
Using Energy Budgets to Reach Lifetime Goals while Compensating Dynamic Effects

André Sieber, Jörg Nolte

Distributed Systems/Operating Systems Group
Brandenburg University of Technology Cottbus-Senftenberg

Cottbus, Germany
Email: {as, jon}@informatik.tu-cottbus.de

Reinhardt Karnapke

Communication and Operating Systems Group
Technische Universität Berlin

Berlin, Germany
Email: karnapke@tu-berlin.de

Abstract—Nodes within sensor networks often have tight bound
goals for the lifetime while running from a non-renewable energy
source. Variations within the hardware or induced by the software
complicate the prediction of the energy consumption. Addition-
ally, batteries are vulnerable to temperature and non-linear
effects. To reach certain lifetime goals under these influences
without sacrificing energy due to pessimistic estimations, online
energy management is necessary. In this paper, we present policies
to control the behavior of applications and devices using energy
budgets. First experiments yield promising results, with nodes
reaching their lifetime goals while maintaining a high application
quality.

Keywords–Wireless Sensor Networks; Energy Management; En-
ergy Awareness; Lifetime Goals

I. INTRODUCTION

Wireless sensor networks are being used in a wide range
of applications, with environmental monitoring and/or hazard
detection among the most prominent ones. In many of these
monitoring applications, the sensor networks should run for a
certain time without direct human interaction. This requirement
may result from the network being placed in a hardly reachable
area, in a dangerous area (e.g., in a steelworks) or because
human interference should be kept to an absolute minimum
(e.g., when monitoring nesting animals). For these applica-
tions, the sensor networks are usually deployed with a certain
time-to-live in mind, until either the next maintenance is due
and batteries can be changed, or until the whole monitoring
period (e.g., the breeding season) is over.

When application developers design networks with lifetime
goals in mind, they carefully choose the appropriate sensing
equipment, devise a communication pattern and select batteries
that supply enough power. However, in some cases the usage
of sufficient batteries is impossible, e.g., due to the form
factor. If the sensor nodes need to fit in a certain area, the
size of the batteries is limited. Even if there is no limiting
form factor, there are a number of influences which can
not be calculated easily. Sensor node hardware is subject to
production variances, resulting in different power consumption
characteristics even for components manufactured together.
The same is true for batteries, only in reverse: The amount of
energy they supply varies. Moreover, supply and consumption
can both vary, depending on environmental conditions like
temperature, the battery voltage level, or the dynamic voltage
converter efficiency. Even more, batteries suffer from non-
linear effects like rate-capacity and the recovery effect [1].

Sensor network applications that fail to take variances and
run-time-effects into account may lead to early node failures

due to depleted energy. To prevent this, the required energy
is often overestimated on purpose. The amount of energy for
reaching the lifetime goal is calculated and a safety margin
(e.g., 20%) is added afterwards. Please note that these 20%
are calculated using the nodes with the highest assumed con-
sumption. When, for example, the communication represents
the main energy drain, the nodes closest to the sink would be
used as basis, as they need to forward messages more often
than outer nodes. Even though this results in wasted energy, it
is often thought of as being necessary. However, the quality of
service supplied by the application can be improved at least on
some nodes, if it is possible to use all available energy. In the
example, some outer nodes could sample/sense more often to
increase the quality of the data, e.g., by calculating averages
or max values, without increasing the network load.

In order to avoid energy being wasted, dynamic energy
management is necessary, with a manager that can use various
handles to influence the energy consumption on each node in-
dividually, based on the available energy. The application duty
cycle can be changed or the MAC/routing timings adapted.
Sensors can be used with varying levels of detail or granularity.
However, this requires the possibility of isolating tasks and
devices. To enable the management to limit their consumption,
we introduce fine grained energy budgets. These budgets are
assigned to individual (sub-)tasks, provide a certain amount
of energy, and enable the energy management to plan how to
distribute the scarce resources.

Even though the main goal is to reach a certain lifetime
with the whole network, the methods presented in this paper
are primarily concerned with the options available on each
individual node. The reasons for this are twofold:

1) Reaching the lifetime goal with the whole network
requires each node to reach the lifetime goal.

2) Network wide strategies require communication,
which in itself induces more energy consumption.
However, the presented approach does not obstruct
a global strategy, e.g., adaption of routes to distribute
the communication load. The presented approach can
even compensate an increase or decrease in commu-
nication load, as it only represents another dynamic
influence.

Figure 1 shows an example network with a grid topology
containing 11 times 11 nodes. Each node has a variable sensing
interval and may need to forward messages from neighboring
nodes. The routing topology is a tree, resulting in a higher
communication load on nodes closer to the sink. Therefore,
these nodes need to adjust their sensing interval in order to

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

S
Figure 1. Difference of Sensing Interval due to balancing the load with a
non-uniform network load. Sensing interval ranges from 1.71s (white) to

3.36s (black)

conserve energy and reach the lifetime goal. In the example,
outer nodes sample every 1.71 seconds while the inner nodes
sample less often, the longest interval is nearly twice as long
(3.36 seconds).

The rest of this paper is structured as follows: In Section
II related work is presented. Section III focuses on the energy
budgets principles and our approaches to react on changing
energy demands and extreme situations. In Section IV early
evaluation results are shown. Finally, a conclusion is given in
Section V.

II. RELATED WORK

Energy management on sensor nodes traditionally faces
three questions:

1) How much energy is available within the energy
source (usually translating to the state-of-charge of
the battery)?

2) How much energy is consumed by the (different parts
of the) application?

3) How much of the available energy can be spent and
how is it partitioned between consuming parts to aid
the application goal?

There are three kinds of approaches to answer the first
question. Hardware based approaches like fuel gauges, e.g., [2]
or smart battery monitors like [3] supply accurate information
about the remaining energy in batteries but in turn increase
the system complexity and energy consumption. Model based
approaches, e.g., [4], [5], use chemical or analytic models
to predict the behavior of the energy source. They are very
accurate but suffer from high complexity and computation
costs, which renders them unusable for deeply embedded
systems. They also often rely on complex parameters which
have to be retrieved via experiments and thus depend on a
certain type of battery. Measurement based approaches use
easily observable parameters, often the voltage, to estimate
the state of charge. They can be based on tables generated in
advance [6] or observe the relative voltage decline [7]. Due to
the limited resources and energy constraints in wireless sensor
networks, we favor the approach presented in [7].

Tracking the consumed energy and thus answering the sec-
ond question is possible both in hard- and software. Hardware
approaches cover Coulomb counters and smart battery systems

[3], Sensor Node Management Devices [8] and specifically
designed measurement devices [9], [10]. All hardware ap-
proaches introduce an overhead in device costs and energy
consumption. Software approaches rely on the observation of
certain events to account for the consumption. To be able to
observe these events, the code has to be modified with hooks
to call the accounting functions. The events can either be based
on functional application blocks [11], [12] or on device driver
actions [13], [14]. The latter are based on taking time stamps
when devices change their state to obtain the duration of each
state and calculate the consumed energy. While the hardware
based approaches deliver precise results, we favor a software
based approach using time stamps [15], as it is capable of
delivering not only the global (node wide) consumption but can
also distinguish between individual system elements, including
software components. In contrast to other approaches, it is
capable of taking varying consumption due to voltage changes
of the battery and varying efficiency of potentially used voltage
converters into account.

There are various approaches for managing the energy
consumption and answering the third question. Table I shows
an overview over existing approaches and a simple catego-
rization based on the platform they are ran on, the scope
of the approach and the controlled entity/granularity. The
management can be done either with a direct influence on
system and application parameters (upper half) or indirect,
using a limited resource distributed among application parts
(lower half).

Providing the application with energy awareness by using
an indirect approach enables the use of different adaption
strategies. Instead of providing a handle to the management,
the application itself can manage its consumption. Apart from
using individual service levels and controlling timers, more
complex schemes, like limiting the number of forwarded
messages, are possible. This makes indirect approaches more
flexible. Based on the concept of resource containers (RC)
[27], energy capsules [28] and energy containers [29] provide
information about the energy usage of (sub-)tasks, but do
not take advantage for energy management from them. The
indirect approaches of Cinder [21] and ECOSystem [22] utilize
this concept to store information about energy availability.

Apart from the approaches that are based on setting the
service level, EPOS [17], Nemesis [25] and SORA [26] also
suffer from insufficient isolation between application parts,
resulting in a potentially uncontrolled impact of a changed

TABLE I. OVERVIEW OF ENERGY MANAGEMENT APPROACHES.
DIRECT APPROACHES IN UPPER HALF, INDIRECT IN LOWER HALF.

platform scope controlled entity
Odyssey [16] PC local Service Level
EPOS [17] WSN local Task

Energy Levels [6] WSN local Service Level
Eon [18] WSN local Timer/Service Level

EMA [19] WSN local Timer
IDEA [20] WSN neighborhood Service Level
Cinder [21] mobile phone local energy distribution

ECOSystem [22] PC local energy distribution
Pixi OS [23] WSN local energy distribution

Virtual Battery [24] WSN local energy distribution
Nemesis OS [25] PC local price

SORA [26] WSN global price

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

demand, up to starvation. Only Virtual Battery [24] and Pixi
OS [23] resolve short-term energy shortages by allowing
debts. Most approaches lack the flexibility to resolve long-term
changes of the energy demand of individual application parts.
Cinder, EMA [19] and Pixi OS have a high computational
overhead as they work continuously instead of periodically.
Approaches that do not only consider local information but
include neighborhood (IDEA [20]) and global information
(SORA [26]) suffer from increased energy consumption due
to the communication overhead. Additionally, the preparation
effort depends on the used energy accounting and the param-
eters needed by the management. IDEA, SORA and Energy
Levels have a relatively high demand.

All existing approaches have different benefits and draw-
backs. Especially the reaction to changes in the energy demand
of single application(-parts) is often inadequately addressed.
However, the management must be capable of dynamically
adjusting single application(-parts). Fine-grained management
makes isolation between single applications or application
parts necessary to prevent starvation. Indirect management
enables energy-aware applications, but needs to provide mech-
anisms of direct management to aid the applications through
functions for calculating duty cycles and service levels. Using a
periodic approach reduces overhead and the necessary planning
horizon of the applications.

III. MANAGEMENT USING ENERGY BUDGETS

Using information about the energy consumption of the
system, it is possible to enforce limits to meet desired dis-
charge rates. Applications should react to reach lifetime goals,
therefore they must be provided with information about the
available energy. With different application parts and goals
competing for the energy, a mechanism which separates them
and provides a local view of the remaining energy for a single
part is necessary. However, the allocated energy also needs to
be associated with a time window. This information can be
provided using energy budgets, which are also based on the
concept of resource containers [27], but are only used to limit
a single resource, namely energy, here.

An energy budget is an abstract reservoir for energy. It
represents the right to a certain amount of energy. The system
energy (or parts of it) is/are divided between the budgets. An
abstract budget B is defined by its currently stored amount b
and the validity interval [tstart, tend] of b. The demand of a
budget is defined by the minimal energy min needed and the
maximal energy max consumable by its associated consumers
during [tstart, tend]. They give the system a hint on reasonable
values for filling Budget B at tstart (1).

B = (b, [tstart, tend],min,max) (1)

As most activities within a sensor node live rather long,
the validity interval is more or less a constant refresh interval
at whose begin the budget is refilled. This also divides the
system consumption and reduces the prediction horizon for the
application. The essential requirement for a reliable operation
of the application is that the minimal demand for all budgets
is satisfied in every interval. In scenarios using harvesting, this
requirement may not be fulfilled due to the unsteady energy
income. In times with no income, nodes must be able to
perform only essential tasks and wait for more income. The

remaining energy can be distributed among the budgets in vari-
ous ways (discussed later). If no energy harvesting is available,
the network’s maintainer must be informed immediately if this
demand can not be satisfied, as the functionality of the node
or even the whole network can no longer be guaranteed.

Obtaining reasonable values for min and max can be hard,
as it involves the determination of boundaries of the energy
consumption of individual application parts. Apart from careful
calculation, these values could be obtained by simulation or
simply by experiments. This process could also be automated
to a certain degree by including a learning phase. But if the
demand fluctuates or is based on spontaneous events, min
and max may represent the demand inadequately. Thus, the
management must be able to adjust the distributed amount of
energy and other forms of cooperation, e.g., lending energy,
can be utilized by the budgets (see below).

Using multiple budgets in parallel is not a problem, as
long as different devices are used. Shared resources like the
CPU need to be accounted by using requests. Fairness, as
called for in [29], can be achieved by logging the input, e.g.,
in the form of transmitted bytes, and then diving the total
consumed energy by the total number of bytes transmitted.
Then, each task can be charged with this value times the
number of bytes it transmitted. If all requests always result
in the same consumption, this approach can be simplified to
counting the number of requests. It can also be applied to
buffered operations, like writing onto an SD-card. Then, the
energy would be subtracted from the budget before the actual
operation takes place.

Energy budgets can be mapped to different entities. In some
cases, they might be associated with a device or a certain
device mode. This also enables task- or activity granularity.
On a larger scale, they can also be applied to whole execution
paths of a program, e.g., a message that is created, a routing
decision made, the MAC involved and the radio hardware
activated.

The basic concept of energy budgets and their behavior
can be extended and policies implemented in numerous ways.
Apart from the way the energy is distributed among the
budgets, there are different ways to approach special situations
when the energy is insufficient or not consumed. Which
policy or combination should be used depends mainly on the
requirements of the application. Our initial evaluation shows
that with different policies, the behavior of the system varies
widely in different situations.

A. Energy Allowance
The main goal of energy distribution is to reach the lifetime

goal while distributing the energy in a fair way. In this case, fair
means that for all budgets at least their minimum requirement
is allocated and no budget is favored unintentionally. There
may be user defined utilities (Ui) as well as boundary condi-
tions (mini and maxi) which have to be taken into account
and can lead to an uneven distribution of energy. The energy
distribution into budgets boils down to a resource allocation
problem, where resources are allocated based on utilities (2).

max
∑

Ui(Ei) (2)

subject to:
mini ≤ Ei ≤ maxi

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

∑
Ei ≤ E

The utility function Ui represents the amount of useful
work that can be gained by adding more energy to the budget.

This allocation problem can be solved with brute force
or with linear optimization, but these approaches are hard
to realize on resource constrained sensor nodes. Additionally,
the formal problem description can lead to a solution where
budgets with the highest utility get all the energy. Even though
this is a valid solution, it is an unwanted one. An additional
constraint is necessary which takes the utility as weight for
a fair mix of all budgets. This is possible with a linear
utility function. By distributing the minimum demand first,
the problem can be eased. The additional energy available can
then be scattered, e.g., in percent of the max requirement of
each task (3):

bi = bi +
(maxi − bi) ∗ Ui∑

(max− b) ∗ U ∗ E (3)

This heuristic can lead to situations where the share of a
budget is higher than its maxi. Then, the amount exceeding
the maximum remains in the global energy pool and equation
3 is applied again.

Since the available energy als well as the demand and
utility of application parts can change, the allowance must be
done frequently. The allowance frequency again depends on the
application demand and scenario. With increased consumption,
the frequency should be also increased, to be able to react
to changes in the available and requested energy in a timely
manner.

B. Extreme Situations
In some cases, the calculation of the remaining energy

might reveal that there is not enough energy left to fulfill
the requirements of all tasks until the end of the lifetime
goal. Then, the choice remains to either divide the energy
strictly and not fulfill the requirements in some intervals, or
to continue as before, accepting a possible early node failure
but informing the network maintainer. In other cases, a budget
might have received more energy than it can consume. For the
associated task, this is not a problem. However, the feedback to
the accounting might lead to wrong decisions, as the observed
state of charge (SoC) suddenly is higher than anticipated. Once
the task starts consuming all allocated energy within its budget,
the battery is drained faster than the management expects. In a
third case, a task might suddenly need more energy than in the
previous intervals, e.g., for additional message retransmissions.
If this amount is higher than the budget allocated by the
management, the task might steal energy from a different task
if its priority is higher. It could also borrow energy from the
system or another task that does not need all of its budget in
this interval, but would have to return the favor later.

C. The Duty of the Application
All of the methods described above are used to distribute

energy, and give the application incentives to chance its behav-
ior if there is not enough or more than the required amount of
energy available. The application itself needs to react to these

incentives, for example by adapting its duty cycle. Devices that
are not directly influenced must also be taken into account
by the application (e.g., the radio). As described above, the
easiest way to guarantee fairness is to calculate costs for shared
resources based on the number of bytes or requests.

The number of budgets used within the system depends
mainly on the application. While it is possible to use only a
single budget for a full sensor network application, including
sensing and communication, the isolation of application parts
eases the adaption decision, as only the relevant parts must be
considered.

As literature shows, there are two common ways to adapt
to a changed energy availability. First, the application’s duty
cycle can be changed within a tolerable range. Second, the
application can adapt by using distinct service levels. While
the first is appropriate for sensing tasks, the latter allows more
complex changes to the behavior of the application. As the
necessary information is provided by the budgets, both can be
implemented easily.

The duty cycle τ is computed based on the remaining time
d before the budget is refilled, the consumption of the last
execution c and the energy available bi (4).

τ = bd ∗ c
bi
c (4)

The service level σ is calculated as ratio of how much the
budget is filled compared to min and max (5).

σ =

1 if bi ≤ mini

N if bi ≥ maxi
N∗(bi−min)
max−min

else
(5)

IV. EVALUATION AND RESULTS

In order to evaluate and compare the different approaches,
we used simulations and experiments with real sensor nodes.
The experiments were realized using the so-called FeuerWhere
nodes [30]. These nodes feature a MSP430 micro controller
and three transceivers, one operating at 868 MHz and two op-
erating at 2.4 GHz. We used REFLEX [31], an operating system
for deeply embedded systems, as basis for the integration of
our energy budgets. As real experiments are better suited to
prove that our approach works, we focus only on those in the
following evaluations.

A. Cost of Energy Allowance
To evaluate the computational overhead of the allowance

heuristic, the runtime of the algorithm with different options
was measured. Figure 2 shows the results.

While using only the heuristic (equation 3) has the lowest
runtime costs, it alone can not guarantee the minimal demand
(A). Distributing the minimal demand of each budget first (B)
increases the runtime only slightly but fulfills the requirements.
To increase the dynamic between the budgets, it is feasible to
take the consumed and requested energy of the budgets into
account (C). Distributed between the minimal demand and the
heuristic, the runtime increases considerably, as the additional
step is a modified version of the heuristic itself.

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

2.5

5.0

7.5

0 5 10 15 20
Number of Budgets

R
un

tim
e

[m
s]

A
B

C

Figure 2. Runtime of the distribution algorithm for MSP430 running at
16MHz. (A) Based on percentage of maximal requested energy. (B)

Additionally distribution of minimal requested energy. (C) Distribution of
consumed/requested energy.

With increased number of budgets the runtime rises lin-
early. As the allocation of energy only happens every few hours
in most scenarios, the overhead is negligible even when a lot
of budgets are in use.

B. Influence of different policies
To evaluate the influence of the policies in situations where

the energy demand changes, we used two scenarios. Two tasks
were involved, one sampling and one transmitting messages.
The experiments ran for three phases with 50 seconds per
phase. The sending task wanted to transmit a message every ten
seconds while the sampling interval was adjusted dynamically.

1) Scenario 1: In the first scenario the amount of energy
allocated to the sending task in each phase was only sufficient
to send four of the five desired messages, forcing it to adapt
according to the chosen policy: Isolation, adaption, lending, or
stealing.

Figure 3 shows the results. The vertical lines represent the
transmitted messages, the line that starts horizontally is the
sampling interval. When using isolation as policy, there is no
way the sending task can obtain enough energy. Therefore,
every fifth message is not transmitted. There is no influence
on the sampling task.
When the adaption policy is used, the sending task receives the

1000

1200

1400

1600

0 50 100 150 0 50 100 150

0 50 100 150 0 50 100 150

Isolation Adaption

Lending Stealing

1000

1200

1400

1600

Sa
m

pl
in

g
In

te
rv

al
 [m

s]

Runtime [s]

Figure 3. Influence of different policies when more energy is needed
than allocated

minimum energy it requires to fulfill its assignment, enabling
it to transmit all five messages in each interval. However, the
energy consumption is higher, the remaining energy lower,
which results in an adjustment of the sampling interval for
phases two and three. Sampling less frequent conserves the
energy required for the sending task.
The third part of the figure shows the policy lending, where
the sending task borrows energy from the system. However,
what is borrowed needs to be paid back, resulting in no
transmissions at the end of the third phase. The sampling is
not influenced in any way.
Stealing, the fourth policy, takes the energy required for
sending directly and at the time it is required from the sampling
task, making huge changes in the sampling interval necessary
near the end of each phase.

The choice between policies is up to the application pro-
grammer, each variant has its advantages and disadvantages.
Adaption makes sure that all parts of the sensor node continue
to function, albeit some of them are under the influence of
others. Lending ensures that only the part that requires too
much energy may fail early, while all others continue to
function as planned. This may enable a timely response from
the network maintainer. Lending and stealing might also be
combined.

2) Scenario 2: In the second scenario the energy consump-
tion of the sending task was lower, resulting in a too large
budget. Figure 4 shows the results for four different policies:
unlimited savings, isolation, adaption and no savings.

When a task may store an unlimited amount of energy, all
the excess of energy remains with that task and there is no
influence on the other tasks (upper left). When the isolation
policy is used, a budget that has not been completely spent
needs less energy to be filled again. Therefore, the remaining
system energy is higher and more energy can be distributed
among all other tasks, in this case the sampling task (upper
right). When using adaption, the budget for the sending task is
reduced to the amount it used, making an even smaller amount
of energy necessary to fill it in phase two, leading to more
system energy and more energy available for the sampling
task in phase two. However, once the adaption is complete,
the energy available for the sampling task is reduced again in
phase 3 and would remain the same in future phases (lower

900

1000

1100

1200

1300

0 50 100 150

Unlimited

0 50 100 150

Adaption

0 50 100 150

No Savings

0 50 100 150

Isolation

Sa
m

pl
in

g
In

te
rv

al
 [m

s]

900

1000

1100

1200

1300

Runtime [s]

Figure 4. Influences of the choice of policy if a task needs less energy than
assumed

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

Energy Levels

0 4 8 12
Interval

Se
le

ct
ed

 L
ev

el

1

2

3

4

1

2

3

4

0 4 8 12

Budget based Level

1

2

3

4

1

2

3

4

Budget based adaptive Duty Cycle

0 4 8 12
1.0

1.5
2.0
2.5

3.0
1.0

1.5
2.0
2.5

3.0

D
ut

y
C

yc
le

 [m
s]

Figure 5. Experimental comparison of management approaches. Energy Levels computes feasible level assignment based on available energy and level utility.
Budget based Level assigns level based on available energy in budget. Budget based duty cycle is computed based on available energy and runtime cost. Lower

half shows experiment where in interval 6 the available energy was reduced by 20%.

left). The policy of no savings removes all remaining energy
from a budget at the end of a phase, also resulting in a higher
system energy and more energy available for the sampling task.
As the too-high budget is filled at every phase, there is also
some energy to ”reclaim” at the end of each phase (lower
right).

The comparison shows that allowing a task to store an
unlimited amount of energy in its budget is a bad idea, as
the stored energy is effectively lost, unless there comes a time
when the task needs a tremendous amount of energy. The other
three policies differ mainly in the point in time at which they
reclaim the unused energy, but they all lead to an improvement
for the sampling task.

C. System behavior

To evaluate the management behavior, a comparison of
our energy budgets and the Energy Levels approach was
conducted. The application periodically sent messages to a sink
and featured four service levels distinguished by the sensor
duty cycle. The energy consumption of the different service
levels varies between 100µA and 270µA, resulting in potential
runtime between 32 and 11 months with conventional alkaline
batteries. Periodically, one of the approaches is used to com-
pute the service level for the following interval. To increase
the comparability, both managers were based on the same
energy accounting. Energy Levels uses a simplex algorithm
to compute a feasible service level allocation based on the
available energy, the consumption of each of the 4 used levels,
and a utility ranging from one to four for each level (see [6]
for the description of the optimization problem). As described
in [6], the highest possible level is selected to provide the best
QoS. The energy budget version (Budget based Level) used
one budget and selected the service level based on the available
energy within the budget (see 5). Additionally, a variant based
on adaptive computation of the duty cycle based on equation
4 was tested using two budgets to isolate the sensing expenses
from the communication.

The top half of Figure 5 shows the results achieved by
each variant with a steady declining energy reserve. As Energy
Levels selects the highest possible level, it starts with the
highest level and later falls down to second last one. In
contrast, the energy budget variant starts with the second last
level, but shortly increases to and maintains the next higher

level. While this approach is more conservative, it does not
depend on future energy availability. This is also true for
the adaptive duty cycle, which is based on the energy within
the associated budget and its consumption. The computed
sampling interval is steady around 1.66s and thus slightly
higher than level 3 (fixed 1.5s interval).

The lower half of Figure 5 shows the impact of a varying
energy availability on the three variants. In the middle of
the experiment, the available energy is reduced by 20% (e.g.,
due to reduced battery capacity). As the Energy Levels starts
with the highest level, it must use the lowest level in the last
third, because the optimistic approach used more energy at
the beginning. The Budget based Level consumes the energy
balanced with the runtime and thus reduces the service level
only by one, resulting in less drastic changes. The duty cycle
of the third variant adapts after the changed energy availability
to 2.55s and thus is lower than level 2 (fixed 3s interval).

Both variants based on the energy budgets not only deliver
a more homogeneous application quality, but the battery may
also benefit from a reduced rate-capacity effect due to the the
overall lower load of the conservative approach.

D. Interaction with the battery
The results of an experiment which included feedback from

the battery are shown in Figure 6. It shows how the energy is
divided among three budgets associated with three application
parts. Sensing covers all energy expenses involved with the

0.0

0.2

0.4

0.6

0 10 20 30 40
Runtime [h]

D
ist

rib
ut

ed
 E

ne
rg

y
[m

A
h]

SD Telemetry

Communication

Sensing

Figure 6. Distributed energy to different application parts. Battery Manager
increases available energy over time due to higher capacity than expected.

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

data acquisition based on a dynamically calculated duty cycle.
Communication includes a fixed communication interval every
2 minutes and SD Telemetry writes system information onto
an SD-Card periodically.

In the course of the experiment, the communication effort
varies and influences the energy distributed to sensing and its
possible duty cycle. Additionally, the battery contains more
energy than expected, resulting in an increased availability. As
Communication and SD telemetry need a nearly fixed amount,
sensing and, thus, the application duty cycle profits.

V. CONCLUSION

In this paper, we have presented our approach of using
fine grained energy budgets to reach lifetime goals in wire-
less sensor networks. Energy budgets present a framework
for dealing with varying demands in sensor networks. We
evaluated the approach using FeuerWhere sensor nodes and
presented promising first results for different kinds of policies.
Additionally, we compared our approach with an existing
approach and showed how the battery feedback influences the
energy management.

In the future we plan to continue the evaluation of our
approach by using different policies in a real deployment.

REFERENCES
[1] T. Reddy, Linden’s Handbook of Batteries, 4th Edition. Mcgraw-hill,

2010.
[2] Texas Instruments, “Datasheet bq26500 single cell li-ion and li-pol

battery gas gauge.” [Online]. Available: http://www.ti.com (Accessed
July 10, 2015)

[3] Maxim Integrated, “Datasheet ds2438 smart battery monitor.” [Online].
Available: http://www.maximintegrated.com (Accessed July 10, 2015)

[4] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic
charge and discharge of the lithium/polymer/insertion cell,” Journal of
the Electrochemical Society, vol. 140, no. 6, 1993, pp. 1526–1533.

[5] C.-F. Chiasserini and R. R. Rao, “Energy efficient battery management,”
Selected Areas in Communications, IEEE Journal on, vol. 19, no. 7,
2001, pp. 1235–1245.

[6] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel, “Meeting
lifetime goals with energy levels.” in SenSys, vol. 7, 2007, pp. 131–144.

[7] A. Sieber and J. Nolte, “Utilizing voltage decline for reaching lifetime
goals,” Paderborn, Germany, Tech. Rep., 2011.

[8] A. Hergenröder, J. Horneber, D. Meier, P. Armbruster, and M. Zitterbart,
“Distributed energy measurements in wireless sensor networks,” in
Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2009, pp. 299–300.

[9] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for
energy monitoring of wireless sensor networks at scale,” in Proceedings
of the 6th international conference on Information processing in sensor
networks. ACM, 2007, pp. 186–195.

[10] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, “Energy metering for
free: Augmenting switching regulators for real-time monitoring,” in In-
formation Processing in Sensor Networks, 2008. IPSN’08. International
Conference on. IEEE, 2008, pp. 283–294.

[11] A. Lachenmann, P. J. Marrón, D. Minder, and K. Rothermel, “Meeting
lifetime goals with energy levels,” in Proceedings of the 5th interna-
tional conference on Embedded networked sensor systems. ACM,
2007, pp. 131–144.

[12] A. Castagnetti, A. Pegatoquet, C. Belleudy, and M. Auguin, “An
efficient state of charge prediction model for solar harvesting wsn
platforms,” in Systems, Signals and Image Processing (IWSSIP), 2012
19th International Conference on. IEEE, 2012, pp. 122–125.

[13] S. Kellner and F. Bellosa, “Energy accounting support in tinyos,” PIK-
Praxis der Informationsverarbeitung und Kommunikation, vol. 32, no. 2,
2009, pp. 105–109.

[14] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proceedings of the 4th workshop
on Embedded networked sensors. ACM, 2007, pp. 28–32.

[15] A. Sieber and J. Nolte, “Online device-level energy accounting for
wireless sensor nodes,” in Proceedings of the 10th European conference
on Wireless Sensor Networks, 2013, pp. 149–164.

[16] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” in Proceedings of the Seventeenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’99. New York, NY, USA:
ACM, 1999, pp. 48–63.

[17] G. R. Wiedenhoft, L. F. Wanner, G. Gracioli, and A. A. Fröhlich, “Power
management in the epos system,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 6, 2008, pp. 71–80.

[18] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger, “Eon: a language and runtime system for perpetual sys-
tems,” in Proceedings of the 5th international conference on Embedded
networked sensor systems. ACM, 2007, pp. 161–174.

[19] X. Jiang and J. Taneja, “Energy management for wireless sensor
networks,” CS270 Project Report, Spring 2007.

[20] G. W. Challen, J. Waterman, and M. Welsh, “Idea: Integrated distributed
energy awareness for wireless sensor networks,” in Proceedings of
the 8th international conference on Mobile systems, applications, and
services. ACM, 2010, pp. 35–48.

[21] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich, “Energy management in mobile devices with the cinder
operating system,” in Proceedings of the sixth conference on Computer
systems. ACM, 2011, pp. 139–152.

[22] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Ecosystem:
Managing energy as a first class operating system resource,” in ACM
SIGPLAN Notices, vol. 37, no. 10. ACM, 2002, pp. 123–132.

[23] K. Lorincz, B.-r. Chen, J. Waterman, G. Werner-Allen, and M. Welsh,
“Resource aware programming in the pixie os,” in Proceedings of the
6th ACM conference on Embedded network sensor systems. ACM,
2008, pp. 211–224.

[24] Q. Cao, D. Fesehaye, N. Pham, Y. Sarwar, and T. Abdelzaher, “Virtual
battery: An energy reserve abstraction for embedded sensor networks,”
in Real-Time Systems Symposium, 2008. IEEE, 2008, pp. 123–133.

[25] R. Neugebauer and D. McAuley, “Energy is just another resource:
Energy accounting and energy pricing in the nemesis os,” in Hot Topics
in Operating Systems, 2001. Proceedings of the Eighth Workshop on.
IEEE, 2001, pp. 67–72.

[26] G. Mainland, D. C. Parkes, and M. Welsh, “Decentralized, adap-
tive resource allocation for sensor networks,” in Proceedings of the
2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 315–328.

[27] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new
facility for resource management in server systems,” in OSDI, vol. 99,
1999, pp. 45–58.

[28] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace:
Network-level power profiling for low-power wireless networks,”
Swedish Institute of Computer Science, 2011.

[29] S. Kellner, “Flexible online energy accounting in tinyos,” in Real-World
Wireless Sensor Networks. Springer, 2010, pp. 62–73.

[30] K. Piotrowski, S. Ortmann, and P. Langendörfer, “Multi-radio wireless
sensor node for mobile biomedical monitoring,” Biomed Tech, vol. 57,
2012, p. 1.

[31] K. Walther, R. Karnapke, and J. Nolte, “An existing complete house
control system based on the reflex operating system: Implementation
and experiences over a period of 4 years,” in Proceedings of 13th IEEE
Conference on Emerging Technologies and Factory Automation, 2008,
pp. 40–45.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

