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Abstract—We have used sensor data previously to detect the 
stress status of observers of stressful environments. In this 
work we describe the process of conversion from a passive 
and post-facto detection of this stress status to a dynamic 
and real-time or close to real-time process for control of 
stress using biofeedback. We describe the changes required 
to feature selection and interpretation of galvanic skin 
response (GSR) and electrocardiograph (ECG) sensor data 
for the new setting, using training on data from the post-
facto dataset filtered to match, and as far as possible 
simulate a real-time dataset. We then compare 3 
alternatives including a control component. 

Keywords- observer stress; physiological signals; 
biofeedback; human centred computing. 

I.  INTRODUCTION 
Our previous work demonstrated that we could 

construct reliable computational models for observer 
stress extracted from a range of physiological signals. In 
that work, we used physiological recordings of the entire 
experiment to detect the observer’s stress level, the 
experiment consisting of showing a number of short video 
clips of known stressfulness, as validated by user surveys. 
This data forms the ANU Stress DB. 

We have extended our previous work, and sampled the 
ANU Stress DB to mimic real-time or close to real-time 
data collection, to form training data for a biofeedback 
model. For usefulness in biofeedback the model needs to 
display results no slower than 1 Hz, based on some 
preliminary experiments with subjects. Using only the last 
2 seconds of data produces a model in 80% in accord with 
our previous full model using the entire experiment 
recording.  

We then tested this new model in a new experiment, to 
compare our model with the use of EEG as the 
biofeedback target, as well as a control curve which 
displays the stress curve of a randomly chosen prior 
subject. That is, the stress curve is synchronized with the 
experiment and is a valid stress curve, but is not the curve 
of the current subject and so does not reflect any changes 
made by the current subject. 

II. STRESS AND REDUCTION OF STRESS 
The term stress was coined by Hans Selye in 1936, 

and defined as “the non-specific response of the body to 
any demand for change” [1]. There is evidence that too 
much stress has significant health effects, e.g. [2].  

We concentrate on objective measures of stress [3]. 

A. Observer Stress 
We concentrate on a viewer of events, hence the stress 

encountered is observer stress. In this century, more and 
more our interactions with the world are virtual or 
mediated via screens, or for other reasons we have no 
ability to change what we see. Hence this is a valuable 
area for stress research. We have done previous work on 
computational models for stress in a range of 
environments: abstract (reading) [4], virtual (screens - 
including video / cctv) [5], and real environments [6]. 

B. Stress reduction - biofeedback 
There are a number of stress management techniques, 

from meditation [7] to biofeedback. Biofeedback is the 
process of making unconscious body functions perceptible 
for individuals so that they can learn and manipulate these 
physiological activities for the purpose of improving 
health [8]. Neuro-feedback, which uses EEG data, has 
been shown to be one of the most effective stress 
management methods [9]. 

 

C. Measures and Sensors 
1) Galvanic Skin Response (GSR) 

Skin conductance, also known as electro-dermal 
response or psycho-galvanic reflex, measures the 
electrical conductance of an individual’s skin, which 
varies due to the amount of sweat on the skin. When the 
individual is under stress, skin conductance will increase; 
oppositely, the skin conductance will reduce when the 
individual encounters less stress [10]. We used the Neulog 
GSR Logger Sensor [11]. 

2) Heart Rate Variability 
Heart rate variability (HRV) is the variation in the 

interval between heartbeats. HRV has been shown to be 
one of the most reliable indicators of stress in nearly a 

105Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications



quarter-century of clinical research [12]. Methods to 
measure HRV include Electrocardiogram (ECG) and 
Blood Pressure, but ECG is considered superior as it 
excludes unnecessary heartbeats and displays a clear 
waveform. We used the Neulog ECG Logger Sensor [13]. 

3) Brain Signals 
The brain is the key organ of responding to stress, as it 

perceives what is threatening and thus potentially stressful 
[14]. Electroencephalography (EEG) is one of the primary 
methods for brain activity analysis. It re-cords the 
electrical voltage fluctuations resulting from ionic current 
flows within the neurons of the brain via multiple 
electrodes placed on the scalp [15]. EEG equipment 
usually produces a high degree of intrusion since 
participants need to wear a head cap attached to specific 
positions of the scalp with electrically conductive gel. The 
Emotiv EPOC headset [16] is a less intrusive device with 
a lighter headset, which is placed on rather than attached 
to the head. It is still noticeably more intrusive than the 
GSR and ECG sensors. 

D. Extraction of features 
Some 59 representative features were derived by 

calculating the statistics and measures values of two-
seconds data (as our preliminary experiments showed that 
1 sec data was too little, but 5 secs was too long to still 
‘feel’ like real-time). Such summary statistical values 
included the mean, standard derivation, kurtosis, 
skewness, interquartile range, minimum and maximum, 
where measures included the number of peaks for periodic 
signals. 

III. HYBRID GENETIC ALGORITHM AND EXTREME 
LEARNING MACHINE MODEL 

The 59 derived features are too many for good results 
on this data, hence we must engage in feature selection 
[17]. The issue is that there is a limited number of subjects 
for whom we have data, and with many features and a 
sizeable neural network, the number of free parameters 
well exceeds the number of data points available.  

 
              TABLE I. GA REPRESENTATION AND USE 
 

 

Vector of best 
representative 

features 
filtered by GA 

0 0 1 0 1 … 

        

 

Vector of 
derived 

representative 
features 

.1 .2 .3 .4 .5 … 

                

 

Vector for 
best 

representative 
features in the 
current data 

segment 

0 0 .3 0 .5 … 

 

We used a genetic algorithm with feed-forward neural 
networks as individuals in the population to perform 
feature selection and training. A simple 59-bit string 
representation was used to determine whether a feature is 
used by a particular neural network. Figure 1 shows how 
the representation was used to construct the train and test 
sets for each neural network.  

A standard 3 layer neural network with two layers of 
processing elements was used, as shown in Figure 1. 
There are up to 59 input neurons, some 20 (say) hidden 
neurons, and one output neuron indicating the degree of 
stress. 

 

 
Figure 1. Neural network structure. 

We validated our final networks against our previous 
work in virtual environments (stressful and calm video 
clips) [5], and using 10 fold cross validation we showed 
we can achieve 81% reliability.  

This is less than our previous results which used the 
full sensor recording from a participant watching the 
entire clip, rather than just the preceding 2 seconds. This 
81% reliability proved sufficient for our experiment (to be 
reported below) to be successful. 

Our initial approach was to use back-propagation 
training for our neural network. We observed that it took 
one week to finish approximately 8% of the whole 
process, so the overall time for training this classifier was 
predicted to be more than three months. Instead, we 
trained our neural networks using the Extreme Learning 
Machine (ELM) method [18]. 

The ELM method in this case works as follows: the 
input weight matrix is assigned random values which are 
then frozen and not trained (the left ‘weight matrix’ 
shown in Fig. 1), and only the output weight matrix is 
trained.  

This is possible to do via the delta rule normally used 
for output layers, but it is even faster to use the Moore-
Penrose pseudo-inverse as the input matrix does not 
change, allowing a much higher efficiency in the process 
of estimating (training) output layer weights, by 
computing a 'best fit' (least squares) solution.  

It is necessary to significantly increase the number of 
hidden neurons using the ELM approach. In this case, we 
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increased the number to 400. Then, we were able to 
complete the training in one week, faster by a multiple of 
about 15, notwithstanding the 20 fold increase in the 
number of hidden neurons. 

How does it work? Essentially, the random weights 
provide some random functionality to each hidden neuron, 
and the training of the output layer selects from these the 
neurons with useful functionality and then their outputs 
are combined using the output weights to provide the 
optimized output value. This explains why we need so 
many hidden neurons, as we now just select from a menu 
rather than training individuals. 

IV. BIOFEEDBACK EXPERIMENT 
Ethics approval to perform the experiment was received 
from the ANU Human Research Ethics Committee.  

Eighteen  undergraduate  and  masters  students  were 
recruited for the experiment.  The participant cohort was 

made up of twelve males (57.1%) and nine females 
(42.9%) between the ages of 20 and 35 years. The average 
age was 25.1 years old with a standard deviation of 3.7.  

A. Experiment aim 
Our goal was to compare effects of our GA-ELM 

calculated stress curve, EEG curve, and a (plausible) 
random curve on stress reduction. 

B. Experiment Data Collection 
Figs 2. and 3. display the experiment setups required 

for the stress curve / random curve settings, and for the 
EEG setting, respectively.  
Multiple computers were required, as the computational 
intensiveness of both our own real time stress curve and 
the Emotiv EEG stress curve were such that a separate 
data acquisition computer was required. For smooth 
display of the film clips, we needed yet another computer

 

 
                              Figure 2. Schematic diagram of equipment setup for stress and random curve group. 

 
                                              Figure 3. Schematic diagram of equipment setup for EEG curve group. 
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C. Experiment process 
After a countdown display, a blank screen was shown 

for 15 seconds, which was followed by a sequence of film 
clips with five-second blank screens in between.  

The film clips consisted of stressful and non-stressful 
film clips and each was approximately one minute in 
length. These film clips were categorized by the type of 
environment they create. Some had stressful content in the 
direction towards distress, fear and tension, see Fig. 4 for 
a sample screenshot from one of the stressful film clips. 

 

 
             Figure 4. Stressful film clip: Dark Knight. 

The non-stressful clips had content that created an 
illusion of meditation or comfortable environments, see 
Fig. 5 for a sample screenshot from one of the non-
stressful film clips. In total there were three stressful films 
and three non-stressful film for each experiment session, 
presented in an order balanced fashion. 

 

 

 
       Figure 5. Non-stressful film clip: Ducks on the lake. 

One third of the participants were shown their own 
real-time stress curve as calculated from the their 
preceding 2 secs of data as described in §1.4, while 
watching the sequence of film clips. 

Another third were shown their EEG stress curve as 
calculated by the Emotiv Affectiv Suite [19] (see Fig. 4), 
again while watching the film clips. Since the clips were 
order balanced, the participants watched them in different 
orders, to reduce or eliminate any effects from the 
sequence of presentation of the film clips.  

The final third were shown a ‘random’ curve. This 
curve was based on the ECG and GSR of two subjects 
from our previous work [5], using the same film clips. 
Thus, the curves were completely valid stress curves and 
were in good synchrony with the experiment, they were 
just not from the participant viewing them. 

 
                               Figure 6. Emotiv Affectiv Suite: the top orange curve is the stress indicator for the EEG curve group. 
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The point of these ‘random’ curves is to provide a 

baseline – it is possible the mere intention to reduce stress 
will have an effect, so for our results to be meaningful we 
need to show a different (better) result than for this 
‘random’ control curve. 

V. RESULTS AND DISCUSSION 
The data was analysed by visual inspection and 

clustering analysis. Observation of the stress curve 
suggested that the stress curve does reflect individuals’ 
stress in real time. It also revealed the correlation between 
the effectiveness of physiological biofeedback in stress 
control. This correlation was confirmed by the use of K-
Means clustering. The clustering analysis was conducted 
on the 2 different stress data sets generated by watching 
stressful or non-stressful films. The result of clustering on 
stress data, which were produced when individuals were 
watching stressful films, showed that biofeedback with 
our physiological stress curve was effective and it was 
superior to neurofeedback.  

We now provide the results of the clustering, in Table 
2. The results are sorted by the curve provided to each 
participant. Clusters 2 and 3 have a purity of 83%, and 
correspond to our stress curve, and to the EEG curve, 
respectively. This is essentially the highest value we could 
have expected as our pre-experiment estimate for the 
correctness of our calculated stress curve. 

These results show that both our stress curve and the 
EEG curve have good consistency in terms of their effects 
on the ability of participants to modify their stress. By 
observation, the direction of modification is as expected, 
to reduce their stress.  

Cluster 1 has a purity of 50%, for the random curve. 
The lack of high purity in the case of the cluster which 
represents the random curve indicates that that curve is of 
some value in reducing the stress of participants,  

otherwise this cluster would have high purity due to its 
consistent uselessness in modifying stress levels. 
 

TABLE II. CLUSTERING RESULTS ON STRESS DATA  
       GENERATED BY WATCHING STRESSED FILMS.  

 

Participant ID Clustered 
label Provided curve 

p10 S3 Stress 
p12 S2 Stress 
p13 S2 Stress 
p14 S2 Stress 
p15 S2 Stress 
p6 S2 Stress 

 

p2 S3 Random 
p7 S3 Random 
p4 S2 Random 
p1 S1 Random 

p11 S1 Random 
p5 S1 Random 

   

p17 S3 EEG 
p18 S3 EEG 
p19 S3 EEG 
p20 S3 EEG 
p21 S3 EEG 
p16 S2 EEG 

 

 
Figure 5. Participant 14: Using our stress curve. The stress axis has arbitrary units, the time axis is in seconds. 
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An example of the visual inspection analysis is shown in 
Fig. 5. In the period labeled from t1 to t2, the participant was 
actively trying to control his stress, as reported during the 
experiment. At time t2, a new clip started. Unfortunately, at 
time t3, he laughed and pounded on the table, partially 
dislodging the sensors. 

We performed a statistical analysis of the clustering 
results to the categorisation of the stress levels of the fil 
clips. The calculation of the p-value derived from the 
Wilcoxon Statistical Test was: p < 0.001. Thus we can 
conclude that our results are highly statistically significant, 
as we accept p < 0.05 as statistically significant.. 

CONCLUSIONS, LIMITATIONS AND FUTURE WORK 
We have shown via an experiment with 18 participants, 

and with high statistical significance, that participants could 
control or modify their stress well with an EEG curve (i.e., 
by neurofeedback, being an approach known to work well in 
the literature), which validates our approach.  

More  significantly,  we  have  shown  that  with  high 
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