th
and eigenvectors give a relative map with relative . ) 3 i
location for each node. distance matrix has complexity @(n”) due to singular

] ) . value decomposition. In step 3, the relative map is
* Step 3: Transform the relative map into absolutgansformed through linear transformations. Commtine
map using sufficient number of anchor nodes (atjgiq transformation take®(N) time for computing P and Q,

The rotation we are looking for is then

least 4).
while computing SVD takes onlp(33) time (since the
B. Finding optimal rotation and trandation between dimension of covariance matrix H is 3x3). Applyitige
corresponding 3D nodes transformation (rotation and translation) to theolgtrelative

Generating an absolute map (step 3) of the WSNDap takes O(n-N) time, where N is the number ohars

requires at least four anchor nodes. N<<n).

Let P={p,p,. Py} and Q={q,qd, q} be . IMPROVEDMDS-BASED APPROACH FORNSN
two sets of corresponding nodes, where N is thebeurof POSITIONING
anchor nodes in the WSN. We wish to find a tramsfdion In this section, we will explain in details our inoped

that optimally aligns the two sets in terms of tesguare ~multidimensional scaling algorithm (IMDS) for nodes
errors, i.e., we seek a rotation matRxand a translation localization in WSN.

vectort such that MDS is very accurate technique for dimensionality
N reduction. If the correct distance matrix is givas input,
(th):afgminZ”(Rpi +t)-q "2 (1) MDS algorithm  will reconstruct the map o_f the netko
Rt 3 without error. But, calculating distance matrix fogtworks
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where only distances between neighboring node&raoen
is not a trivial task. This problem in MDS-MAP islged by
applying Dijkstra’s (or Floyd's) all pairs shortegtath
algorithm. Dijksta’s algorithm is a graph searchoaithm
that solves the single-source shortest path prabie’tVSN
localization problem, the sensor network is reprtess as a
graph with non-negative edge path costs, while rid,
Eucledian distance between two non-neighboring sidde

A. Distance matrix calculation

Consider there are three nodes in a netwarlB andC
(Fig. 2), with known distances between nodesand B
(d,=AB), and between nodeB and C (d,=BC). Since
distance matrix requires the distances betweery gadr of
nodes in the network, the distance between nédaad C
has to be obtained. We will refer to this distaasa.

If maximum radio range of the nodes in the netwsR,

replaced with the distance calculated using Dijkstqhen, we know for sure that no@ecan lay anywhere on the

algorithm. But the assumption that Dijkstra diseabetween
two nodes correlates with their Euclidean distaisceardly
true. This approximation produces an error, ite,gositions
obtained as MDS output usually differ from the ectr
positions. The difference between the real andptidicted
positions is known as estimation error. The ersobigger

curveC,C,. If Dijkstra’s algorithm is used for this purpose,
will calculate the distanc& as a=AB+BC, which is the
longest possible theoretical distance between nadeslC.
More preciselyC will lay exactly onC,. On the other hand,
if we calculate the shortest possible theoreticatadce
between noded andC, it will be very close tdR. We can

when the nodes are in multi-hop communication rang&:gnclude that:

which is a common case in obstructed environméhts.

usually caused by the presence of obstacles oairerr

irregularities that can obstruct the line-of-sighétween
nodes or cause signal reflections. Fig. 1 showseeomples
when Dijksta algorithm will calculate much largestdnce
between non-neighboring nodes. Left side of theupec
shows an example of two nodes A and B that ardrdan

each other. The distance between A and B will beutzted

as AB=atb+c+d, which is much longer then the real

Euclidian distance. This scenario is present whba t
network is deployed on vast regions where the reatige of
the nodes is short compared with the length ofélgeon. On
the right side of Fig. 1, there is an example whese nodes
can’'t communicate directly although they are vese to
each other. The reason for this is the presenasbsfacle
that obstructs the line-of-sight. In this scenardijksta
algorithm is completely inapplicable as it calcakata few
times longer distance.

B

Figure 1. Distance approximation

As it can be seen from the two examples presemted
Fig. 1, the distance calculated using Dijksta athor always
increase the real distance. In order to reducedibtance, in
this paper, we propose an alternative heuristicagmh. By
reducing the distance matrix error, we intend twuce the
overall estimation error.
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R<a<d+d,.

8

Figure 2. Distance approximation

To minimize the possible error, we purpose a hgaris
solution that assumes that the naddies exactly in the
middle of the curveC;C,. Hence, the distana=AC can be
calculated using cosine formula as:
a’?=d,” +d,” - 2[4, [d, [Eos(< ABC). 9)

In order to calculate the distanagfirst, we need to find
the angle using cosine formula:

X ABC=<4ABC,;+«C,BC (10)

The angle< ABC, can be calculated again with the

cosine formula:

2 2 2
+d,” -R
< ABC, = arccos(dlé)

(11)
i 214, [d,
Since
4C,BC =% CBC,, 12)
% C,BC = % % C,BC, (13)
%£C,BC = % (m- < ABC,), (14)
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% ABC =< ABC,+ % (m- % ABC,),

o1

ABC = —+ — 15
< 2 + 2 < ABC, (15)

Finally,
a?=d,” +d,” - 2@, (@, [tos(« ABC )=
:d12 + d22 -20d, [d, E:OS(LZT + %q ABC, )=
=d,2+d,? +20d, [, Sin(%qABcl), (16)

where

2 2 _p2

ABC,; =arccosw) a7

We note here thabur algorithm preserves the time

complexity of MDS-MAP algorithm.

IV. PERFORMANCE EVALUATION

The performance of the algorithms for WSN localmat
depends on different network parameters, such as
network topology, the number of anchors (i.e.,@hehor-to-
node ratio), the radio range, the density of nodts,Hence,
the location estimation error is going to be eviddaas a
function of different parameters.

A. Network model

We assume a typical sensor network composed
hundreds (or thousands) of sensor nodes deployiéatmty
across three dimensional monitored area (valley
mountain). Each sensor is equipped with an ommeietional
antenna and has limited resources (CPU, battermang
etc.). Since radio signals are omni-directionallyamodes
within certain radio range R can communicate wittthe
other. If two nodes are within each others transimisrange
they are called neighbors. Further, we made fohgwi
assumptions:

* Nodes are static and unaware of their location.

¢ There is a path between every pair of nodes.

* Nodes deployed in close proximity to each other

exchange messages.

* Each node uses RSSI (or any other) method fo

distance estimation.

¢« RSSI provide accurate neighboring sensor distanc

estimation.

We simulated both techniques (MDS-MAP and IMDS)

on different surface WSNs with Matlab.
We considered:
« Different network topologies:

0 100 nodes randomly deployed on valley
terrain (topology 1)
0 100 nodes randomly deployed on

mountain terrain (topology 1)
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tI]ocation and pos

e« 4, 6, 10 and 15 anchors for absolute map
construction (for 3D rigid transformation SVD
method was used)

Different radio rangesR) that lead to different
average connectivity (average number of neighbors).

« Radio range erroer (from er= 0%R toer=30% R
with step 5% of R)

Thus 280 different networks were simulated (2 x 8 x
7) and each node location was discovered with MIEIS-
MAP and IMDS technique. The connectivity parameted
the estimation error for each scenario represestiage over
30 trials for both algorithms. The average estioragrror is
normalized by the radio range R:

n .
Zdistancepog (estimated) _ pos; (true))

Error ==

100%, (18)
(n—=N)[R
where n is the number of nodes in the network, Nhes

(estimated)

number of anchor nodespos is the estimated

(") s the true location of the i-th node.

B. Comparison of MDS-MAP and IMDS for 3D surface
WSN

It is expected that MDS-based algorithms for WSN
localization will not work well for such scenaridsasically
diecause of multi-hop distance between each pairodés.
Our improved heuristic approach presented in thisep is

ofXpected to achieve more acceptable accuracy.

Fig. 3 shows an example of two typical 3D surfacs.
the upper picture there is a surface, which reptesa
valley, while the lower surface represents a manntin our
simulations, two scenarios are constructed to emuia
terrain with a valley and a terrain with a mountdi@0 nodes
are deployed randomly with a uniform distributioneo
these two surfaces.

SSONSNARRS
SRR
SRR

SR

SR
R Ny
ST T AR

Figure 3. Typical 3D surface, valley (upper) and mountainvgo)

Fig. 4 and Fig. 5 compare the results of MDS-MAHR an
IMDS for topology | and topology Il respectively.
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In the case of topology | (Fig. 4), whenis small, both

IMDS and MDS-MAP produce very similar estimatiomogr
This error is much more affected by the numberrmhars.

Figure 4. Comparison of MDS-MAP and IMDS for topology |

In case of topology II, for smaler MDS-MAP has

As e increases, IMDS performs much better than MDSSmaller estimation error than IMDS (Fig. 5). Fagkvalues

MAP for all connectivity levels, regardless of thember of

anchors.
== |MDS & cnchors == |MDS 10 anchors
o MDS-MAF 5 anchors —=—MDS5-MAP 10 anchors
80 —
/0
= 60 -
®
= 50
2
S0
30
20 - = k% —p
10 T T T T T 1
9.1856 11.90S 15.128 13.728 22475 27.375
Connectivity
range error er=10%R
—4—INVDS G anchaors —B—IMD5 10 anchars
20 MDIS-MAP 6 anchors =M DS-MAP 10 anchors
€0
= 0~
*
T - —
50 N # " I,
= Al
20 ~\::‘::E.=ﬁi
10 T T T T T T 1
9.4554 12.03 155611 193188 22.06895 26.783 31.901
Connectivity
range error er=20%R
== |MDS & cnchors == |MDS5 1C znchors
MDS-MAF & anchors e VIDS-MAP 10 anchors
70
&0

= 50 {\YM

30 \‘
o S e

10 T T T T T T |
9.0989 12.3267 154463 19.008 22.893 26.388 31.653
Connectivity
range error er=30%R
—4—IMDES 6 anchors —fi— MDS 10 anchors
MUS-MAP b archors —=—ND5-MAP 10 anchors
110
S0 —_—
—€ M‘X
g 70
=
g 5o
fin]
20 %té‘;.ﬁ
10 T T T T T T 1

9.0989 123267 154463 10.008

Connectivity

22893 26388 31.653

range error er=50%R

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

of range erroer, IMDS is better than MDS-MAP in terms of
accuracy.

The characteristics of IMDS to produce smaller
estimation error than MDS-MAP for large range emolis
very important, as range measurement in the
applications is prone to error. When adopting dista
measurement based on RSSI, the range error meastram
at least 10%R. The results presented in [10] shesvage
range error measurement between 5%R and 30%Rrfgeilo
radio range R. Similar research that investigatS&SIRis
conducted in [16] and [17], reporting average eawsund
20%R.

real

MDS-MAP 6 archars e DS-MAP 15 anchors
0 == DS € anchors i [V DS 15 anichors
50 ,M‘\.—_.”.—__.i
; 20 P e a— il 4_\/’*
e
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= S0
&
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Figure 5. Comparison of MDS-MAP and IMDS for topology I

The average performance of IMDS as a function of
connectivity for valley WSN is given on Fig. 6. IMDis
very stable and predictive. Estimation error desesaas
connectivity increases. The radio range esmogffects the
estimation error in a way that larger deteriorates the
performance of IMDS.

As expected, the number of anchors affects thdtsesu
i.e., having more anchors slightly improves perfance for
all connectivity levels (Fig. 7).

If we compare the results for topology | and toggldl,
we can notice that both MDS-MAP and IMDS show lrette
performance for topology | (valley terrain). Theimeeason
for this is the characteristic of the terrain. ggllterrain is
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very regular because all nodes that are withinoraginge R terrains. It is also a challenge to simulate ragufiopagation
can communicate with each other. Mountain terrdioutl  model in such complex 3D terrains, which is nai\aal task
be considered as an irregular topology. The monntaidue to the presence of obstacles.

presents an obstacle that obstruct the radio pedjoeg This way, we believe this work will contribute fauture
between the nodes, which means that sometimes tlodies development of smart network technologies in défer
are very close to each other cannot communicatecannot domains, especially for context- aware applications
measure the distance between each other. Forntendth
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