
Building Automation: Experience with Dynamic Reconfiguration of a Room

Maxime Louvel, François Pacull, Safietou Raby Thior, Maria Isabel Vergara-Gallego, Oussama Yaakoubi
Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
firstname.lastname@cea.fr

Abstract—This paper details a case study in the domain of build-
ing automation systems. This case study is the reconfiguration of
a room that can be split in two or merged in one according to the
current needs. The building is equipped with the LON system,
a standard in building automation. Such a reconfiguration is
normally done manually by a skilled technician. Thanks to our
approach, it can now be autonomous and triggered by various
external events such as sensor readings, a remote controller or
information from an agenda. To achieve dynamic reconfiguration
in this context we rely on LINC, a coordination middleware
providing an abstraction layer allowing the encapsulation of
hardware and software components. Thus, we can not only
integrate sensors and actuators but also legacy systems such as
the LON configuration tool. The coordination is provided by
coordination rules which can be statically defined at application
deployment or dynamically added or removed to reconfigure the
system.

Keywords–Coordination; middleware; building automation.

I. INTRODUCTION
Advances in consumer electronics and embedded systems

have leveraged the emergence of connected smart devices for
a huge number of applications. These devices communicate
using different protocols and physical medium. Such explosion
of heterogeneous devices and services, and the necessity of
interaction between them, have yielded architectural concepts
based on a common software layer called middleware. A
middleware provides an abstraction view of heterogeneous
hardware, services, and protocols. It hides heterogeneity to the
application and facilitates software re-utilisation, application
deployment, and coordination between different devices to
achieve a common goal.

Building Automation Systems (BAS) are a typical example
of systems requiring a middleware. Indeed, a BAS contains
a huge number of devices and services that use different
protocols and that need to interact between them. A BAS
typically has the following requirements: i. The necessity of
a common software layer to access heterogeneous devices,
ii. The compatibility with legacy systems and protocols to
communicate with existing infrastructures and extend BAS
capabilities and iii. The possibility to dynamically reconfigure
the system to allow special operating modes, adaptation to
changing devices and space redistribution. Existing middle-
wares [1] [2] [3] only partially fulfil these needs. They are
either too complex to allow dynamic reconfiguration or they
focus on a specific part of the BAS needs.

In this paper, we use LINC [4] to answer these challenges.
LINC is a resource-based middleware that provides inter-
actions between connected devices or software components
through coordination rules. Several technologies have already
been encapsulated for building automation. For instance, in [5]
LINC was used to control interactions between different de-
vices. In the present paper, we describe another angle of LINC

where it is used as an administration layer where devices can
be dynamically reconfigured and interactions between entities
belonging to the same technology may be changed according
to a given context. In this case, LINC is required only for the
reconfiguration phase.

This paper presents an example where a BAS, that uses the
Local Operating Network (LON) [6] platform, is dynamically
reconfigured to allow space reconfiguration. In the case study
we consider a room that is split in two (or merged in one) when
a removable wall is closed (or opened). Then, all the devices
present in the room are automatically reconfigured according to
the position of the wall. The rules describing all the actions to
perform for reconfiguration are automatically generated, com-
piled and executed. These actions include removing the current
configuration and putting in place the new one. Additionally,
LINC provides the possibility to extend the capabilities of the
BAS thanks to the encapsulation of new components.

The structure of this paper is as follows. Section II presents
some related work; then, Section III describes the LINC
middleware and Section IV describes the architecture put in
place for dynamic reconfiguration. The case study is described
in Section V along with some discussions and results. Finally,
Section VI concludes the paper.

II. RELATED WORK
A BAS concerns the control of building services. Extending

or modifying the behaviour of an existing building automation
infrastructure requires dealing with heterogeneity of commu-
nication protocols and legacy systems [7]. There are lots of
communication protocols and many of them coexist on the
same building.

Therefore, a middleware or abstraction layer [8] is needed
in such scenario. Some characteristics as scalability, fault
tolerance and flexibility are desired when choosing the proper
middleware. For instance, scalability allows extending the ca-
pabilities of the BAS by introducing new communication tech-
nologies. Wireless technologies are becoming very attractive
given its flexibility and easiness to install and deploy [9] [10].
Some efforts trying to integrate legacy BAS technologies
and wireless sensor networks technologies can be found in
the literature [11] [12]. Besides, some middleware solutions
for BAS have been proposed [2] [3]. However, since they
target a specific technology or application, these solutions
lack of flexibility. Scalability may also be an issue given the
complexity of such approaches.

Regarding reconfiguration, it can be performed at different
levels: i. the nodes or devices level, where the behaviour of
the node is modified, i.e., sampling period, routing mechanism,
sensing precision, transmission power and ii. the system level
where relationships and coordination of devices are modified
according to a new defined scenario. In a Wireless Sensor
Network scenario, much effort has been put at the node

157Copyright (c) IARIA, 2014. ISBN: 978-1-61208-374-2

SENSORCOMM 2014 : The Eighth International Conference on Sensor Technologies and Applications

level; in this case, reconfiguration is mostly related to reliable
communication between nodes and energy efficiency. Some
examples of reconfiguration in Wireless Sensor Networks
are presented in [13] [14]; furthermore, a middleware may
facilitate this task [15]. In this paper, we focus on the system
level reconfiguration which allows to adapt an existing system
to a new defined scenario so that new coordination rules are
generated and executed. Such reconfiguration may be triggered
by an external event. Similarly, a context-aware middleware,
allows adapting the application, based on information retrieved
from sensors or events. Several context-aware middlewares can
be found in the literature [16] [1] each of them focusing on a
given set of applications. For the specific case of building au-
tomation Istoan et al. [17] propose a mechanism to reconfigure
dynamically the relationships between devices and services in
a building. This proposition remains as a conceptual approach
and no real implementation is presented.

III. OVERVIEW OF LINC
Full description of the LINC middleware may be found

in [4]. This section describes the very basic information to
make the paper self-contained.

LINC provides a uniform abstraction layer to encapsulate
the different software and hardware components. This layer
simplifies the integration of legacy components and their
coordination. This abstraction layer relies on the associative
memory paradigm implemented as a distributed set of bags
containing resources (tuples). Following the Linda [18] ap-
proach, bags are accessed only through three operations:

• rd(): takes a partially instantiated tuple as input
parameter and returns a stream of fully instantiated
tuples from the bag, where the fields match the given
input pattern;

• put(): takes a fully instantiated tuple as input pa-
rameter and inserts it in the bag;

• get(): takes a fully instantiated tuple as input pa-
rameter, verifies if a matching resource exists in the
bag and consumes it in an atomic way.

A. Examples of components encapsulated as bags
A typical sensor, measuring a physical quantity, can be

modelled through a Sensor bag containing tuples, that are
formed as (sensorid, value). The measured quantity is
then retrieved by accessing this bag. To differentiate sensors
capabilities (temperature, humidity, and so on), a Type bag is
added, containing tuples formed as (sensorid, type).

Actuators may be modelled with a bag command de-
signed as (actuatorid, function, parameter1,
parameter2). Then, when a resource is inserted with a
put() operation, the bag triggers the awaited action over the
targeted actuator adapted with the appropriate parameters. In a
similar manner, any other component or service which provides
a given protocol or API, such as SOAP, RPC, CORBA, or
REST can be encapsulated in a bag or set of bags.

B. Object
Bags are grouped within objects according to application

logic. For instance, all the bags used to control a network with
a given technology are grouped in the same object.

C. Coordination rules
The three operations described above, i.e., rd(), get()

and put(), are used within production rules [19] A pro-

duction rule is composed of a precondition phase and a
performance phase.

1) Precondition phase: The precondition phase is a se-
quence of rd() operations which detect or wait for the
presence of resources in several given bags. The resources are
for instance values from sensors, external events or results of
service calls. In the precondition phase:

• the output fields of a rd() operation can be used to
define input fields of subsequent rd() operations;

• a rd() is blocked until at least one resource corre-
sponding to the input pattern is available.

2) Performance phase: The performance phase of a pro-
duction rule combines the three rd(), get() and put()
operations to respectively verify that some resources (e.g., the
one(s) found in the precondition phase) are present, consume
some resources and insert new resources.

In this phase, the operations are embedded in one or
multiple distributed transactions [20], executed in sequence.
Each transaction contains a set of operations that are performed
in an atomic manner. Hence, we can guarantee that actions that
belong to the same transaction, are either all executed or none.
This ensures properties such as:

• Some conditions responsible for firing the rule (pre-
condition) are still valid at the time of the performance
phase completion;

• All the involved bags are effectively accessible. For
instance, for a bag encapsulating a remote service we
can determine if such service can be actually accessed.

These properties are very important as they ensure that the set
of required objects, bags and resources, are actually available
“at the same time”. More properties offered by LINC in the
BAS context are detailed in [5].

IV. APPLICATION ARCHITECTURE FOR DYNAMIC
RECONFIGURATION

Figure 1 presents the architecture of an application based
on LINC. The top layer is the application layer and it defines
how devices and services interact with each other through the
use of bags and coordination rules.

Application

LINC Middleware

object_6LowPAN

object_Bluetooth

driver_1 driver_2 driver_3 driver_ndriver_n-1

WSAN_1 WSAN_2 WSAN_3 REST_

DEVICE_1
REST_

DEVICE_2
...

object_modbus

driver_5

MODBUS

_DEVICE

object_rest

driver_4

MODBUS

_GATEWAY

6LowPAN Bluetooth ZigBee
BASont

remote

server

modbus

slave
modbus

master

object_ZigBee

object_WSAN

Figure 1: Example of application

The bottom layer corresponds to the hardware or service
specific layer. The API and actions provided by each device are
encapsulated so that they can be accessed through bags defined
in LINC. To facilitate software re-use and evolution, and
to reduce complexity, we have defined frameworks defining
common features. For instance, all wireless sensor networks
share a common set of bags for controlling the sensors and
the actuators. Only the communication part which is dependent

158Copyright (c) IARIA, 2014. ISBN: 978-1-61208-374-2

SENSORCOMM 2014 : The Eighth International Conference on Sensor Technologies and Applications

on the technology is different. We have thus defined a WSAN
(from Wireless Sensors and Actuator Network) object which is
inherited by all the object responsible for a technology. Adding
a new protocol is basically integrating the driver for the new
technology. Hence, when the driver part has been written the
object can be coordinated with the rest of the system. More
details on this software architecture may be found in [5] [21].

In several applications, reconfiguration of devices at run
time may be needed. For instance, we may need to change
device parameters and the relationships between devices, or
we may need to perform a software update.

Usually with such architecture, the coordination of devices
of different technologies is done through coordination rules.
These rules define the different configurations and interactions
between devices. For instance, what action has to be done on
the light when the button is pressed twice. Thus, reconfiguring
is removing some coordination rules and replacing them by
new ones, taking into account the new behaviour.

Alternatively, when all the concerned devices use a tech-
nology that integrates one controller, i.e., LON or KNX, we
can use LINC to reconfigure these controllers. To do so, we
extended the application described above with the encapsula-
tion of the legacy system used to reconfigure the controllers
of the devices. In the case of LON it is the LNS22O tool [22].
Then, the reconfiguration is done by dynamically inserting new
coordination to reconfigure the different controllers.

The reconfiguration procedure will be started by the appli-
cation as a response to a given event, i.e., a request from the
user, the presence of a resource, or the value of a given sensor.
We now detail how it is possible to dynamically generate rules
and how the activated rules can controlled.

A. Dynamic rules generation
When performing reconfiguration, coordination rules must

be consistent with the new configuration or scenario. To
ensure this consistency, rules can be automatically generated
corresponding to contextual information. In LINC, rules are
seen as resources in bags. Hence, they can be added, enabled
or disabled at run-time. To add a new rule, a resource is
added in a dedicated bag of the object called AddRules. This
bag receives resources of the form (package,source)
where package is the logical name of the group of rules
and source is the actual code of the rules.

When the reconfiguration is triggered, the device is recon-
figured and new coordination rules are generated and added in
the AddRules bag. When a resource is added in this bag, the
rule is dynamically compiled. This compilation includes syntax
verifications, and various checks to prevent potential issues at
execution time. If the rule contains no detectable error, the
object starts to execute it right away. At this point, the new
scenario is set-up.

B. Control of rules execution
In a rule-based system it might be difficult to know which

rule is executed at any time. Ensuring that a rule is really not
active may be even more difficult. To overcome such issues,
LINC uses a specific bag, called RulesId, containing the
rules enabled. When a rule is compiled (when the system
is started, or dynamically added as explained previously),
an operation rd(ruleId, "ENABLED") is added in the
beginning of the precondition and in every transaction of the
rule. Hence, removing a rule only requires to remove the
corresponding resource in the bag RulesId. Indeed, no new

instance of the rule may be started. If an instance reaches the
performance phase, it will be aborted because the resource
rd(ruleId, "ENABLED") is not in the bag.

Obviously, the same pattern may be applied to a group of
rules by using a specific bag mapping the rules id to some other
information that is meaningful for the application. A typical ex-
ample in a BAS is to have two set of rules. The first set are the
rules for daily life (e.g., managing lights, heating and comfort).
The second set of rules are dedicated to emergency situation
(e.g., to coordinate the lights with the evacuation procedure).
In case of an emergency, the comfort rules must be disabled
to prevent unexpected situation. This can be done with a bag
containing the current mode i.e., comfort or emergency.
A rd("comfort") (respectively a rd("emergency"))
on the this bag is added in every precondition and every
transactions ensuring that only one mode is used at a time.

Another important aspect of rules execution is that they can
be run on a distributed way. This characteristic provides scala-
bility and the possibility to integrate a considerable number of
technologies. For the particular case of building automation,
several BAS can be easily integrated. Moreover, rules can
be replicated on several machines so that we guarantee its
execution even if there is a faulty machine.

V. CASE STUDY: RECONFIGURATION OF A BUILDING
AUTOMATION SYSTEM

The context of this case study is the SCUBA (Self-
organising, Co-operative and robUst Building Automation)
project [23]. It aims to provide novel architectures, services,
and engineering methodologies for robust, adaptive, self-
organising, and cooperating monitoring and control systems.
The case study presented in this paper consists in reconfiguring
a LON system when a room is split in two (or merged in one).
This implies to change the binding between devices to adapt
the system to the current situation: Which button trigger what
and which sensor control what.

This case study illustrates a requirement more and more
important in BAS where people want to optimise the room
usages. To better explain the scenario, we first introduce some
basic concepts and definitions regarding building automation
and the LON technology, which is the imposed legacy tech-
nology. Then, we describe the reconfiguration procedure and
we discuss the obtained results.

A. Building Automation
A BAS is a network of software and hardware components

that sense, control, and act on the environment and commu-
nicate between them. It ensures the operational performance
of the facility as well as the comfort and safety of building
occupants.

Nowadays, it is possible to monitor and control several
systems of a building. Typically, these systems work inde-
pendently and can communicate between them thanks to a
given interconnection technology which can be a standard
or a proprietary solution. In general, several communication
technologies are present in a building.

At deployment time, the interconnections between devices
are defined according to the disposition of the building. Config-
uring such interconnections is complex, time demanding, and
requires the intervention of qualified personal. Reconfiguration
of the BAS may be required in order to respond to the needs
of occupants, or to replace or upgrade some equipments.

159Copyright (c) IARIA, 2014. ISBN: 978-1-61208-374-2

SENSORCOMM 2014 : The Eighth International Conference on Sensor Technologies and Applications

Typically, these modifications are planned in advance and they
are done on purpose by a technician.

Changes in the space configuration is something more
dynamic, unplanned and that can be triggered by any occupant.
Physical reconfiguration of a room needs to be synchronised
with the involved equipments, i.e., sensors, actuators, con-
trollers. For example, consider a button to switch on or off
the lights in a room. If this room is combined with another
room by removing a wall, the lights of the second room must
also be connected to the button of the first room.

B. LON
LON [6] is a control network system designed by Ech-

elon Corporation. LON is widely used in existing building
automation systems and it allows communication between
devices coming from different manufacturers using a common
protocol called LONtalk. LON devices are physically linked
together and they embed a special controller called the Neuron
Chip. The latter is associated with a transceiver that allows
its reconfiguration and communication with other devices. A
unique identifier permits to identify inputs and outputs of
each device on the network. Although devices are physically
connected, they are not able to exchange messages unless a
logical connection, called a Binding, is created between
them. Figure 2 shows an example of two bindings between
three devices. In the example, on of the Network Variable
Outputs (NVO) of the Device_1 is associated to the Network
Variable Inputs (NVI) of two devices: the Device_2 and
Device_3.

Figure 2: Binding between devices

LON networks are designed, monitored, and managed
through a dedicated MS-Windows software stack. This stack is
based on the LON Network Services (LNS) tool [22]. The tool
gives access to a database storing LON designs and provides
a complex API to interact with the network. An LNS Server
is provided on top of the LON Networks as an ActiveX
component. Usually, these tools allow reconfiguring the net-
work connections by manually creating or removing bindings
between network variables. However, the user can only act on
one binding at a time. A classical room configuration typically
contains dozens of bindings and reconfiguration needs to be
done by a skilled technician. Hence, space reconfiguration with
the LON technical tool rapidly becomes too costly and time
demanding.

C. Reconfiguration of a Room
The platform used for the case study is illustrated in

Figure 3. It is called T1 and is located in the Schneider
premises in Grenoble, France and is one of the use case sites of
the SCUBA project. It consists of two separate rooms (Room
A and Room B) with a removable wall. The wall may be open

to combine both offices to form a single office, or it may be
closed to obtain two different offices.

Figure 3: T1 Platform

Each office is equipped with sensors (temperature, luminos-
ity, and presence), a Heating, Ventilation and Air Condition-
ing (HVAC) system, dimmable spotlights, motorised venetian
blinds, and push buttons. All these devices use the LON
technology.

To manage the space reconfiguration of the platform, we
consider two configurations:

• configuration 1: The wall is open, i.e., the platform
consists of a single room. In this configuration, LON
bindings are created between push buttons (Room A
and Room B) and actuators (lights, blinds) of both
rooms. In addition, a single temperature sensor is used
to control both HVACs. The two presence sensors are
used with an ”OR” logical and any of them can signal
the room occupancy.

• configuration 2: The wall is closed i.e., the platform
consists of two separated rooms. Both rooms have an
individual control; then, push buttons of Room A only
manage actuators of Room A, and the same applies
for Room B. HVACs are controlled separately by
their respective temperature sensor. The two presence
sensors are independent.

Detecting the presence of the wall, in order to trigger
reconfiguration, is done thanks to an external device that
may use an arbitrary communication protocol encapsulated
by LINC. In our case study, we have used a simple wireless
magnetic sensor, that operates in the 433Mhz frequency band.

Changing the room configuration requires reconfiguring
LON bindings. We now detail how the LON tools have been
encapsulated in LINC, and how automatic reconfiguration is
made possible. The approach significantly decreases the time
and cost, compared to a manual reconfiguration.

1) Encapsulation of LON in LINC: For encapsulation, a
software layer (driver) has been built on top of the LNS Server.
This driver permits to access LON administrative services (for
reconfiguration). The LONobject has been placed just on top
of the driver layer and it contains bags associated to a specific
LON network service. Then, requesting a given service is
reduced to a simple standard operation on a bag (rd(),get()
or put()).

The most important bags in our scenario are:
• CreateBinding A put() operation on this bag, with

the binding information, creates the binding;

160Copyright (c) IARIA, 2014. ISBN: 978-1-61208-374-2

SENSORCOMM 2014 : The Eighth International Conference on Sensor Technologies and Applications

• RemoveBinding: A put() operation on this bag, with
the binding identification, removes the binding.

Internally, when a put() operation is done on one of these
bags, the corresponding APIs in the LON ActiveX layer are
called, implementing the new binding configuration.

2) Automatic Reconfiguration of LON: Listing 1 gives an
example of a generated rule to switch between two configura-
tions. The rule starts with the removal of bindings and then, it
creates bindings for the new configuration. The precondition
and performance of a rule are separated by the symbol “::”.
Hence, this rule has no precondition1 and it is always triggered
once.

This rule is automatically generated from predefined con-
figuration stored in a dedicated component called BASont [21]
provided by one of the SCUBA project partners. Alternatively,
this information could be stored in a database.

1: :
{

3# remove b ind ings
[” LonObject” , ” removeBinding”] . put(” Loca t ions . Room 2 , R2

Push But ton . Swi tch[1] ,
nvoSWsetting[1] @@@Locations. Room 2 , R2 Room
Box. C o n s t L i g h t C t r l [0] , n v i C L s e t t i n g ”) ;

5

#. . .
7# c rea te the new b ind ings

[” LonObject” , ” c rea teB ind ing ”] . put(” Loca t ions . Room 1 , R1
Push But ton L e f t . Swi tch[0] ,
nvoSWsetting[0] @@@Locations. Room 1 , R1 L i g h t
C o n t r o l l e r (LRC 5141). L i g h t C o t r o l l e r [0] ,
nviChannel 1”) ;

9#. . .
} .

Listing 1: Generated Rule

Once generated, the rule is inserted in the AddRules bag
of the LONObject upon a condition concerning the presence
of the wall. To do so, we use three rules detailed in Listing 2
and 3.
[” LonObject” , ” Sensors”] . rd (” magnetic 1” , ” opened”) &

12: :
{

14[” LonObject” , ” Sensors”] . rd (” magnetic 1” , ” opened”) &
[” LonObject” , ” T r i gge rCon f i g ”] . put(” wall opened”) &

16} .

18[” LonObject” , ” Sensors”] . rd (” magnetic 1” , ” c losed”) &
: :

20{
[” LonObject” , ” Sensors”] . rd (” magnetic 1” , ” c losed”) &

22[” LonObject” , ” T r i gge rCon f i g ”] . put(” wa l l c losed”) &
} .

Listing 2: LINC rules that trigger reconfiguration

The first set of rules (Listing 2) takes the value of the
magnetic sensor, that detects the position of the removable
wall. The wall is typically moved by the user of the room.
When a new value is sensed, the rule inserts the required con-
figuration in the bag TriggerConfig of the LONObject.
As observed in the rule, the information obtained from the
magnetic sensor is used to trigger the reconfiguration process.
Thus, we can also trigger very easily the change with an event
coming from a remote controller or a time-based order from
an agenda. We only need to add a rule for each case.

The second rule (Listing 3) generates the rules presented
in Listing 1 when the wall position changes. For each con-
figuration, there is a list of corresponding bindings which

1

are stored in the bag Bindings. This bag belongs to the
object BindingDB and associates the list of bindings to
the configuration: "wall_closed" or "wall_open". This
bag also contains the list of all bindings to erase, associated to
"clear_bindings", in order to have a clean configuration.
[” LonObject” , ” T r i gge rCon f i g ”] . rd (” T1” , w a l l P o s i t i o n) &

26[” BindingDB” , ” B ind ings”] . rd (” c l ea r b i n d i ng s ” ,
a l l B i n d i n g s) &

[” BindingDB” , ” B ind ings”] . rd (w a l l P o s i t i o n ,
w a l l P o s i t i o n b i n d i n g) &

28COMPUTE: generatedRule , Rulesname =
lonFunc t ions . generateConf igRule(a l l B i n d i n g s ,
w a l l P o s i t i o n b i n d i n g , w a l l P o s i t i o n) &

: :
30{

[” LonObject” , ” AddRules”] . put(Rulesname, generatedRule) ; ;
32} .

Listing 3: LINC rule that generates reconfiguration rules

The rule executes as follows:
1) A rd() operation on the bag TriggerConfig

retrieves the configuration (wall position) when it
changes (line 25);

2) the next rd() operation on the bag Bindings with
the variant name "clear_bindings" retrieves
the list of all possible bindings on the T1 platform
independently of the actual configuration (line 26).

3) the next rd() operation is performed on the bag
Bindings with the wall’s position read from the
bag TriggerConfig to get the list of bindings to
be created (line 27).

4) the generateConfigRule method generates the
LINC rule for the new room configuration follow-
ing the format of the rule presented in (Listing 1).
The COMPUTE operation permits calling an external
method, in this case generateConfigRule.

5) the generated rule is put in the bag AddRules of
LonObject in order to be executed to switch to the
new configuration (line 31).

Note that, once the rule has been generated and executed,
the middleware is not used anymore; the BAS continues to
work autonomously thanks to the LON controller.

After the encapsulation of LON, the reconfiguration mecha-
nism can be applied to any number of configurations involving
any number of rooms. Thanks to LINC, the approach is not
restricted to a given technology and it allows extending the
BAS functionalities using new devices and services. Con-
sidering another standard would only require to develop the
appropriate driver following the same architecture than for the
LON system. Even if these types of systems are based on a
quite heavy API, using several software levels, the process
is repeatable. Once the driver is done, the mechanism for
reconfiguration presented is this case study can be applied.

The possibility to add and remove rules dynamically, along
with encapsulation of multiple technologies, provides a way
to integrate an existing infrastructure with new sensors and
actuators on a dynamic way. For instance, as soon as a new
sensor is detected, we can execute new rules to allow its
interaction with existing devices. In addition, we can also
bridge two or more existing infrastructures that use different
BAS technologies, i.e, LON, BacNet, KNX, Modbus. This
bridging provides communication between different buildings
or different rooms on a building for example.

Besides, LINC provides several characteristics that are

161Copyright (c) IARIA, 2014. ISBN: 978-1-61208-374-2

SENSORCOMM 2014 : The Eighth International Conference on Sensor Technologies and Applications

desirable for applications such as building automation. Firstly,
it allows scalability thanks to its distributed nature. LINC also
provides graceful degradation so that alternative actions are
executed when there is a system fault. In addition, LINC
uses transactions guaranteeing the execution of all the actions
defined in a rule, more details can be found in [5]. When
reconfiguration is performed, the latter characteristic is funda-
mental, since it guarantees that the system is on a consistent
state after reconfiguration.

VI. CONCLUSION
In this paper, we have presented our approach for dynamic

reconfiguration in the context of building automation. We have
relied on the coordination middleware LINC to provide a non
intrusive reconfiguration of a legacy system. Once the BAS
have been encapsulated in LINC, it is possible to reconfigure
connected devices. Reconfiguration allows changing relation-
ships between devices or software changes as a response to an
event.

Given that LINC allows adding and generating new rules
on a dynamic way, reconfiguration and adaptation to new
environmental conditions can be performed easily. As soon
as encapsulation is done, reconfiguration requires putting a
resource on a bag (send the reconfiguration command) and
generating the rules according to the new scenario.

This paper has described a case study presenting the recon-
figuration of a building automation system based on the LON
technology. The case study is a room that can be split in two or
merged in one with a removable wall. This reconfiguration con-
cerns a significant set of equipments: temperature, luminosity
and presence sensors, an HVAC system, dimmable spotlights,
motorised Venetian blinds, and push buttons. In LON, such
reconfiguration is normally done manually by a skilled tech-
nician. With our approach, a dynamic reconfiguration can be
triggered by an external device that determines the position of
the removable wall. This mechanism provides a fully automatic
system, where the only action required from the user is to
remove/put in place the wall. Here, the middleware is only
used to reconfigure the LON controller. After reconfiguration,
the system continues to run autonomously.

The approach presented in this paper opens the way to new
trends in building automation at a larger scale. Indeed, based
on a middleware such as LINC, it will be possible to provide
such automatic reconfiguration across several buildings. Future
work will focus on automatic reconfiguration through several
buildings, using different BAS.

ACKNOWLEDGEMENT
This work has been partially funded by the FP7 SCUBA

project under grant nb 288079 and Artemis ARROWHEAD
project under grant agreement number 332987.

REFERENCES
[1] A. Saeed and T. Waheed, “An extensive survey of context-aware

middleware architectures,” in Electro/Information Technology (EIT),
2010 IEEE International Conference on, May 2010, pp. 1–6.

[2] M. Sarnovskỳ, P. Kostelnı́k, P. Butka, J. Hreňo, and D. Lacková, “First
demonstrator of hydra middleware architecture for building automa-
tion,” in Proceedings of the scientific conference Znalosti 2008, 2008.

[3] C. Aghemo et al., “Management and monitoring of public buildings
through ICT based systems: Control rules for energy saving with
lighting and HVAC services,” Frontiers of Architectural Research, 2013,
pp. 147 – 161.

[4] M. Louvel and F. Pacull, “Linc: A compact yet powerful coordination
environment,” in Coordination Models and Languages, ser. Lecture
Notes in Computer Science, 2014, pp. 83–98.

[5] L.-F. Ducreux, C. Guyon-Gardeux, S. Lesecq, F. Pacull, and S. R. Thior,
“Resource-based middleware in the context of heterogeneous building
automation systems,” in IECON 2012-38th Annual Conference on IEEE
Industrial Electronics Society. Montreal, Canada: IEEE, 2012, pp.
4847–4852.

[6] U. Ryssel, H. Dibowski, H. Frank, and K. Kabitzsch, IEHandbook
LONWorks. Berlin: Vde-Verlag, 2010.

[7] W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newmann, “Com-
munication Systems for Building Automation and Control,” Proceedings
of the IEEE, June 2005, pp. 1178–1203.

[8] S. Krakowiak, “Middleware architecture with patterns and frameworks,”
2007.

[9] W. Guo and M. Zhou, “An emerging technology for improved building
automation control,” in Systems, Man and Cybernetics, 2009. SMC
2009. IEEE International Conference on. IEEE, June 2009, pp. 337–
342.

[10] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks:
Challenges, Design Principles, and Technical Approaches.” IEEE Trans-
actions on Industrial Electronics, 2009, pp. 4258–4265.

[11] O. F. et al., “Integrating building automation systems and wireless
sensor networks,” in Emerging Technologies and Factory Automation,
2007. ETFA. IEEE Conference on, Sept 2007, pp. 1376–1379.

[12] M. Jung, C. Reinisch, and W. Kastner, “Integrating building automation
systems and ipv6 in the internet of things,” in 2012 Sixth International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), July 2012, pp. 683–688.

[13] S. Marcel et al., “Proactive reconfiguration of wireless sensor networks,”
in Proceedings of the 14th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM
’11, 2011, pp. 31–40.

[14] M. Szczodrak, O. Gnawali, and L. P. Carloni, “Dynamic reconfiguration
of wireless sensor networks to support heterogeneous applications,” in
Proc. of IEEE DCOSS Conf., may 2013, pp. 51–61.

[15] P. Grace, G. Coulson, G. S. Blair, B. Porter, and D. Hughes, “Dynamic
reconfiguration in sensor middleware.” in MidSens, ser. ACM Interna-
tional Conference Proceeding Series. ACM, 2006, pp. 1–6.

[16] K. E. Kjær, “A survey of context-aware middleware,” in Proceedings
of the 25th Conference on IASTED International Multi-Conference:
Software Engineering, 2007, pp. 148–155.

[17] P. Istoan, G. Nain, G. Perrouin, and J.-M. Jezequel, “Dynamic software
product lines for service-based systems,” in Proceedings of the 2009
Ninth IEEE International Conference on Computer and Information
Technology - Volume 02, ser. CIT ’09, 2009, pp. 193–198.

[18] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, 1989, pp. 444–458.

[19] T. Cooper and N. Wogrin, Rule-based Programming with OPS5. San
Fransisco: Morgan Kaufmann, 1988, vol. 988.

[20] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. New York: Addison-wesley, 1987,
vol. 370.

[21] P. François et al., “Self-organisation for building automation systems:
Middleware linc as an integration tool,” in IECON 2013-39th Annual
Conference on IEEE Industrial Electronics Society. Vienna, Austria:
IEEE, 2013, pp. 7726–7732.

[22] E. Corporation, LNS TM for Windows R© Programmer’s Guide. USA:
Echelon Corporation, 1996-2000.

[23] S. F. Project, 2011-2014, http://www.aws.cit.ie/scuba/.

162Copyright (c) IARIA, 2014. ISBN: 978-1-61208-374-2

SENSORCOMM 2014 : The Eighth International Conference on Sensor Technologies and Applications

	Introduction
	Related Work
	Overview of LINC
	Examples of components encapsulated as bags
	Object
	Coordination rules
	Precondition phase
	Performance phase

	Application Architecture for dynamic reconfiguration
	Dynamic rules generation
	Control of rules execution

	Case Study: Reconfiguration of a Building Automation System
	Building Automation
	LON
	Reconfiguration of a Room
	Encapsulation of LON in LINC
	Automatic Reconfiguration of LON

	Conclusion
	References

