
Self-Stabilizing Structures for Data Gathering in Wireless Sensor Networks

Sandra Beyer∗, Stefan Lohs∗, Jörg Nolte∗, Reinhardt Karnapke† and Gerry Siegemund‡

∗Distributed Systems/Operating Systems Group, BTU Cottbus-Senftenberg
email: sandra.beyer.sb@gmail.com, {slohs,jon}@informatik.tu-cottbus.de

†Communication and Operating Systems Group, Technische Universität Berlin
email: karnapke@tu-berlin.de

‡Institute of Telematics, Hamburg University of Technology
email: gerry.siegemund@tu-harburg.de

Abstract—Wireless Sensor Networks (WSN) enable a number
of applications, with monitoring of habitats, office buildings,
or restricted areas most prominent among them. All of these
applications have one thing in common: the need to commu-
nicate. However, the nature of the wireless medium results in
quite a few problems. Lossy communication links with transient
faults require acknowledgments, retransmissions, and route re-
pair mechanisms. Tree- or similar structures for data gathering
scenarios lead to increased load closer to the sink, with congestion,
higher buffer space requirements, and energy drain as results.
The second problem is often addressed by aggregation and
reduction schemes. These schemes are bound to fail, however,
when the underlying structure is compromised due to changes
in the connectivity between nodes. Therefore, it is necessary to
focus on the structures first of all. We address the problem of
transient faults by using the inherent fault tolerance of self-
stabilizing algorithms when building and using tree- or tiers
(communication-) structures. In this paper we show that self-
stabilizing structures are suitable for data gathering scenarios in
WSN by comparison of the connectivity achieved by our self-
stabilizing tiers algorithm and the tree algorithm from Dolev
with that of Collection Tree Protocol (CTP), the standard data-
gathering protocol for TinyOS.

Keywords–Wireless Sensor Networks; Self-Stabilization; Rout-
ing Structures

I. INTRODUCTION

Wireless Sensor Networks have gained a lot of attention
in the research community in the last decade. Application
scenarios include for example monitoring of habitats, intrusion
detection and house control. This strong interest in sensor
networks stems from the fact that they are inexpensive,
autonomous systems that have to adapt to ever changing
conditions. Due to the fact that sensor networks should be
inexpensive, the individual sensor nodes are usually not very
powerful but can cooperate to solve complex tasks. In some
applications, the nodes need to operate autonomously for many
years, because they are deployed in hard to reach areas and
human interaction is restricted to the absolute minimum. The
restrictions imposed by pricing and form factor result in the
need for special protocols, as standard protocols induce too
much (computational, communication or memory) overhead.

Sensor nodes are usually powered by batteries, energy
harvesting is only rarely possible. Therefore, energy is an
important resource and must be conserved as much as possible.
In combination with the price factor, nodes should often be
as cheap as possible, this leads to the usage of transceivers
that require only little energy but can also only transmit over

short distances. This in turn makes the usage of multi-hop
communication protocols necessary. Radio communication is
always error prone due to the shared medium, collisions and
environmental influences. The fact that most sensor nodes
only feature a cheap transceiver intensifies this problem. To
enable the sensor networks to perform their duties in spite of
these errors, repair mechanisms are included. These usually
encompass forward error correction, acknowledgments, and
retransmissions. However, detecting the errors and storing
messages for retransmission increases memory consumption
(flash and RAM). The amount required can be arbitrarily
large, depending on the number of different kinds of errors
that should be detected and the correction mechanisms. Also,
the error handling code itself might introduce a new source
of errors. To overcome this problem, we propose the usage
of self-stabilization, which describes only the ’good’ states
of the sensor nodes. Any other state is an error state and
needs to be changed. This way, there is no need for the
programmer to examine all possible error-states. We show
that our self-stabilizing protocols are less complex and the
memory consumption is reduced when compared to traditional
protocols.

The most common applications for sensor networks feature
data gathering scenarios, in which all nodes gather their data
and transmit it to a central sink from which a user can retrieve
it. In a multi-hop environment, the nodes need to forward
more messages the closer they are to the sink. This increased
communication load leads to congestion, a higher rate of
collisions and increased RAM consumption on the nodes close
to the sink as they need to store more messages. Also, the
need to communicate more results in a change in duty cycle,
as those nodes need to stay awake longer, which in turn leads
to a higher energy consumption and early node failure.

A common way to deal with this problem is to use aggre-
gation and/or reduction mechanisms on the sensor nodes. Ag-
gregations reduces the number of messages, while reductions
reduce their size. This can be useful even for applications with
long intervals between message generation where congestion
is not a problem, as it also reduces the consumed transmission
energy. In order for the aggregation and reduction to be
effective, the underlying communication structure needs to
operate correctly. Without aggregation and reduction, a lost
message results in a single lost value. With aggregation and
reduction, this could mean the loss of the data from a whole
subnet. In this paper we focus on mechanisms that can be used
to build structures that lie underneath the aggregations and

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

reductions. To build and, most of all, sustain these structures,
we rely on self-stabilizing algorithms.

This paper is structured as follows: Related work is pre-
sented in Section II, followed by an introduction to self-
stabilization in Section III. Our self-stabilizing tiers algorithm
(SelfTIER) and the self-stabilizing tree algorithm from Dolev
[1] (SelfTREE) are discussed in Section IV and evaluated
in comparison with CTP in Section V. We finish with a
conclusion in Section VI.

II. AGGREGATION IN WSN
In literature, several approaches for in-network aggregation

are presented. All have in common that they first establish
a special communication structure and afterward use it for a
certain time. The structure is responsible for deciding which
node needs to aggregate the data from which other nodes and
which path the aggregated data takes on its way to the sink.
Also, the times for aggregations are defined. When a node
wants to forward the aggregated values, it first needs to wait
for all its children to transmit their data. The structure can
also include information about deadlines and whether or not
all messages from children have arrived. Most aggregation
algorithms focus on the error free case and describe the
aggregation itself, without offering too much details about
the underlying structure and its repair mechanisms. In the
following we take a look at three categories of aggregation
structures, namely tree based, cluster based, and multi path.
Others approaches, which fall into neither or multiple of the
categories mentioned above, are also discussed briefly.

A. Tree Based
A tree is the most commonly used routing scheme for

aggregation in sensor networks. The data is routed from source
nodes to a sink node. Intermediate nodes (parent) are able to
collect the data of well defined children and apply a fusion
function before forwarding data to the next hop. Using the
well organized aggregation structure, each node only forwards
one packet per aggregation round, which avoids high network
loads and conserves energy. The drawback is that if one packet
is lost, the data of the whole sub-tree is lost.

An aggregation scheme for monitoring applications is Tiny
AGgregation (TAG) [2]. TAG uses a two phase approach.
First, the sink sends a query message to build an aggregation
tree. All nodes receiving this message adapt their level (the
distance to the sink) and select the sender as parent node.
In the second phase, the collection phase, the tree is used
to aggregate data and forward it to the sink node. TAG uses
a per-hop aggregation approach [3], each parent has to wait
until all children have sent their data before forwarding the
aggregated data. Each round is divided into slots, the number
of slots equals the height of the tree. This way, timeouts can
be calculated, in case a parent does not receive the messages
from all its children. The query message is sent periodically
to recover the tree after dynamic link changes.

There are several other approaches that can be used to build
aggregation trees, which focus on, e.g., energy consumption,
path reliability and/or mobility of nodes [4]-[8].

B. Cluster Based
The second group of schemes are cluster based aggregation

schemes. Like tree based algorithms, cluster based algorithms

also organize the network in a hierarchical manner. Each
selected cluster head is responsible for aggregating the data
of its cluster members and forwarding it to a sink node.

LEACH [9] is one member of this group. LEACH is
divided into a setup phase to organize the clusters and a steady-
state phase to send the data to the sink. The algorithm is
distributed. At first, cluster heads are selected by a probabilistic
approach. After that, the cluster head computes a TDMA (Time
Division Multiple Access) scheme to avoid collisions in its
cluster. Cluster heads send their aggregated data with one
single transmission to the sink.

Other members of this group include COUGAR [10] and
DRINA [11]. They use different mechanisms to elect the
cluster head, to reduce communication overhead or select
nodes by different suitable metrics.

C. Multi Path
The idea of multi path approaches is to increase the

tolerance against link changes by using multiple paths to the
sink node. If a link breaks or one packet is lost because of a
collision, the data can be restored using packets that traveled
an alternative path.

A member of this group is Synopsis Diffusion [12]. Synop-
sis Diffusion uses a tier structure as the underlying topology,
where each node forwards all messages it receives from nodes
on a higher tier. The advantage of this approach is that data
is forwarded on multiple paths to the sink node but it also
introduces the problem of duplicate sensitive aggregation.
Nodes may receive duplicates of data which may affect the
result of the aggregation. This problem must be solved by
the use of suitable aggregation functions. Nevertheless, this
approach is more appropriate in harsh environments with a
high rate of link breaks and message loss.

D. Other Approaches
Several other approaches exist, whose underlying topolo-

gies do not match the previous categories. One Example is the
chain based structure of PEGASIS [13], which is focused on
conserving energy. Another example is the hybrid approach of
Tributaries and Deltas [14], which combines the advantages of
tree- and multi path based schemes.

E. Summary
All schemes have in common that they are divided into a

setup- and a collection phase. Often the underlying algorithm
that is used to establish a structure is exchangeable or can
be extended by additional repair mechanisms to increase
fault tolerance, periodic rebuilds are the most often suggested
approach.

III. SELF-STABILIZATION

The concept of self-stabilizing algorithms was first intro-
duced by Dijkstra in his paper “Self-Stabilizing Systems in
Spite of Distributed Control” [15]. He described a network of
several processors having a set of registers. Each processor
has a so called local view, which consist of the registers of its
direct neighbors.

A self-stabilizing algorithm consists of a set of rules in
the form guard → assignment. If the guard predicate of
a rule is resolved to true, the rule is called enabled and

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

1 NodeID parent;
2 Integer level;

Figure 1. State of the SelfTREE algorithm

the assignment part may be executed. Every processor checks
(locally) whether any of the rules is enabled, based on its local
view. There are two properties necessary for an algorithm to be
self-stabilizing: Convergence and Closure. Convergence means
that the system will reach a defined (stable) state within finite
time, while Closure means the execution of any rule will never
take the system from a stable state to an unstable one.

In wireless sensor networks, each node represents one
of Dijkstra’s processors. The local view of a processor then
corresponds to the information from that node and all its
neighboring nodes, meaning that the state of a node needs
to be communicated. Nodes that receive such a state message
may change their own state due to the execution of rules, based
on the changes in the state of the neighbor. As state changes
propagate through the network, the whole system eventually
reaches a stable state, making the system inherently tolerant
against transient faults. Exchanging the state messages can
make good use of the broadcast character of the medium.
Another advantage of the self-stabilizing approach is that the
algorithm (eventually) turns the system into a stable state from
any given state, meaning that no code for initialization is
required.

IV. SELFTREE AND SELFTIER
In this section we describe two self-stabilizing algorithms

for a data gathering scenario. Each node of the sensor network
has a unique identfier. The goal is to build and maintain a
routing topology where all nodes can send their measured
data to one distinct node, i.e., the sink. Of course, nodes that
are separated from the network will not find a route. The
first algorithm builds a minimum spanning tree (SelfTREE)
published by Dolev [1] in 2000. The second algorithm is
our self-stabilizing tiers algorithm (SelfTIER). Both algorithms
consist of only two rules. The first rule of each algorithm is
executed by the node which requested the aggregated data (the
sink). The second rule is run by all other nodes.

A. SelfTREE

In the SelfTREE algorithm, the state of a node consists of
the ID of its parent node and its distance from the sink (Listing
1). Please note that both values can start with any arbitrary
value. The state of a node is propagated to its neighbors on a
regular basis, and may result in enabled rules on the receiving
nodes, which might also lead to state changes.

The first rule of SelfTREE applies only to the sink node.
It sets the parent ID to an invalid value and the level as 0.
The second rule is applied to all non-sink nodes. Based on
the local view, the node checks the distance from the sink of
all its neighbors. If the lowest distance from the sink is lower
then its own distance minus one, a shorter path to the sink
seems to exist. Therefore, the node sets its parent ID to the
node with the minimum distance and its own distance as that
nodes distance incremented by one. Please note that if there

1 Integer level;

Figure 2. State of the SelfTIER algorithm

are multiple candidates with the minimum distance, the new
parent can be any arbitrary one of them.

A node is in a stable state if it has correct knowledge of
the distance to the sink and a correct parent node. A global
stable state/ stable system state is reached when all nodes are
in a stable state.

When data transmission starts, each node knows its parent
node and addresses its message to that parent. Nodes only
forward messages in which they are listed as next hop.

B. SelfTIER
In the SelfTIER algorithm, only the distance to the sink is

required and included in the state of a node (Listing 2). As in
all self-stabilizing algorithms, the state of a node is shared with
direct neighbors on a regular basis and may lead to changes
on the receiving nodes.

The two rules of the SelfTIER algorithm are fairly similar
to those of the SelfTREE algorithm. Rule one is only applied
to the sink and sets its level to 0. The second rule is only
applied to non-sink nodes. Each node checks the levels of its
neighbors and sets its own level to the minimum incremented
by one.

In such a tier based structure, only the distance to the
sink is relevant for routing decisions. When a node receives
a data message, it checks from which tier the message was
transmitted. If the tier is higher, i.e., the distance to the sink
was higher, the message is forwarded. Otherwise, the message
is either from a node on the same level and will be forwarded
on the next lower level, or it is from a node that is closer to the
sink. Either way, it must not be forwarded. This way, all nodes
that are closer to the sink than the transmitting node forward
the message, resulting in multiple redundant paths taken by the
same message. This increases robustness, but also increases
network load and gives rise to a potential problem with
duplicates. Depending on the aggregation/reduction scheme
that is used on top of the tier structure, this can be ignored
(e.g. reduction function: maximum) or must be detected (e.g.
reduction function: add).

The big advantage of the tier based algorithm is its redun-
dancy. If the link between a node and its parent breaks in the
tree structure, data from this node and all its children will be
unavailable until the structure is rebuilt. In the tiers structure,
an arbitrary number of links may break without affecting the
forwarding of messages, as long as there is still at least one
node available in a lower tier for each node.

V. EVALUATION

Both self-stabilizing algorithms have been integrated into
the TOLERANCEZONE middleware. It provides a neighbor-
hood discovery protocol and chooses bidirectional neighbors
for each node. Also, it takes care of the regular propagation
of a nodes state to its neighbors. To reduce the network load,
the state and neighborhood messages are transmitted together.
The speed with which an algorithm can react to changes in

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

time in rounds [500ms]

nu
m

be
r o

f s
ta

bl
e

no
de

s

Figure 3. Structure state over time. SelfTIER algorithm with varying number
of nodes (60, 200, 600, 1000).

a nodes neighborhood depends on the frequency of message
transmission. As changes may need to propagate through the
whole network, reaching a stable state after a change occurred
may take O(maxLevel) rounds.

The goal of our self-stabilizing algorithms is to increase the
tolerance against transient faults. When a transient fault occurs,
the system is in a non-stable state and the underlying routing
topology must be repaired. In case of self-stabilization, this is
done autonomously, in the other cases we have to reconstruct
or repair our structure.

Stability
In our first evaluation we compared the SelfTIER algorithm

with an ordinary algorithm as proposed in TAG. In the ordinary
approach, the sink periodically floods a beacon packet to estab-
lish a valid tier structure. Both algorithms were implemented
in C++ for the REFLEX operating system [16]. The SelfTIER
algorithm is part of our TOLERANCEZONE middleware.

In the first part of the evaluation we measured the stability
of the network. In simulations using the discrete event simula-
tor OMNeT++ [17], we ran both algorithms in a grid topology
with 60, 200, 600, and 1000 nodes. Each second, a snapshot
of the network was taken and the amount of stable nodes was
counted. For the SelfTIER algorithm, a node was counted as
stable if no rule was enabled. In case of the ordinary tier
algorithm, it is counted as stable if it received and forwarded
the beacon. To simulate transient faults we introduced link
breaks. In case of the network consisting of 1000 nodes, one
node lost connections for 30 seconds every second, after this
time the connection was reestablished. The probability of a
fault at a specific node was the same for all simulated network
sizes.

Figure 3 and Figure 4 show the result of our simulations for
SelfTIER and the ordinary algorithm respectively. As Figure
3 shows, the SelfTIER algorithm reaches nearly 95% stability
for all four different network sizes in spite of the transient
faults, while the ordinary algorithm reaches at most 90%.

In the case of the ordinary algorithm, a link break during
the construction of the structure results in loss of the con-
struction beacon. Then, the corresponding node is not part of

time in rounds [500ms]

nu
m

be
r o

f s
ta

bl
e

no
de

s

Figure 4. Structure state over time. Ordinary tiers algorithm with varying
number of nodes (60, 200, 600, 1000).

nu
m

be
r o

f s
ta

bl
e

no
de

s

time in rounds [500ms]

Figure 5. Real world deployment. Structure state over time. SelfTIER
algorithm with varying number of nodes (10,26,50).

the structure until it receives the next beacon. In the case of
the self-stabilizing algorithm, the node automatically rejoins
the tiers structure once the link break is over and the node is
connected to its neighbor(s), again.

After the simulations, we also ran experiments with real
sensor nodes. We used EZ-Chronos 430 sensor nodes from
Texas Instruments and placed them in grids of different sizes
on the ground with a distance of 3 meters between nodes. The
grids always consisted of a square of nodes plus the sink node,
resulting in 10 (3x3 +1), 26 (5x5 +1) and 50 (7x7 +1) nodes
used in the experiments. In real world experiments, inducing
errors is not easy but also not necessary, as the wireless channel
is lossy enough on its own. We measured the stability of
the structures generated by both algorithms, using the same
nodes and the same placement of nodes to keep the results
comparable.

Figures 5 and 6 show the stability of the routing structure
measured for 3 minutes after the (re-)start of the network.
When the two Figures are compared, it can be seen that the

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

time in rounds [500ms]

nu
m

be
r o

f s
ta

bl
e

no
de

s

Figure 6. Real world deployment. Structure state over time. Ordinary tier
algorithm with varying number of nodes (10,26,50).

size of the network has a strong influence, especially on the
ordinary algorithm. Both algorithms perform similar in the
network consisting of only ten nodes. SelfTIER can reach a
stable structure for all ten nodes almost immediately but the
ordinary algorithm reaches nine stable nodes after a rebuild
and ten near the end of the three minutes. This could be
compensated by allowing for a certain setup time. However,
the differences increase when the network size is increased.
In the network consisting of 26 nodes, SelfTIER still reaches
95% stability while the ordinary algorithm reaches only about
84%. For the network consisting of 50 nodes it even falls
below 60%, while SelfTIER still reaches nearly 90%. As the
number of additional nodes that are stable does not rise much
for the ordinary algorithm, we expect that there is a certain
threshold, above which adding more nodes to the network
will not increase the number of stable nodes anymore, for the
ordinary algorithm. For the self-stabilizing SelfTIER, however,
adding nodes will delay the point in time when most nodes
are stable, but eventually this point will be reached, making
SelfTIER the algorithm of choice for larger networks.

Connectivity
The second part of our evaluation concerns the quality of

the structure. To achieve good aggregation results, as many
nodes as possible must know a valid route to the sink. In a
data gathering scenario, the data is forwarded hop by hop from
all nodes to the single sink. To evaluate the connectivity of the
routing structure, we use snapshots of the state of the routing
protocol, in addition to the entries in the neighbor tables and
the physical layer. In the simulations using OMNeT++, we use
the current links between the NIC-modules.

As competitor to the self-stabilizing algorithms, we used a
REFLEX implementation of the standard TinyOS data gathering
protocol CTP.

CTP uses beacons, which are transmitted by each node
regularly, to build a tree structure. After an initial buildup
phase the frequency of beacons is reduced. Instead, the
quality of connections is measured using acknowledgment
messages. To compensate the lack of application messages

●●●

●

●

●●●●●
●●●●

●●

●

●●●

●●●●●●

●

●●●●●●●●

●●●●●●●●●●

●

●

●

●

●

●

●
●●●
●●●
●●●●●●●●●●●●●●●●

●
●
●

●
●

●

●

●

●●●●
●●●●
●●
●●●●
●●●●●●●●●
●●●●●●●●

●

●●

●●
●●●

●●●

●
●

●
●●●●
●●●

●●
●●●●

●●●

●●●

●●●

●●●

●

●●

●●

●

●
●●●

●●●
●
●●

●

●●

●
●●
●●
●

●
●
●●●

●●●●●
●●●●●

●●●

●●

●

●●

●●●
●●●●●●●●
●●●●●●

●

●

●

●
●●●●

●

●

●

●

●●

●●

●

●●
●

●
●

●
●
●
●

●●

●●●
●
●
●●●
●●

●

●

●

●

●

●

●

●
●●
●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●

●●●

●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●

●

●●●●●●●●●●●●●●●

●●
●

●

●

●

●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●●●

●

●

●●●●●●●●●

0

25

50

75

100

TRD_center_2 TRD_edge_2
Scenario

C
on

ne
ct

iv
ity

 (
in

 %
)

Connectivity (normalized)

CTP

SelfTIER

SelfTREE

Figure 7. Connectivity of 226 nodes grid. Link disconnect fault injection.
Sink node at center (left) and edge (right).

●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●●
●●

●●●
●●
●

●

●●●●●●●
●●

●●●
●●●●

●
●
●●
●●●
●
●●●●
●

●●●●
●●
●
●

●●

●●●
●
●
●●
●●●●
●
●
●
●
●
●●●●
●
●●●●
●
●●
●●
●
●
●
●●
●
●●●●●
●
●●
●●●●

●
●

●
●

●●●●
●

●

●

●●
●●●●

●

●●

●

●
●●●

●
●
●●●

●●

●●●●
●●●
●●●●●●●
●
●●
●

●
●

●
●●

●
●●
●●●●●●●

●

●●

●●

●●

●●

●●

●●
●●
●
●
●●●
●●
●●●

●
●

●

●

●

●

●
●

●

●●

●
●
●●
●
●●
●

●

●●

●

●
●●●

●●●

●●

●●

●

●
●

●●

●
●

●

●

●●●
●

●●

●

●●

●●

●●

●●

●

●

●
●●

●●

●●●
●●●
●●
●
●

●●

●
●

●

●
●
●●
●

●●●
●

●

●

●●
●

●
●

●

●

●

●●

●●
●●

●
●

●

●

●

●●●

●●●

●

●

●

●

●●●

●

●

●
●
●●
●

●●●●

●●
●

●

●

●
●
●

●●
●

●

●

●●●

●

●●
●●
●

●
●●●●

●

●
●

●

●●●●

●

●●●

●
●●

●●

●

●
●
●
●

●

●
●
●

●

●
●●

●

●●●

●

●

●

●

●●

●●●
●●
●
●●●

●

●●
●

●

●
●
●
●
●
●●

●
●

●

●

●●

●
●
●

●
●●●

●

●●
●●

●

●
●

●●●●

●
●
●

●

●●●

●●●

●●

●●●

●

●

●

●

●●●●●●●

●●

●●

●

●●

●

●●

●

●

●●

●●●
●
●●
●

●

●●
●

●

●●
●

●

0

25

50

75

100

TND_center_2 TND_edge_2
Scenario

C
on

ne
ct

iv
ity

 (
in

 %
)

Connectivity (normalized)

CTP

SelfTIER

SelfTREE

Figure 8. Connectivity of 226 nodes grid. Node disconnect fault injection.
Sink node at center (left) and edge (right).

and acknowledgments in our simulations, we kept a constant
beacon interval of 500ms, which equals the frequency of status
message transmission for the self-stabilizing algorithms. We
ran OMNeT simulations with up to 226 (15x15 +1) nodes in
a grid topology.

The connectivity achieved by all three algorithms when
link failures are injected can be seen in Figure 7. In this
scenario, one link is disconnected every second, and remains
disconnected for 30 seconds. The Figure is divided according
to the placement of the sink, either at the center of the grid
(left) or at the corner (right). Connectivity is achieved by a
node, if it has a path to the sink (routing table), the next
hop is in its neighbor table and the physical connection to
that neighbor exists. The Figure shows that a placement of
the sink in the middle of the network is better for CTP, which
then reaches about 50% connectivity. For this placement, there
is no big difference between the SelfTREE algorithm from
Dolev and our SelfTIER, both reach nearly 100%. When a sink
placement at the corner is evaluated, the performance of CTP
drops drastically, to roundabout 12%. The results of SelfTREE
are spread a little further, but it still achieves more than 95%
connectivity. The results from SelfTIER stay at nearly 100%
connectivity.

Figure 8 shows the results the three algorithms achieved
for the scenario in which complete node disconnection faults
were injected. Every 5 seconds, a node is disconnected from
the network for 30 seconds. The Figure shows the normalized
result with respect to the physical conditions. A node is
counted as connected, if there is a valid entry for a path from

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

the node to the sink in the routing- and neighbor table on
the node, and the used physical links exists. The scenario is
further divided according to the placement of the sink node:
Either at the center of the grid or at the corner. Placing the sink
at the corner naturally doubles path length, compared to the
placement at the center. When the sink is placed at the center
(Figure 8, left side), the median of reached connectivity for
CTP is 50%. Both self-stabilizing algorithms, the SelfTREE
algorithm from Dolev and our SelfTIER algorithm, reach
nearly 100 % connectivity. When the sink is located at the
edge of the network, the performance of CTP and SelfTREE
decrease to 25% and 55% respectively, while SelfTIER still
offers nearly 100% connectivity. This is due to the fact that
SelfTIER used multiple paths to deliver messages. While the
failure of one node results in lost connectivity for a whole
sub-tree in the tree based algorithms, SelfTIER can usually
connect the nodes from lower tiers through different nodes, so
only the node on which the failure occurs is ’lost’.

In summary, it can be said that self-stabilizing algorithms
are a good choice when building structures for aggregation
and/or reduction schemes, with our SelfTIER algorithm outper-
forming CTP and the SelfTREE algorithm from Dolev when
not only links break, but nodes can also fail completely for a
certain time.

VI. CONCLUSION

In this paper, we have discussed the prerequisites for a
successful aggregation/reduction scheme for data gathering
scenarios in wireless sensor networks, namely a robust un-
derlying communication structure. We have argued that self-
stabilizing algorithms should be the method of choice, and
support our claim with simulations and experiments. In the
evaluation we measured stability and connectivity for different
structures and network sizes. We compared two different self-
stabilizing algorithms with CTP, the standard protocol for data
gathering scenarios from TinyOS. The results show that there
are performance differences between the two self-stabilizing
algorithms that depend on the error scenario and the network
diameter, but both protocols always perform better than CTP.

Often, self-stabilizing algorithms are criticized for the
higher energy consumption due to the periodic state exchange
between nodes. How these exchanges can be reduced without
sacrificing too much of the advantages of self-stabilization is
currently being evaluated by our group. Sleeping times/duty
cycling and other traditional approaches for energy conserva-
tion are being discussed, and first evaluations show promising
results.

ACKNOWLEDGMENT

This work was partially funded by the Deutsche
Forschungsgemeinschaft DFG in the project ToleranceZone
(DFG NO 625/6-1).

REFERENCES
[1] S. Dolev, Self-stabilization. MIT press, 2000.

[2] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag:
A tiny aggregation service for ad-hoc sensor networks,” SIGOPS
Oper. Syst. Rev., vol. 36, no. SI, Dec. 2002, pp. 131–146. [Online].
Available: http://doi.acm.org/10.1145/844128.844142

[3] I. Solis and K. Obraczka, “The impact of timing in data aggregation
for sensor networks,” in Communications, 2004 IEEE International
Conference on, vol. 6, June 2004, pp. 3640–3645 Vol.6.

[4] M. Ding, X. Cheng, and G. Xue, “Aggregation tree construction in
sensor networks,” in Vehicular Technology Conference, 2003. VTC
2003-Fall. 2003 IEEE 58th, vol. 4, Oct 2003, pp. 2168–2172 Vol.4.

[5] H. S. Kim, T. F. Abdelzaher, and W. H. Kwon, “Minimum-energy
asynchronous dissemination to mobile sinks in wireless sensor
networks,” in Proceedings of the 1st International Conference on
Embedded Networked Sensor Systems, ser. SenSys ’03. New
York, NY, USA: ACM, 2003, pp. 193–204. [Online]. Available:
http://doi.acm.org/10.1145/958491.958515

[6] T. Banerjee, K. Chowdhury, and D. Agrawal, “Tree based data aggre-
gation in sensor networks using polynomial regression,” in Information
Fusion, 2005 8th International Conference on, vol. 2, July 2005, pp. 8
pp.–.

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection tree protocol,” in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, ser. SenSys ’09. New
York, NY, USA: ACM, 2009, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/1644038.1644040

[8] H. O. Tan and I. Körpeoǧlu, “Power efficient data gathering
and aggregation in wireless sensor networks,” SIGMOD Rec.,
vol. 32, no. 4, Dec. 2003, pp. 66–71. [Online]. Available:
http://doi.acm.org/10.1145/959060.959072

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” Wireless Communications, IEEE Transactions on, vol. 1, no. 4,
Oct 2002, pp. 660–670.

[10] Y. Yao and J. Gehrke, “The cougar approach to in-
network query processing in sensor networks,” SIGMOD Rec.,
vol. 31, no. 3, Sep. 2002, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/601858.601861

[11] L. Villas, A. Boukerche, H. Ramos, H. de Oliveira, R. de Araujo, and
A. Loureiro, “Drina: A lightweight and reliable routing approach for
in-network aggregation in wireless sensor networks,” Computers, IEEE
Transactions on, vol. 62, no. 4, April 2013, pp. 676–689.

[12] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in Proceedings
of the 2Nd International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’04. New York, NY, USA: ACM, 2004, pp. 250–
262. [Online]. Available: http://doi.acm.org/10.1145/1031495.1031525

[13] S. Lindsey, C. Raghavendra, and K. Sivalingam, “Data gathering
algorithms in sensor networks using energy metrics,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 13, no. 9, Sep 2002,
pp. 924–935.

[14] A. Manjhi, S. Nath, and P. B. Gibbons, “Tributaries and deltas: Efficient
and robust aggregation in sensor network streams,” in Proceedings of
the 2005 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’05. New York, NY, USA: ACM, 2005, pp. 287–
298. [Online]. Available: http://doi.acm.org/10.1145/1066157.1066191

[15] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol. 17, no. 11, Nov. 1974, pp. 643–644. [Online].
Available: http://doi.acm.org/10.1145/361179.361202

[16] K. Walther, R. Karnapke, and J. Nolte, “An existing complete house
control system based on the reflex operating system: Implementation
and experiences over a period of 4 years,” in Proceedings of 13th IEEE
Conference on Emerging Technologies and Factory Automation, 2008.

[17] A. Varga, “The omnet++ discrete event simulation system,” in Proceed-
ings of the European Simulation Multiconference (ESM’2001), Prague,
Czech Republic, Jun. 2001.

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications

