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Abstract— In the last years, Low-Power Wide Area Network 

(LPWAN) technologies have increased their presence. Their 

main characteristic is covering large areas with limited 

resources. One of the greatest exponents in LPWAN is the 

entire system composed by Long-Range (LoRa) and 

(LoRaWAN). LoRa offers an easy deployment, a low-power 

consumption, a wide-coverage, and a high performance, 

although it also has several constraints such as a low Data-Rate 

(DR), a duty-cycle restriction (1%), and a limited application 

for real-time services. In this paper, we improve the 

Framework for LoRa (FLoRa) network simulation framework 

using open-source tools and the programming languages C++ 

and Python. The incorporated options allow a better 

adaptation of the simulation to users’ requirements (topology, 

network conditions, or typical LoRa setting parameters, such 

as Spreading Factor (SF), Transmission Power (TP), Coding 

Rate (CR), Bandwidth (BW), or Carrier Frequency (CF), 

among others). As an example, we show the performance of a 

simulated air-quality monitoring system deployed using 

LoRa/LoRaWAN with a real dataset. System performance is 

evaluated in terms of several quality metrics. By using 

simulation tools like the one we present in this work, IoT 

(Internet of Things) networks and services can be tested and 

evaluated in advance, facilitating a better planning of future 

real deployments. 

Keywords- IoT; LPWAN; LoRa; simulation; OMNeT++; 

FLoRa Framework. 

I.  INTRODUCTION 

The Internet of Things (IoT) concept is described as a 
dense, large-scale, open and dynamic ecosystem of social-
technical entities and applications [1]. This recent concept 
has shaken the network up with new devices and systems, 
building a more heterogeneous network, where the 
interconnection between devices and systems to transmit and 
receive data is simpler [2]. These data will be further 
processed to provide information and make decisions. 
Moreover, IoT will allow an exponential increase of 
connected devices to the network, rising to almost 31 
billion by 2020 and more than 75 billion by 2025 [3].. It 
will suppose an enormous economic injection to the 
technology market [3]. IoT is present in many application 
fields, such as Smart-Home, Smart-City, Industry 4.0, Smart-
Grid, etc. [4]. This technology is still in a research and 
development phase, in spite of the forthcoming massive 
deployment in short-medium term [5]. 

IoT features perfectly match with Low-Power Wireless-
Area-Network (LPWAN) technologies, which stand out for 
their resource efficiency, i.e., low-power transmission [6]. 
IoT and LPWAN share several features such as low-cost, 
low-power, high-performance, wide-coverage, low Data-
Rate (DR), and fast-arrangement, where dense-device 
deployments could be done in a determined area connected 
to one or multiple gateways. Over rural areas, LPWAN could 
achieve communication distances around 30 kilometers 
between emitter and receptor [7], which means a great 
enhancement compared to Wireless Local Area Network 
(WLAN) [8] or Wireless Sensor Networks (WSN) [9]. In 
addition, LPWAN technologies consume less energy in 
comparison with cellular networks (2G, 3G, 4G). On the 
other hand, LPWAN is not suitable for all services and 
operations because it only sends light and infrequent frames 
given the limited data rate imposed to fulfill the duty cycle 
restriction which must not exceed 1% of the time over the 
Industrial, Scientific and Medical (IMS) band (EU: 868MHz 
and 433MHz; USA: 915MHz and 433MHz). 
LoRa/LoRaWAN [10], Weightless [11], NWave [12], 
Telensa [13], Random Phase Multiple Acces (RPMA) [14], 
Sigfox [15], and Narrow Band-IoT (NB-IoT) [16] are some 
of the multiple examples of LPWAN. 

One of the LPWAN technologies with a higher 
popularity is LoRa/LoRaWAN due to its performance. In 
this work, we present the improvements done in a simulation 
software to evaluate the performance of LoRa/LoRaWAN 
networks and services. The modifications are done using 
different libraries and frameworks at low-level. The base of 
the simulation tool is the Framework for LoRa (FLoRa) [17] 
and OMNeT++ [18]. Specifically, our contributions are: 

1. FLoRa implements a simplified version of the 
Okumura-Hata model. However, it is not accurate because it 
is an approximation based on linear regression whose 
outcomes do not match the results obtained in the related 
scientific literature. We introduce a more precise 
implementation of the Okumura-Hata wireless propagation 
model. 

2. Automatic assignment of some LoRa parameters for 
static LoRa nodes. We propose a new simple algorithm to 
automatically set Spreading Factor (SF) and Transmission 
Power (TP) for each LoRa node according to the LoRa end- 
nodes location in relation to the LoRa gateway (LoRaGW) 
position. 

3. Introduction of security mechanisms in LoRa. We 
include encryption/decryption and digital signature in the 
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communication using Counter Mode (CTR) and the Cipher-
based Authentication Code (CMAC) mechanisms, 
respectively. Both methods are based on Advanced 
Encryption Standard (AES). 

4. Performance evaluation tasks. Using our new 
implementation, it is possible to change the simulation 
environment and automatically adapt the parameters to this 
simulation. After a sample period (Teval), the simulator 
computes several quality components from numerous quality 
metrics, namely, Quality of Data (QoD), Quality of 
Information (QoI), Quality of user Experience (QoE), and 
Quality-Cost (QC). As an example, we briefly present the 
performance of a simulated air-quality monitoring system 
deployed using LoRa/LoRaWAN with a real dataset. An 
example will be shown under a rural environment, allowing 
an efficient performance evaluation. 

The rest of the paper is organized as follows. In Section 
2, we briefly describe LoRa/LoRaWAN and report an 
overview of the state-of-the-art in computer simulation tools 
for LoRa. Section 3 describes the software used as the basis 
for this work. Section 4 details the improvements that we 
have incorporated and their advantages, with an example of 
the performance evaluation outcomes. The paper ends 
summarizing the most important results of this work. 

II. RELATED WORKS 

A. LoRa/LoRaWAN 

In a typical LoRa/LoRaWAN deployment (see Figure 1), 
there are three main devices: LoRa end-nodes, which acquire 
data from sensors at the application layer (from a simulation 
perspective) and send these data using LoRa physical layer; 
one or more LoRaGW that receive LoRa frames and cast 
them to be forwarded through a wired network; and one or 
more Network Servers, usually in the cloud, which will 
process the received data and are likely in charge of 
decision-making. 

LoRa physical-layer uses Chirp Spread Spectrum (CSS) 
modulation over the Industrial, Scientific and Medical (ISM) 
frequency band which varies according to the region. Europe 
uses 868MHz whilst USA adopts 915MHz, though 433MHz 
is common in both regions. To gain resilience to interference 
and noise, LoRa spreads a narrowband signal over a wider 
channel bandwidth [4] and the sensibility of the receiver is 
19.5 dB below the noise floor. There are multiple parameters 
that characterize LoRa communication between LoRa end-
nodes and LoRaGW: Spreading Factor (SF), Transmission 
Power (TP), Carrier Frequency (CF), Coding Rate (CR), and 
Bandwidth (BW). First, SF varies from 7 to 12 (both 
included). SF define the coverage area, where higher SF 
values achieve higher ranges but with lower Data-Rate (DR). 
Second, TP ranges theoretically from -4dBm to 20dBm. It 
sets the intensity that LoRa end-nodes use to transmit LoRa 
data frames to the LoRaGW. Observe that the higher SF and 
TP, the larger the coverage area. Third, CF is the middle 
frequency in steps of 61Hz within the range according to the 
region. Fourth, CR provides security against interferences, 
where higher values provide higher protection (4/5, 4/6, 4/7 
and 4/8) [19]. BW is the frequency width in the transmission 

band and the wider BW is, the higher DR, though sensibility 
is lower. Lastly, Time on Air (ToA) is the time to transmit a 
frame from a LoRa end-node to the LoRaGW and depends 
on SF and BW, being opposite to the DR parameter. The 
technology has three degrees of diversity (time, frequency, 
and SF) [4]. The communication between LoRa end-nodes 
and LoRaGW can be unidirectional or bidirectional. Unicast, 
multicast, and broadcast are the three types of 
communication addressing available in LoRa networks. The 
duty-cycle is limited and should be lower than 1% of the 
time, having a high repercussion on the maximum transfer-
rate. Depending on the application, this constraint makes this 
technology inappropriate for many services that require 
constant data transmission. Some authors propose the 
implementation of algorithms such as Adaptive Data-Rate 
(ADR) [20], Distributed Coordination Functions (DCF) 
particularly Carrier Sense Multiple Access (CSMA) [21], 
and Channel Activity Detection (CAD) [22][23], with the 
aim of managing link parameters and getting adequate 
network processes, providing medium access control 
mechanisms as CSMA and detecting the LoRa preamble on 
the channel with maximum power efficiency, respectively. 

On the other hand, LoRaWAN [10] specifies the 
architecture, layers, and protocols operating over LoRa. 
Mesh or star are the two possible network architectures. 
There are three LoRa end-node classes (A, B and C), all 
classes observing the duty-cycle. Class A may open a 
collecting window to receive acknowledgments or new 
messages after a specific time lapse. Class B adds scheduled 
received windows to class A and class C keeps the receive 
window open at any time. The Network Server deletes 
duplicate packets if multiples gateways are deployed and 
redirect the packet to the corresponding Network Server. If 
the application servers exist, then the Network Server will 
send the information to them. 

B. Simulation tools for LoRa/LoRaWAN 

Computer simulators are complete tools to replicate real 
network operation without the need of acquiring hardware, 
but programming skills are required to define simulation 
conditions with a blow of code. Simulators are also useful to 
test large networks with hundreds or thousands of devices on 
the network that are too costly in time (by placing and 
programing) and expenses [24]. For instance, the study done 
in [25] models the LoRa network efficiency and 
demonstrates the exponential increase of packet drops with 
the raising of devices due to interferences in a small area and 
LoRaWAN access methods. Some well-known network 
simulators are OMNeT++, NS3 [26], NetSim [27], SimPy 
[28], and OPNET [29], among others. Moreover, multiple 
frameworks and libraries are available to be imported such as 
FLoRa Framework. FLoRa allows recreating a LoRa 
network scenario under desirable conditions using the 
OMNeT++ simulator and the INET framework. More details 
about FLoRa are given in the next section. 

Cooja framework is another simulation tool that runs 
programs to simulate and evaluate the performance of 
different networks, such as WSN or IoT-based projects such  
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Figure 1.  LoRa network and backbone network. 

as LoRa using Cooja [24]; it is not a specific framework for 
LoRa networks though. One of the strengths of Cooja is its 
simulations taking into account the devices’ energy 
consumption. Cooja is open-source and uses C programming 
language. It includes low-power protocols to define the 
simulation settings and uses SimPy to carry out the 
simulation enabling a graphical interface. 

On the other hand, LoRaSim is a discrete event simulator 
implemented in a 2D scenario. It also uses SimPy to place 
LoRa end-nodes and LoRa sinks. This framework sets the 
LoRa parameters described previously and packets payload. 
LoRaSim uses Semtech SX1301 as the LoRa reference 
module compatible with Semtech SX1272/SX1276 (used in 
the FLoRa Framework), which is able to receive 8 
concurrent orthogonal signals. Additionally, LoRaSim 
includes two evaluation metrics: Data Extraction Rate 
(DER), the ratio of received to transmitted messages over a 
period of time and Network Energy Consumption (NEC), as 
the energy spent by the LoRa end-node to successfully 
achieve the LoRa sink. NEC depends mainly on the 
transceiver state and time per state, and it should be 
minimum to extend as much as possible the batteries life of 
the devices. LoRaSim is open-source and requires additional 
libraries, e.g., Matplotlib, SimPy, and Numpy, but it has not 
a graphical interface. Finally, it includes several examples 
and low-power protocols implementations. Table I 
summarizes the most important characteristics of the 
simulation tools for LoRa environments. 

III. BASELINE SOFTWARE 

We use open-source tools available online to implement 
the simulator. These resources allow the user to develop a 
complete LoRa network simulation environment adaptive to 
any required scenario, getting an exhaustive performance 
evaluation of the designed topology. The baseline tools used 
in this work are: OMNeT++, INET Framework, FLoRa 
Framework, and Crypto++ [30]. 

A. OMNeT++ 

OMNeT++ IDE uses Eclipse [31] as the main developer 
platform and enhances it with new functions such as new 
editors, views, wizards, and so on. It allows users to create 

new and/or re-configure existing models using Network 
Description (NED) language, and configuration files (.ini). 
Then, the simulator evaluates the performance taking into 
account the obtained results. All of this is using C++ 
programming language, git integration, and other open-
source tools and components. NED files define and edit the 
model graphically or by text. Both options are able to create 
compound modules, channels, and other component classes, 
as well as other object features. On the other hand, the ini file 
provides the parameters to adapt and configure models to the 
simulation, and as the NED files, is edited graphically or by 
text. An ini file recognizes all NED components from the 
top-level module to the last inherited module, being possible 
to define new parameters different to the default ones in all 
existing modules. Moreover, ini files enable users to define 
different scenarios according to the set parameters or random 
number seed. 

More than one process can be run at the same time, so the 
building process is faster. While the simulation process runs 
in a new window, the user can continue developing the 
program due to this parallel operation. Once the simulator 
has finished, the results are preserved into a vector (as a 
collection of all intermediate results) and scalar files. The 
default Integrated Development Environment (IDE) or other 
external tools (e.g. Python) are available to the analysis of 
the results. 

B. INET Framework 

New frameworks can be added to OMNeT++ to provide 
new capabilities to the simulator. Particularly, INET includes 
agents, protocols, and many other models to create, redefine, 
or certify new protocols or scenarios. The supplied models in 
INET are for physical, link, network, transport, and 
application communication layers for different types of 
communication networks such as wired, wireless, ad-hoc, or 
WSN. INET bases its operation on message exchanges 
between modules. 

TABLE I.  COMPARISON OF LORA SIMULATION TOOLS 

Features 
Simulation Tools 

FLoRa 

Framework 

Cooja 

Framework 
LoRaSim 

Base Simulator OMNeT++ 
Contiki OS 
RIOT OS 

Python 

Programming 

Language 
C++ C Python 

Additional 

Frameworks 
INET SimPy 

Matplotlib 

SimPy 
Numpy 

Graphical 

Interface 
Yes Yes No 

Software 
Licence 

Open-source Open-source Open-source 

Power 

Awareness 
Yes Yes Yes 

Low-Power 

protocols 
Yes Yes Yes 

Examples Yes Yes Yes 

Last Version 0.8 3.0 0.2.1 
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C. FLoRa Framework 

As INET, FLoRa is a specific framework to test 
LoRa/LoRaWAN networks. It enables physical and link 
layer evaluation, defining one (or more) gateways in the 
network where end-nodes will send data frames to, 
supporting bi-directional communication, defining the path 
for messages from source to destination (LoRa end-nodes to 
Network Server), and estimating the energy consumed by 
LoRa end-devices. FLoRa sets the main LoRa/LoRaWAN 
parameters, namely, SF, CF, BW, CR, and TP, which 
influence the communication coverage and the probability of 
data frames collision. As LoRa transmission uses the 
wireless interface, a frame is received correctly if the 
received power (which depends mainly on SF and TP) is 
higher than the sensitivity of the LoRaGW. The framework 
also estimates the energy consumption of each LoRa node 
according to both the time spent by the LoRa radio module 
in a specific state (transmit, receive, sleep, and off) and the 
TP value. Semtech SX1272/73 datasheet provides the 
consumptions for each state with a supply voltage of 3.3V. 

Lastly, a typical deployment is not usually only 
composed of LoRa end-nodes and LoRaGW. As an example, 
we usually include in our simulations a backbone network 
behind the LoRaGW to reach a Network Server (Figure 1). 
In our case, once the LoRaGW receives a LoRa frame, it 
encapsulates the frame into an EthernetIIFrame and forwards 
it to the Network Server using the TCP/IP protocol stack, 
particularly, User Datagram Protocol (UDP) messages. This 
part is mainly simulated using the INET modules explained 
previously. Network Server will discard duplicate packets if 
the same packet is received by multiple LoRaGWs. 

D. Crypto++ 

Crypto++ is an open-source library based on C++ 
programming language that includes algorithms for 
ciphering, message authentication codes, hash generators, 
public-key cryptosystems, etc. Crypto++ implements 
multiples methods and schemes such as Diffie-Hellman, 
Advanced Encryption Standard (AES), RSA, Elliptic Curve 
Cryptography (ECC), and Digital Signature Algorithm 
(DSA), among others [30]. 

IV. NOVEL INCORPORATED TOOLS 

This section describes the improvements and 
modifications that we have incorporated into the simulation 
software, with the aim of having available an easy to use 
performance evaluation tool for IoT services and networks 
based on LoRa/LoRaWAN. 

A. Wireless Propagation Model 

The FLoRa framework includes an Okumura-Hata 
implementation. From the FLoRa documentation, it is known 
that this implemented wireless propagation model is based 
on an approximation, using a linear regression with three 
factors, namely, K1, K2, and the distance between a LoRa 
end-node and the LoRaGW. The first two factors, K1 and 
K2, take the default values of 127.5 and 35.2, respectively. 
However, this method is not precise to estimate the Free-
Space Path Loss (FSPL), since it reaches a maximum 

distance of around 6 km (as observed in extensive 
simulations). It can be verified in the related literature that 
this distance is too small for this technology [7][32]. 
Additionally, with this implementation of the Okumura-Hata 
model, it is not possible to choose one of the three available 
environments that the original Okumura-Hata provides, 
namely, rural, sub-urban or urban. 

Consequently, we introduce a new Okumura-Hata model 
implementation in FLoRa to accurately estimate the FSPL in 
the simulator, taking into account those three possible 
environments (rural, sub-urban, and urban). FSPL is lower in 
rural scenarios and higher in urban environments, because in 
the former there might not be buildings that interfere with the 
electromagnetic wave propagation, contrary to the urban 
environment. The main objective of using this type of 
propagation models is to represent properly the effect of the 
physical layer in the simulations, providing an environment 
as real as possible and discarding the use of less accurate 
regression methods. This new model implementation is 
defined by (1) [33] and uses more rigorous factors such as 
frequency (f), the distance between a LoRa end-node and the 
LoRaGW (d), LoRa end-node height (hm), and LoRaGW 
height (hb) [33]. 

a(hm) = 3.2(log10(11.75·hm)2 - 4.97 

Lurban = 69.55 +26.16log10(f) – 13.82log10(hb) – a(hm) 
+ (44.9 -6.55log10(hb))·log10(dm) 

Lsub-urban = Lurban – 2(log10(f/28))2 -5.4 

Lrural = Lurban -4.78(log10(f))2 + 18.33log10(f) – 40.94 

 

(1) 

B. Initial settings parameters in LoRa 

Additionally, we use Python: a general-purpose 
programming language to generate automatically an ini file 
that sets the configuration parameters according to the 
desired conditions, for instance: the environment (rural, 
suburban, urban), number of LoRa end-nodes, or 
performance evaluation period (Teval), among others. Every 
Teval, the simulation tool will show the calculated 
performance quality metrics. 

In the same script, we define the automatic selection of 
SF and TP values for each LoRa end-node. These values will 
depend on two factors: the distance between the LoRa end-
node and the LoRaGW and the distance between the farthest 
LoRa end-node and the LoRaGW. Note that we are working 
with fixed LoRa nodes and future improvements will be 
added for mobile nodes. Given that to set SF we have 6 
possible options [SF7, SF12], we assume that there are 6 
possible distance intervals from 0 until the maximum 
(farthest) distance, i.e., the LoRa end node that is farther 
from the LoRaGW. Depending on what interval fits the 
distance from LoRa end-node i to the LoRaGW, the 
algorithm assigns the corresponding SF, knowing that lower 
SF values are used for LoRa end-nodes closer to the 
LoRaGW, and vice versa. Likewise, we follow the same 
method to select the appropriate value for the TP, but using 
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12 possible intervals for 12 possible values [2dB,14dB], 
assigning lower values to LoRa end-nodes nearer to the 
LoRaGW. 

According to the European case, SF and BW 
combination results in 7 different DR [DR0, DR6], each one 
with a specified Maximum Payload Size (M). With all these 
parameters it is possible to compute the maximum Time-on-
Air (ToA) for each DR class impacting in the effective 
throughput due to data-cycle (1%). We calculate the ToA 
and the minimum time between packets using a payload of 
12 bytes and a duty-cycle of 1% (see Table II). 

After the simulation, the Python script processes the 
results and represents them graphically for a better user 
comprehension and to facilitate the computation with other 
environments.  

C. Security 

We have modified the simulation tool so that transmitters 
and receivers use the AES Counter Mode (CTR) method to 
encrypt and decrypt messages. CTR is a symmetric 
encryption method, so it employs a shared private key to 
encrypt/decrypt messages, whose content will be hidden 
while flowing through the network. That is, the encrypted 
message is sent through the wireless channel and it can be 
only decrypted by those recipients sharing the same private 
key.  

Taking the same shared key (or a different one but also 
shared), the message is signed using the AES Cipher-based 
Message Authentication Code (CMAC) method. This digital 
signature guarantees authentication (the origin of the 
message is verified) and integrity (the data has not been 
modified or altered along the communication path). These 
processes (cipher/decipher and sign) are implemented with 
Crypto++ libraries imported into OMNeT++. In both 
algorithms, the key length is 128 bits. 

D. LoRa network 

By default, SimpleLoRaApp is the application module in 
a LoRa end-node in FLoRa (see Figure 2). This module 
generates a random number to schedule the messages 
transmission (e.g., following an exponential distribution) and 
sends the message to the LoRa physical layer, which is 
responsible for transmitting the message in plain text. Then, 
the LoRa end-node sends a RadioFrame to LoRaGW that 
contains a LoRaAppMessage encapsulated in it. 

To compute the number of lost packets and measure the 
Packet Delivery Rate (PDR) in the LoRa/LoRaWAN, we 
modify the radio interface of LoRaGW as follows. When 
LoRaGW receives a new packet, it checks two values: its 
sequence number and its source ID (LoRa end-node ID). If 
for a source ID i the received and expected sequence number 
match, the number of lost packets is 0. In contrast, if for a 
source ID i the sequence number received is higher than 
expected, the difference should be the number of lost 
packets. Since we compute new intermediate metrics in 
different modules and OMNeT operations is based on 
message exchange, LoRaAppMessage and LoRaMacFrame 
modify their payload to carry out the information to the 
Network Server. 

Considering the simplicity of the LoRa end-node 
application in FLoRa, we redefine it with three submodules 
with specific functionalities, namely, Read, CipherData, and 
SimpleLoRaApp, as depicted in Figure 2. The Read module 
allows each LoRa end-node to read from its own dataset 
(e.g., from a real one as it will be shown later). Once LoRa 
end-node acquires the data, it sends a ReadDataPacket 
message to the CipherData module. This module receives 
read data and initializes the symmetric encryption process, 
sending the data to the next module (SimpleLoRaApp) 
encrypted and signed as explained before. The last module is 
SimpleLoRaApp, which passes the message to the LoRa 
physical layer and sends it via the wireless channel. It is 
important to note that before the physical layer receives the 
frame, we have also added two throughput meters. The goal 
is to know the generated and received traffic by each LoRa 
end-node (bits/s and packets/s). 

E. Backbone Network 

When the LoRaGW receives a new message, it 
encapsulates the new message into a EthernetIIFrame and 
forwards it to the Network Server using UDP. This transport 
protocol implements message delivery through the network 
with a simple connectionless communication model, without 
confirmation or flow control. In its original form, the 
Network Server is defined as StandardHost and when 
messages arrive to the application module (called 
udpApp[0]) its only purpose is to count the number of 
received messages, discarding the message content. The 
Network Server does not check if the message is duplicated 
or not, which is insufficient for our needs (Figure 2). 

Therefore, we have modified the Network Server 
splitting it into three independent modules, namely, 
CommunicationParameters, Decrypt, and Processing. First, 
CommunicationParameters computes metrics to quantify 
quality components at different abstraction levels. 
 

TABLE II.  LORA PARAMETERS ACCORDING TO SF Y BW 

DR SF 
BW 

(kHz) 

M 

(bits) 

Throughput 

(bps) 

ToA 

(ms) 

Min time between 

Packets (s) 

0 12 125 59 250 51 148.3 

1 11 125 59 440 51 82.3 

2 10 125 59 980 51 41.2 

3 9 125 123 1760 115 20.6 

4 8 125 250 3125 242 11.3 

5 7 125 250 5470 242 6.2 

6 7 250 250 11000 242 3.1 
 

 

Figure 2.  LoRa and backbone network protocol stack in our improved 

simulation tool. 
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Particularly, we measure metrics such as precision, accuracy, 
timeliness, delay, jitter, throughput, PDR, energy 
consumption, etc., from which we derive QoD, QoI, QoE, 
and QC. Using these for quality components, the 
performance of a service based on IoT and LoRa/LoRaWAN 
can be easily evaluated [34]. The received message and these 
metrics are sent to the Decrypt module that obtains the plain 
text from the ciphered text using the shared key and also 
checks the message signature. In case of a wrong signature, 
the message is discarded. The last module is Processing, 
which carries out two functions. First, storing the metrics for 
each received packet in a Teval and second, when timer (Teval) 
is over, the simulator processes the metrics and computes the 
quality components using the received metrics during that 
period. 

F. Use case example 

Our example is based on a real air-quality monitoring 
system, whose dataset measurements will be used in the 
simulations. The dataset [35] is part of a group of air-quality 
stations that take multiple measures (Humidity, Temperature, 
Pressure, CO, NO, etc.), located in a Spanish region. The 
dataset is preprocessed, splitting it into different files, one 
per LoRa end-node. 

The simulated scenario is composed  53 LoRa end nodes, 
one LoRaGW, and one Network Server. The location of 
LoRa end-nodes is set according to the chosen environment 
(having a higher area of rural environment) and the 
LoRaGW is located in the center of all LoRa end-nodes. 
From all the obtained metrics, quality components are 
derived and normalized for a better comparison (Figure 3), 
so that the closer to 1 the better the performance. The method 
to obtain QoD, QoI, QoE, and QC is described in [34][36] 
and it is out of the scope of this paper. 

 

 

Figure 3.  Performance of the LoRa-based air-quality monitoring system 

in terms of several quality components. 

 
 

V. CONCLUSIONS 

The influence that IoT-based services may have on social 
and industrial scenarios requires validating the proposed 
schemes before a real deployment is done. We presented in 
this paper a LoRa network simulator environment to study 
the performance of new applications and services under 
specific conditions, using as a baseline different libraries and 
frameworks available. Particularly, we used FLoRa and 
OMNeT, and introduced new features and several 
modifications. Among others, a new Okumura-Hata model 
has been implemented improving the accuracy of the 
simulation tool, and new modules to read, cipher, and send 
data from the emitter to the receiver have been incorporated. 
As a future work, we plan to introduce new methods to 
improve performance evaluation and monitoring based on 
advanced quality metrics. 
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