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Abstract—Nowadays, sensor networks are widely used. To create
new hardware for these networks, simulations are used. These
simulations help during the design of the sensor nodes by
providing information about internal states, power usage, and
expected lifetime. They are useful to design one piece of hardware,
however they are cumbersome when multiple of such hardware
simulation instances need to interact with each other. This
paper explores the possibility of starting multiple instances of
a hardware simulation and connecting these via a simulation of
the environment they will be used in.
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I. INTRODUCTION

The concurrent development of hardware and software
enables the accurate simulation of the behavior of a finished
sensor node. Rather than focusing solely on the hardware
simulation, languages such as SystemC can also calculate the
software influences on the system. This is a necessary step
towards the complete simulation of a network. To simulate the
behavior of a network, multiple such sensor instances need to
be simulated simultaneously. These virtual sensor nodes are
then connected via a suitable environment simulation.

There are many solutions to the problem of simulating
single pieces of hardware. Hardware Description Languages
(HDLs) support the simulation of hardware on a low layer
of abstraction. The hardware descriptions used in this kind of
simulation typically enable the manufacturing of the hardware
itself. This means that the description, and thus the simulation,
of the device is very accurate. This accuracy comes with the
cost of low performance. To simulate more complex systems,
a higher layer of abstraction is needed. This increases the
simulation speed but decreases the resulting accuracy. A HDL
that supports multiple layers of abstraction, such as SystemC
[1], can describe the interconnection of hardware components
at a high layer of abstraction and, at the same time, keep most
of the accuracy for the components themselves [2].

The simulation of a network of computing devices can be
challenging. Most of the simulators available are either limited
to the sole simulation of the interaction between the network
components (e.g., [3]), or can just give rough estimations of
the executing time on each component (e.g., [4]).

To be able to simulate a sensor network without sacrificing
the accuracy requires the connection of a hardware simulation
tool and some tool that performs the interaction between the
sensor nodes. Pieber et al. [5][6] described an approach to
connect one instance of a SystemC simulation to the Gazebo

simulator, a tool that is able to simulate an environment for
the sensor. We want to extend this approach by instantiating
multiple sensors in the Gazebo simulation and connecting them
in this environment.

To test the resulting performance change, a small-scale
networked control system has been implemented. This system
is then performing some data acquisition, forwarding the data
through another network node and finally the data storage at
a final sensor node. In contrast to the simulation created by
Pieber et al. [5] where one SystemC instance is connected
to the Gazebo simulation, this simulation connects multiple
instances of SystemC simulations to the Gazebo environment.

The remainder of this paper describes this process. Section
II briefly describes the background information and states the
related work to this publication. In Section III, the design
of our approach is described. The implementation of the
necessary parts is described in Section IV. Section V highlights
our findings. This publication concludes in Section VI. This
section also states our thoughts of what can be done next.

II. BACKGROUND AND RELATED WORK

As concurrent tasks are a vital part of any simulation,
mechanisms to cope with this are introduced in every mod-
elling language. There are three main approaches to deal with
concurrency in simulations:

1) Multi-instance-one-simulation One simulation con-
tains multiple instances of parallel tasks.

2) One-instance-multi-simulation One model only
contains a single task. These tasks are then run
in multiple simulations that communicate with each
other.

3) Multi-instance-multi-simulation Each simulation
contains multiple concurrent tasks. The tasks com-
municate within a simulation, the simulations com-
municate within themselves.

A simulation written in SystemC and Gazebo are simulations
of the first type. SystemC simulations run its component
modules quasi parallel using delta-cycles to reach a stable state.
Then, the simulation time is advanced until the next triggered
event happens. In the Gazebo simulator, the components are
modeled via plugins. These plugins are called sequentially.
When all components have been executed, the simulation time
is advanced by one time increment and the process restarts.

A more powerful example of a SystemC simulation com-
prising of multiple instances of modules has been created by
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Figure 1. Performance problem using Gazebo and multiple SystemC
instances.

Park et al. [7]. In this simulation, a smart house was simulated
using SystemC. There, each electrical component has been
modeled as a part of the complete simulation. These models
are evaluated in parallel.

The combination of these two simulations results in a con-
current simulation of the third type. This is a simulation with
multiple instances of different simulations, each containing
multiple concurrent modules.

The process Pieber et al. [6] described in their work is
intended to simulate one sensor node in an environment. This
environment provides the sensor with stimuli that the sensor
can work with. Furthermore, a communication channel is
provided to communicate with the sensor and get feedback
during the simulation time. In this approach, the Gazebo
simulation is halted during the execution of one SystemC
simulation. This results in a performance issue when using
multiple SystemC instances. Figure 1 illustrates this. Here, one
SystemC simulation blocks all other simulations. This results
in an execution pattern suitable for a single processor core
where only one simulation is being executed at a time. In
this paper, we try to parallelize the SystemC simulations by
introducing a mechanism that starts all SystemC simulation
steps in parallel and waits for all to finish.

There are some proposed solutions to parallelize SystemC,
such as [8]-[11]. These describe approaches that look for
all executable SystemC modules and try to execute them
in parallel. This results in a Type 2 concurrent simulation
(One-instance-multi-simulation) as each executable model is
treated as a single simulation. In these approaches, one large
simulation is split into multiple concurrent simulations that are
spread over the cores of one computer. In contrast to this, the
approach described here uses multiple SystemC simulations
and distributes them via a network. This method can spread
the simulation on cores of the same machine, but also use
additional computational resources of other computers in the

network.

Schumacher et al. [9] presented an approach to simulate an
Multi-Processor System on Chip (MPSoC). As their solution
uses threads to achieve the parallelism, the solution is tied to
a single host machine. While the authors claimed a significant
performance improvement, it is already argued that this ap-
proach is not sufficient for a large sensor network simulation.

The approach of Sinha et al. [11] splits one SystemC simu-
lation into multiple executable processes. In this approach, not
only multiple cores or the Central Processing Unit (CPU) of
one computer can be utilized, but also the Graphics Processing
Unit (GPU).

Chopard et al. [12] propose a method to parallelize the
SystemC kernel. In their approach, the researchers achieve a
speedup comparable to the number of usable CPU cores.

The article of Jones [13] describes a more optimistic
approach of parallelizing SystemC simulations. Jones also
addresses the topic of race conditions that can occur when
running such simulations in parallel. He also mentions that his
technique of accelerating SystemC simulations is not suitable
for existing simulations as large portions of code would need
to be modified.

The possibility to accelerate SystemC simulations that rely
on discrete events is discussed by Dömer et al. [14]. This team
of researchers present a scheduler that spreads the runnable
simulation nodes on the available CPUs.

Huang et al. [15] presented a SystemC library to handle
the distribution of SystemC simulations. This approach is
suited to work for multi-core machines as well as for a
number of separate hosts. A downside of this approach is
the limitation to functional and Transaction Level Modelling
(TLM) simulations. Another disadvantage of this approach
is the need for every SystemC simulation to handle its own
communication with the rest of the simulation. Both of these
issues are reflected on in our work by enabling SystemC
simulations to be independent of the distribution architecture.

Another approach for simulating multiple computers in a
network is used by Simics [3]. This simulator is built such
that it can use multiple computers in a network to simulate
the interaction of the systems. In this approach, the simulated
network nodes are connected via a simulated network. This
simulation can be used to simulate a computer network at a
high level of abstraction. The integration of analogue signals
(measurements of a sensor, or a very low level of abstraction)
is not directly possible.

Clement et al. [16] coined the term Internet of Simulation.
In their paper, the authors describe the need for heterogeneous
simulation systems that can capture the complex nature of
Cyber-Physical Systems (CPS). In their terminology, this paper
describes a co-simulation for virtual engineering.

This paper is based on the publications of Pieber et al.
[5][6]. It improves in the following details:

• Concurrency: The original approach uses one
Gazebo plugin for each sensor in the environment.
Each of these plugins directly creates a SystemC
process and communicates with it. This entails that
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all SystemC processes are located on the same host
machine. With the approach presented here, the Sys-
temC instances are started before the main simulation.
These simulation instances can be located on different
host machines and communicate via a network to the
main communication. The plugins in the main simu-
lation communicate to a server plugin that handles the
network traffic and connects the SystemC simulations
to the intended plugins.

• Modularity: As the SystemC simulations are started
before the main simulation, multiple different imple-
mentations of the same simulation can be connected to
the same sensor plugin. This increases the modularity
of the simulation as only few changes need to be made
in order to exchange the SystemC simulations.

III. DESIGN

To improve the design of Pieber et al. [6] we implemented
a server-client structure to spread the simulations to multi-
ple computers. Using this, only a single plugin (the server)
connects the SystemC instances. This plugin then blocks the
Gazebo simulation until all SystemC tasks are finished. Figure
2 shows the intended execution path. The Gazebo simulator
performs the calculations that are necessary for the data
transmission. The SystemC simulations receive the data and
perform operations on the data. When the simulation steps of
all SystemC instances are finished the Gazebo simulator can
continue its operation.

In this design, all necessary data from Gazebo is generated
during its time step. This information is gathered in the server
plugin. The server plugin then forwards the information to
the SystemC instances. While the SystemC simulations are
performing the simulation step, the Gazebo simulation is
halted. During the execution of the SystemC simulation, the
generated data is transmitted to the Gazebo simulation. There
the server plugin captures the data. When the simulation step is
finished, the SystemC simulations are halted and the Gazebo
simulation can continue. In this way, no information is lost
between the simulations, and all simulations are synchronized
at the end of the time steps. As the server starts all SystemC
simulations and waits for all to finish, also the SystemC
simulations are synchronized.

In this design, the server does not contain simulation
relevant operations. It just connects the Gazebo representations
of the sensors (sensor plugins) to the SystemC simulations.
This server therefore acts as a gateway for the sensor plugins
to the SystemC simulations which can be executed anywhere
in the network.
The server plugin has three responsibilities:

• Connecting the correct SystemC simulation to the
intended sensor plugin. This includes the identifica-
tion of the connected SystemC simulations and the
matching to the correct sensor plugin.

• Passing data between the sensor plugin and SystemC
simulation.

• Synchronizing the simulations.

The server plugin runs a thread that listens for incom-
ing connections from remote SystemC simulations. For each

Figure 2. Improved handling scheme for multiple SystemC instances.

connecting simulation, a thread is created that handles the
information exchange with the sensor plugin. Additionally, this
thread forwards the information to the SystemC simulation
and receives the resulting information. Figure 3 shows the
top-level structure of the plugin server. The server listens for
new SystemC connections and creates a worker thread for
each connected simulation. Each worker thread manages the
communication between the sensor plugin and the SystemC
simulation. To handle the SystemC simulation and the syn-
chronization of the simulations, the thread appends data about
simulation states. In addition to all of that, the thread keeps
information about the connection to the SystemC simulation.
This is information about the Internet Protocol (IP)-address,
the port number, the simulation identifier, and the last sent
command to which the SystemC simulation has to react.

Each worker thread starts by initializing its own memory.
This is followed by the initial checks of the SystemC simula-
tion. These checks are performed by verifying an identifier.
If the SystemC simulation can be used for the plugin, an
initial configuration for the SystemC simulation is sent. When
the initialization is finished, the SystemC simulation needs
to respond with its state. For each simulation step, the data
for the SystemC simulation is gathered by the sensor plugin.
This data includes the change of sensor data, information
about incoming messages, and changes of external energy
sources (for energy harvesting). This gathered information is
then forwarded to the server plugin and the correct worker
thread. The worker thread packs the data and adds additional
information. This additional information includes changes of
simulation states, status information, or commands to the
interface on the SystemC side. When the server plugin is being
executed, all information is forwarded to the SystemC simu-
lations by the worker threads. Until all worker threads have
received the signal that their SystemC simulation has finished
its execution, the Gazebo simulation is blocked. During the
execution of the SystemC simulation, data that is destined
for the Gazebo simulation is sent to the worker thread. This
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Figure 3. Top-level structure of the server plugin.

information is stored until the simulation proceeds. At the
end of the SystemC simulation step, a signal is sent to the
Gazebo simulation, informing the worker about the simulation
status. If all SystemC simulations have stopped their execution,
the Gazebo simulation can proceed. Now the stored data is
transferred to the sensor plugins. The plugins can access the
data in the next Gazebo time step.

With the use of the parallel design, the computation of
the network should have a similar performance as the sole
computation of the slowest node in the network. Thus, when
simulating similar nodes, the performance gain should be
related to the number of parallel nodes.

To test this hypothesis, multiple tests are designed:

1) All nodes the same - single This test simulates one
sensor node performing measurements.

2) All nodes the same - sequential This test comprises
of three identical nodes, each performing the same
measurements.

3) All nodes the same - parallel The three nodes are
run using the parallel computation design.

4) Networked system - single In this test each of three
different nodes is simulated on its own. The data for
nodes two and three is computed by node one and
given as input for the simulation.

5) Networked system - sequential This tests simulates
all three nodes in the network using the sequential
approach. The data is generated and encrypted in
node one, transmitted over node two, and decrypted
and stored in node three.

6) Networked system - parallel The three nodes of
the networked system are simulated using the parallel
simulation design.

The first three tests act as a baseline test for the hypothesis
that the simulation performance of the complete simulation is
comparable to the simulation of the slowest node.

Test 1 simulates each node separately. As the three nodes
are identical the simulation time should be equal as well. Test 2
uses the old connection via Gazebo to test the simulation speed
of the sequential case. Each SystemC simulation is identical.
As they are executed sequentially, the simulation time should
be roughly the sum of the single simulations - in this time three
times the duration of Test 1. Test 3 uses the new parallel design
to connect the sensors. As all simulations are calculated in
parallel, the execution time should be similar to the simulation
of one node of Test 1.

The second three tests use three different nodes. One that
gathers data, one that transmits the data to the last one, and
one that receives and stores the data. The data is continuously
transmitted and sent across the nodes. This way all nodes are
active all the time (except for the first message). Otherwise,
the test would limit the execution to the sequential case.

Test 4 uses precomputed data to test the functionality of
each node individually. Each node is simulated separately.
Test 5 combines the three nodes using the old connection via
Gazebo to test the sequential case. Test 6 uses the new parallel
design to connect the nodes.

The resulting simulation represents the data flow between
the sensor nodes on the environment scale. Furthermore, as
the sensor nodes themselves are simulated using SystemC, the
data processing on each sensor node is being calculated.

IV. IMPLEMENTATION

The most notable change to the design of Pieber et al.
[6] is that a new plugin has been implemented that per-
forms the communication tasks. In their publication, every
sensor plugin communicates with the corresponding SystemC
instance. We have implemented another plugin that performs
the communication tasks for all sensor plugins. A concept
for our implementation can be seen in Figure 4. There, the
sensor plugins send their data to the plugin server. This server
handles the communication with all SystemC instances. When
the SystemC simulations have returned data, the plugin server
forwards the information to the sensor plugins in the next time
step.

The communication between the server and the SystemC
clients is based on the concept described by Pieber et al. [6].
An additional top-level structure is added to the EXtensible
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Figure 4. Concept for transmitting data between the sensor plugins, the
plugin server, and the SystemC simulations.

Markup Language (XML)-formatted data. This structure spec-
ifies the type of message and the according payload. There are
two different types of messages that can be sent between the
server and client:

1) Command: This type specifies a message from the
server that the simulation needs as input data. This
can be a sensor value, incoming messages, or in-
structions to change the simulation status (finish the
simulation, change the simulation step size).

2) Status: The status message can be sent from either
side of the communication. If it is sent from the
server, it can ask for the identification of the SystemC
simulation, request information about the simulation
status, or inform the SystemC simulation about its
own simulation status. A status message from the
client side can contain requested information, or
signal the server that the simulation step is finished.

The complete communication structure between the server
and a client can be seen in Figure 5. The Gazebo simulation
starts the server. The server blocks the simulation until all Sys-
temC clients are connected. After that, the server receives the
commands to send from the sensor plugins. This information is
relayed to the appropriate client. With this message the client
is given the command to start the simulation step. Until all
SystemC simulations have finished their step, the server blocks
the Gazebo simulation. When all clients are ready, the Gazebo
simulation can be resumed. This results in another message to
the SystemC client. If the Gazebo simulation is to be ended,
the server disconnects from the SystemC client. This triggers
the reset of the SystemC simulation. As the simulation system
is built to run in a network, simulation clients other than the
intended ones could connect to the server. To enable the server
to check if the SystemC simulation is required in the current
Gazebo simulation run, an ID is requested from the client.
This ID specifies the type of simulation. Based on this, the
server can decide whether the client should be accepted or
rejected. Accepted clients are then logically connected to the
appropriate sensor plugin.

During the execution of the SystemC tasks, the plugin
server blocks the Gazebo simulation. When all SystemC in-
stances have returned their signal that the simulation step has

Figure 5. Messages between the server and one SystemC client.

TABLE I. Durations of the test simulations

Test Nr. Node Nr. Duration
1 1,2,3 ∼ 15.34 sec
2 1,2,3 48.0487 sec
3 1,2,3 16.7513 sec
4 1 153.7706 sec
4 2 10.6859 sec
4 3 120.8714 sec
5 1,2,3 284.6381 sec
6 1,2,3 156.1416 sec

been finished, the plugin server resumes by distributing the
received information to the sensor plugins.

V. RESULTS

The results of the experiments introduced in Section III are
listed in Table I.

These six experiments show that the final execution time
is slightly larger than the longest component simulation. It
furthermore shows that the simulation time, compared to the
sequential case, can be multiplied with a factor of ∼ 1

N where
N is the number of parallel SystemC simulations where each
simulation uses approximately the same amount of time. For
simulations that differ in their simulation duration, the final
duration is slightly longer than for the slowest simulation.
This system therefore provides an extensible and flexible
basis to add additional SystemC simulations. The Gazebo
server remains independent of any added SystemC simulations
while also the client side keeps individual SystemC models
separated.

As an additional improvement can be seen that the sim-
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ulations need not be calculated on the same computer as the
Gazebo simulation. Normally, the Gazebo host system would
need additional resources to run the Gazebo system and the
SystemC simulation. The server-client structure allows the
SystemC simulations to be spread over a network. Thus, the
amount of possible parallel simulations is not limited to the
resources on one machine.

As a limitation to this system, the general network overhead
should be mentioned. As the commands and data are sent
over a network, additional data is added by the system. This
adds to the data size that is to be sent. Furthermore, the
data needs to be packed and unpacked at either side of
the communication, increasing the latency. This should be
considered, when designing the simulation.

VI. CONCLUSION AND FUTURE WORK

This paper describes a method to connect multiple SystemC
simulations of sensor nodes to a network. These sensor nodes
are placed in a virtual environment, simulated with the Gazebo
simulator, and communicate via this environment with each
other. As the Gazebo simulator processes its components
sequentially, the final simulation is inefficient. To improve
the performance of this simulation, a server-client structure
is proposed and implemented. This connects the server on the
Gazebo side to the SystemC simulations via network sockets.
The server can then unite the individual calls to the SystemC
simulations and start all simulations in parallel. In contrast
to the simulation duration being the sum of all component
simulations, the duration of the simulation using this structure
is only slightly longer than the longest component simulation.

In the current form, the simulation results can only be
evaluated when the simulation is finished. Due to the lengthy
simulations, this is inefficient. Therefore, live signal plotting
can be implemented. Using this, the simulation operator can
spot errors in the simulation early and stop the execution
prematurely. This would then reduce the simulation time for
erroneous runs significantly.
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