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Abstract—In this paper, an experimental-theoretical method
is proposed to accurately determine the thermal diffusivity,
characteristic time constant and layer thicknesses of a bi-
material cantilever using a transient, non-destructive and non-
contact measurement. The technique is based on the well-
known optical beam deflection method. A time dependent,
sinusoidal heat load is locally applied to induce a time varying
thermal profile over the length of the beam, resulting in
a mismatch-strain between the two layers that bends the
cantilever. A measurement of the phase difference between the
thermo-mechanical response and the input signal can be used
to extract the thermal diffusivity, characteristic time constant
and the location of the heat source. For this reason a closed-
form analytical solution for the thermo-mechanical response is
presented. The dynamic response of the system is characterized
using the transfer function in the Laplace domain. The analyt-
ical solution includes a Gaussian distributed, time-dependent
heat source of known width at a location along the beam. A
constant convective heat transfer coefficient can be included
to allow measurement in ambient conditions. A combination
of a measurement of the thermal diffusivity and the effective
conductance are used to calculate the mutual layer thicknesses
of the two layers.

Keywords-bilayer cantilevers; characterization; diffusivity.

I. INTRODUCTION

Bi-material cantilevers are widely used in nano-
instrumentation as actuators and sensors. The material prop-
erties and geometry of these cantilevers vary largely between
batches and are not well controlled. In this paper, a method
is proposed to accurately determine the thermal diffusivity,
effective conductance and layer thicknesses by means of
a transient, non-destructive, non-contact measurement. This
allows quick characterization of bi-material cantilevers, e.g.,
after production or for acceptance testing.

II. THEORY

The thermal diffusivity is a measure for the velocity at
which heat spreads throughout a medium, e.g., a micro-
cantilever. It cannot be measured directly and needs to be
determined through a proxy. In this derivation, it is assumed
that a cantilever beam is concerned, although the derivation
could equally well be performed for other boundary condi-
tions. The cantilever is assumed to be heated locally with a
Gaussian power distribution (e.g. by using a laser). This is
typical for the optical beam deflection method, popular in

Scanning Probe Microscopy setups. The heating results in
a temperature distribution over the length of the beam. It is
assumed, that the temperature distribution over the thickness
of the cantilever is negligible. The temperature distribution
over the length of the cantilever causes a mismatch strain
on the interface between the two layers of the cantilever
due to the unequal expansion coefficients of the materials.
The mismatch strain results in a bending of the cantilever.
If the input signal is varied sinusoidally, the cantilever will
oscillate at the same frequency. The rotation at a specific
location, however, will lag behind with respect to the input
signal. This phase shift is caused by the thermal diffusivity
and is dependent on spot position and input frequency.
The relation between these variables will be derived in the
following sections.

A. Temperature distribution

The temperature distribution along the length of the beam
is dominated by the heat equation. This heat equation can
be formulated in its most general form as

∂T (x, t)

∂t
= D

∂2T (x, t)

∂x2
−B (T (x, t)− Tenv) + f (x, t)

(1)
where T (x, t) is the temperature along the beam in Kelvin,
x is the running coordinate along the length (x = 0 at the
base, x = L at the tip), D is the thermal diffusivity in
m2 s−1, B is the characteristic time constant for convective
heat transfer in s−1 and f (x, t) is a heat source function. The
environment is defined by means of two non-zero boundary
conditions(e.g. a Dirichlet boundary condition at the base
and a Neumann boundary conditions at the tip) including
a non-zero initial condition. To simplify the solution of (1)
a change of variables is used. When it is assumed that the
base temperature is constant and equal to the environmental
temperature Tenv , one can define

u (x, t) = T (x, t)− Tenv (2)

With this change in variables both boundary conditions and
the initial condition can be set to zero when required and
the equation reduces to

ut = Duxx −Bu+ f (x, t) (3)
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This is a realistic assumption for most microcantilevers,
because these are often mounted on a base that is far greater
in dimensions and heat capacity. The transformed equation
has to meet the following boundary and initial conditions:

u (0, t) = ux (L, t) = u (x, 0) = 0 (4)

It is assumed, that the source function can be described with

f (x, t) = a (t) exp

(
− (x− b)2

2c2

)
(5)

where a is a term in W m−1 that determines the amplitude
of the distribution, b is the coordinate of the center position
of the spot and c is a constant that determines the width of
the spot. The constant c is related to the Full-Width Half
Maximum of the beam as follows from (6)

c =
FWHM

2
√

2 ln 2
(6)

Using a Gaussian distribution gives a good representation
of the physical laser spot. The problem can be solved using
the Method of Laplace. Taking the Laplace transform of (3)
results in the following ODE

∂2ũ

∂x2
− s+B

D
ũ = − f̃

D
(7)

where ũ and f̃ are the Laplace transformed function of
u (x, t) and source function f (x, t) respectively. The am-
plitude of the signal can be a function of time, while the
position of the source is assumed constant. This implies that
the source function can be written as

f̃ = F̃ (s) · exp

(
− (x− b)2

2c2

)
(8)

The homogeneous solution for the ODE of (7) can be
verified to be

ũc = c1 exp

(√
s+B

D

)
+ c2 exp

(
−
√
s+B

D

)
= c1ũ1 + c2ũ2 (9)

The particular solution can be found using the Method of
Variation of Parameters in which the solution is expressed
as a function of the fundamental solutions ũ1 and ũ2.

ũp = −ũ1
∫

ũ2g̃

W (ũ1, ũ2)
dx+ ũ2

∫
ũ1g̃

W (ũ1, ũ2)
dx (10)

where W is the Wronskian of the fundamental solutions

W (ũ1, ũ2) = ũ1ũ
′
2 − ũ2ũ′1 (11)

and g (x) = −f̃/D. The general solution then becomes

ũ = c1ũ1 + c2ũ2 + ũp (12)

where the constants can be solved for using the conditions
of (4). Due to the complexity and length of the intermedi-
ate results, these equations have been solved using Maple
algebraic software.

B. Rotation of the cantilever

The curvature of the beam can be given as a function of
the geometry and the mismatch strain by

κ =
∂2z

∂x2
= βεm (13)

with εm the mismatch strain, κ the beam curvature in m and
z the out of plane displacement of the cantilever in m. The
mismatch strain itself can be easily calculated as

εm = ∆α (T (x)− TSFT ) (14)

where ∆α is the difference in thermal expansion coefficient
of the used materials, T (x) is the temperature along the
beam and TSFT is the Stress-Free Temperature. The constant
β is a function of the geometry and material properties of the
individial layers. It is defined using the following equations
[1]:

β =
6hm

t2

(
1 + h

1 + 2hm (2 + 3h+ 2h2) + h4m2

)
(15)

In this relation the following auxiliary parameters are de-
fined:

h =
t1
t2

(16)

m =
M1

M2
(17)

Mi =
Ei

1− νi
(18)

where E is the Young’s modulus of the material, t is the
layer thickness, ν the Poisson ratio and the subscript i refers
to the respective layer (1, top; 2, bottom). Integration with
respect to x results in an expression for the rotation:

θ̃ = β∆α

∫
ũdx+ β∆α (Tenv − TSFT )x+ θ0 (19)

The second term on the right hand side of this equation
gives the static cantilever rotation due to the environmental
conditions. In measurements this can easily be aligned for
such that this term effectively becomes zero. In this case
only the dynamic effects that influence the period and phase
are considered, which reduces this equation to:

θ̃dyn =

∫
ũdx+ θ0,dyn (20)

The term θ0,dyn can be solved for using the boundary
condition that the rotation at the base of the cantilever always
has to be zero. The transfer function for the rotation of the
cantilever due to a local heat input is given by (21).
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G (s) =

√
2πc

8 (s+B) cosh (k3)
{

− 2 exp (k1) [erf (m1) + erf (m2)]

+ 2 exp (k2) [erf (m4)− erf (m3)]

+ 4 cosh (k3) erf (m5)

+ exp (k4) [erf (m3)− erf (m4)]

+ exp (k5) [erf (m2) + erf (m4)]

+ exp (k6) [erf (m3)− erf (m1)]

+ exp (k7) [erf (m1) + erf (m2)]} (21)

The auxiliary terms in this equation are omitted here for
brevity and can be found in the Appendix. The phase lag of

Figure 1. Phase shift as function of position. L = 500 µm, D = 7 ·
10−5 m2 s−1, Full-Width Half Minimum of spot = 30 µm, spot location
indicated in legend in µm.

the response with respect to the input is easily found from
the transfer function by substituting s = jω. The argument
of the complex output gives the phase angle. The phase
lag for the rotation of the cantilever for a known location
is depicted in Figure 1. Similarly the delay as a function
of thermal diffusivity is plotted in Figure 2. Dependent on
position and thermal diffusivity clearly distinct phase delays
are found. With a proper initial guess of the parameters, for
example based on manufacturer specifications, this allows
for recovery of the thermal diffusivity by fitting the theoret-
ical model to the measurement data.

C. Calculation of layer thicknesses

With traditional techniques, e.g., optical microscopy or
Scanning Electron Microscopy (SEM), the thickness of a
micro-cantilever cannot be measured with sufficient accu-
racy. The accuracy of these measurements is at approxi-
mately 1 µm in the same order of magnitude of the actual
thickness. If the material properties are known (e.g. from

Figure 2. Phase shift as function of thermal diffusivity. L = 500 µm, Full-
Width Half Minimum of spot = 30 µm, b = 450 µm. Thermal diffusivity
is indicated in legend in m2 s−1.

measurement), equations can be derived with only the layer
thicknesses as unknowns. One set of equations is given
by the expressions for the thermal diffusivity D and the
effective conductance G of a one-dimensional cantilever.
The one dimensional heat equation can be written as

kAuxx = cpρAut (22)

in which k is the thermal conductance in W m−1 K−1, A
is the cross-sectional area in m2 and cp is the specific heat
capacity under constant pressure in J kg−1 K−1. Assuming
heat transfer mainly occurs in the longitudinal direction and
is negligible in the other directions, the thermal conductance
can be written in terms of the two layers as

kA = (k1t1 + k2t2)w (23)

where w represents the width of the beam. The total heat
capacity can then also be rewritten as a function of the two
layers by

cpρA = (cp,1ρ1t1 + cp,2ρ2t2)w (24)

With the thermal diffusivity D defined by

D =
k

ρcp
(25)

this results in the final expression for the thermal diffusivity

D =
k1t1 + k2t2

cp,1ρ1t1 + cp,2ρ2t2
(26)

The effective conductance can also be expressed as a
function of the two layer thicknesses using

G = (k1t1 + k2t2)
w

L
(27)

Equations (26) and (27) form the required set that allows
solving for the thicknesses, given that the thermal properties
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of the layers are known. Solving the given system for the
two mutual thicknesses results in the following expressions:

t2 =
GL

(
1
D −

ρ1cp,1
k1

)
w
(
ρ2cp,2 − ρ1cp,1k2

k1

) (28)

t1 =
GL

wk1
− k2
k1
t2 (29)

Assuming that the thermal diffusivity and effective
conductance have been measured exactly and the material
properties are known, the quality of the estimation of
thicknesses via this method can be assessed. Here,
cantilevers with a mono-crystalline silicon substrate and a
gold reflective coating have been used. For these materials
the material properties are known from literature within an
accuracy of a few percent [2][3][4][5][6][7][8].

For this method, both the thermal diffusivity and the effec-
tive conductance need to be known. The thermal diffusivity
is determined as explained earlier. The effective conductance
can be determined as described below.
For a cantilever with the temperature distribution known
when power is applied at the tip, the effective conductance
can be expressed as

G =
P

∆T
(30)

where G is the effective conductance in W K−1, P is the
applied power in W and ∆T is the temperature difference
between tip and base in K. Generally it is not possible to
measure the tip temperature in an AFM setup and other
means need to be used to find the effective conductance.
One such method is described by Sheng, Narayanaswamy,
Goh, and Chen[9], which use the changes in beam rotation
caused by changes in the applied power and changes in
the base temperature. In that scenario however, it is still
assumed that the heat is applied at the tip of the cantilever.
A similar analysis has been done for the general case in
which the beam is heated locally at an arbitrary position
along its length.

In the following derivation, it is assumed that the beam
is locally heated by a laser with a Gaussian distributed spot
as introduced earlier. Only the steady state solution will be
considered. If vacuum conditions are assumed, the problem
can be stated as

Duxx +
D

k1t1+k2t2
t1+t2

P (x, t)

(t1 + t2)w
= ut (31)

with P (x, t) in W m−1. If one uses P0 to represent the total
power impinging on the cantilever, the term a can be derived
from the forcing function using the following relation:

P0 =

∫ L

0

a exp

(
− (x− b)2

2c2

)
dx (32)

Solving this equation for the term a results in

a = P0

(
1/2c
√

2π

(
erf

(
b

c

√
2

2

)
+ erf

(
L-b

c

√
2

2

)))−1
(33)

Because only steady state is considered the partial derivative
with respect to time t equals zero. The problem then
becomes a simple ODE that after repeated integration gives
the temperature distribution over the beam. The ODE is
reduced to

uxx = −a
k̄

exp

(
− (x− b)2

2c2

)
(34)

with k̄ defined as

k̄ = (k1t1 + k2t2)w (35)

The two integration constants can be solved for by con-
sidering the boundary conditions of (4). The temperature
distribution with respect to the base temperature is given by

u (x) =

− P0

(
√

2c

{
exp

(
− (b− x)

2

2c2

)
− exp

(
− b2

2c2

)}

+
√
π

{
(b− x) erf

(√
2

2

b-x

c

)
−x erf

(√
2

2

L-b

c

)

−b erf

(√
2

2

b

c

)})
/{

k̄
√
π

(
erf

(√
2

2

b

c

)
+ erf

(√
2

2

L-b

c

))}
(36)

By defining H ≡ β∆α and using the earlier developed
relations for the rotation of the cantilever, one can deduce
that

θr (x) = H

∫
u (x) dx+H (Tenv − TSFT )x+ c3 (37)

where the integration constant can be solved for by consid-
ering that the rotation at the base shall be zero and constant.
Substituting x = b, for the rotation is measured at the
location of actuation, results in the total mechanical response
to be equal to (38).
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θr (x = b) =

H

(
P0b

2
√
π

{
erf

(√
2

2

L-b

c

)
+ erf

(√
2

2

b

c

)}

2b
√
πk̄ (Tenv − TSFT )

{
erf

(√
2

2

b

c

)
− erf

(√
2

2

L-b

c

)}

−P0

√
πc2 erf

(√
2

2

b

c

)
−P0bc

√
2 exp

(
− b2

2c2

))
/{

2k̄
√
π

(
erf

(√
2

2

b

c

)
+ erf

(√
2

2

L-b

c

))}
(38)

By studying the change in beam rotation caused by a
change in incident power and a change in base temperature
two expressions can be derived to solve for the unknown
constants H and k̄. Expressions for these changes can be
found using partial differentiation of (38) with respect to P0

and Tenv respectively. This results in the following set of
relations.

∂θr (x = b)

∂P0
=

H

(
b2
√
π

{
erf

(√
2

2

L-b

c

)
+ erf

(√
2

2

b

c

)}

+
(
b2 − c2

)√
π erf

(√
2

2

b

c

)
+bc
√

2 exp

(
−b

2

c2

))
/{

2k̄
√
π

(
erf

(√
2

2

b

c

)
+ erf

(√
2

2

L-b

c

))}
(39)

∂θr (x = b)

∂Tenv
= Hb (40)

The position of the spot can be found in multiple ways and
the thermal diffusivity can be derived from experiments as
explained earlier. Combined with the found value for k̄ one
now has two functions of t1 and t2 that can be solved for:
(26) and (35).

III. EXPERIMENTS

The developed relations have been compared to experi-
mentation. In this section the used setup and obtained results
will be discussed.

A. Experimental setup

The setup implements the optical lever technique to actu-
ate and measure the rotation of the beam. A sketch of the
setup is given in Figure 3. A 633 nm (red) fiber laser is used.
The beam passes through a collimator to obtain a collimated
beam of 1.5 mm wide. The light then passes through a λ/2
waveplate to shift the polarization. In the polarizing beam
splitter the light is partially reflected to the beam dump,

the remaining light passes straight through. The amount
that passes through is regulated using the waveplates. The
light continues by passes through another λ/2 waveplate
to change the polarization again. In the second polarizing
beam splitter the light is reflected to a power meter and
the rest passes on through a λ/4 waveplate that changes the
polarization from linear to circular. The light is then focused
on the cantilever using a f = 20 mm, 10× microscope
objective. Part of the power of the light is absorbed, changing
the rotation of the beam. The light is reflected under a slight
angle back into the microscope objective. On the way back,
the light passes through the λ/4 waveplate again. Because
the light has been reflected in the meantime, the polarization
is now shifted by 90◦. The light is reflected by the polarizing
beam splitter onto the OPS detector. The remaining light
passes straight through and eventually ends up at the detector
of the camera. The Maypa OPS is a linear Position Sensitive

Figure 3. Schematic drawing of tabletop AFM setup[10].

Detector (PSD) that registers the position of the spot in a
plane perpendicular to the incoming beam and its intensity.
The OPS is mounted on an XY-stage that allows alignment
of the sensor. The OPS is aligned such that at a given
reference power level, the resulting rotation of the cantilever
is set as datum. The camera present in the setup is used for
optical alignment of the laser spot on the cantilever. The
cantilever is mounted on an XYZ translational stage for
this purpose. It can be used to move the laser spot along
the cantilever and to get it into focus of the laser beam.
More details regarding the tabletop AFM setup are given by
Sadeghian et al. [10].
For the performed experiments the Nanoworld ARROW-
TL8Au cantilevers have been used. These have a rectangular
plan form with a triangular shaped end. The cross-section
is rectangular and consists of a approximately 1 µm thick
Silicon substrate and an approximately 30 nm Gold reflective
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coating. The absence of a tip and the relatively high beam
ratio of 5 make it a proper candidate for the validation
of the theory. From discussions with the manufacturer it
became clear that between the substrate and the reflective
coating a third layer is added to prevent diffusion of the gold
atoms into the silicon substrate. This intermediate layer has
a thickness of approximately 4 nm and can be composed
of either titanium or chromium. The actual used material
is unknown. In the analysis, it is assumed that the effect
of this layer is negligble compared to the thicker reflective
coating and much thicker substrate. The dimensions of the
cantilever plan form can be found in Figure 4. The accuracy
of this measurement is 1 µm. Using SEM the thickness can
therefore not be measured. The predicted thicknesses from
theory can therefore not be validated against an absolute
reference. Using the described setup, cantilevers can be

Figure 4. SEM of Nanoworld ARROW-TL8Au cantilevers used in
measurements including dimensions.

actuated upto approximately 10 kHz. After that the signal
to noise ratio (SNR) will become too low for registration of
the movement of the cantilever.

B. Experimental procedure
The laser spot is placed in a required reference position

by correlation of photographs taken using the microscope
objective and CCD camera present in the setup with the SEM
of the cantilever as depicted in Figure 5. After alignment
the required laser power is set manually and the laser is
focused. The OPS is aligned such that the returning laser
beam hits it as close to its center as possible to reduce the
effects of any sensor non-linearity. Any remaining sensor
signal caused by the initial rotation of the cantilever is nulled
in postprocessing. The setup is mounted on a pneumatically
stabilized table and stored in a light tight container to reduce
the effects of environmental vibration and stray light.

To determine the thermal diffusivity of the cantilever, the
phase delay of the rotation with respect to the input signal is

Figure 5. Alignment of the laser spot on the cantilever by correlation of
CCD images with SEM of the cantilever.

measured. This is done by modulating the laser diode current
sinusoidially. The mean current (IDC) is set to the level that
was also set after the detector alignment. The amplitude of
the wave (IAC) can be chosen freely, as long as the minimum
and maximum currents as specified for the laser diode are
not exceeded. The diode current is then modulated as

ILD = IDC + IAC sin (ωit) (41)

The frequency ω is set to several values on a logarithmic
interval between 1 and 10, 000 Hz for the ARROW-TL8Au
cantilevers. The acquisition time is dependent on the actua-
tion frequency and is taken to cover at least ten full cycles
with a minimum of 0.1 s. For the used cantilevers this is
sufficient to reach a steady mean cantilever temperature.
As the initial temperature is not known exactly, using
temperature fluctuations around a steady mean negates the
need for inclusion of the transient. A generic sine function is
later fitted to the steady state cycles of the measured rotation
and the phase shift is extracted.

C. Results

The phase angle is used to fit (21) to the processed delay
measurements. It is assumed in this fit that the experiment
was performed in vacuum and B is thus equal to zero. The
found diffusivity is therefore an overestimate. However, as
the error is systematic, the results can be used to judge the
validity of the derived equations. This decision is justified by
the large uncertainty in convective heat transfer coefficient.
The convective time constant B can be related to the
convective heat transfer coefficient via

B =
hA

mcp
(42)

where h is the heat transfer coefficient in W m−2 K−1,
A is the area involved in convective heat transfer in m2

and the product m · cp is the total heat capacity of the
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cantilever in J K−1. The total heat capacity is unknown, as
well as the exact area exposed to convective heat transfer.
The convective heat transfer coefficient is unknown and
values reported in literature vary largely. For example,
Sheng, Narayanaswamy, Goh, and Chen[9] report values
of h = 500 − 5000 W m−2 K−1. The physics behind
this large convective heat transfer coeffient is currently
poorly understood [11][12]. For this reason it was decided
to assume no convective heat transfer and accept the
systematic error. Future experiments in vacuum are required
for full validation of the theory.
In estimating the thermal diffusivity all frequencies between
1 and 2000 Hz were used. Higher frequencies were
discarded because the mechanical resonance frequency
of the cantilever dominated here. This effect was not
covered in the developed theoretical model. The non-linear
fitting procedure requires an initial guess for the thermal
diffusivity. Based on manufacturer specifications the
thermal diffusivity is assumed D = 7 · 10−5 m2 s−1. The
spot positions are obtained from correlation of the CCD
camera images with the SEM of the cantilever. The found
diffusivities are plotted as a function of the laser spot
center position in Figure 6. As can be seen in the diagram,

Figure 6. Found diffusivity as function of spot center position.

the variation of the estimation of the thermal diffusivity is
small for a large range of spot center positions. However,
when the spot gets closer to the base of the cantilever,
the estimation of thermal diffusivity drops considerably. It
is currently speculated that this is caused by a significant
heat leak into the base causing the temperature of the
base to change. This will have to be verified in future
experiments. During measurements it was noticed that the
extracted thermal diffusivity was dependent on the incident
laser power. The incident mean laser power was set to
1.33, 2.00, 2.69 and 3.26 mW. Per mean power setting,

wave magnitudes of 0.3802, 0.7604 and 1.1407 mW were
superimposed. The found thermal diffusivities are plotted in
Figure 7. As can be seen in Figure 7 the derived diffusivity

Figure 7. Found thermal diffusivity as a function of power, assuming
vacuum conditions. Spot located at b = 433 µm.

varies with both AC power and DC power. No clear trend
is evident from the results. Although at DC power settings
of 1.33, 2.69 and 3.26 mW a higher AC power seems to
increase the estimate, although this is not true for 2.00 mW.
Also the change in diffusivity does not seem to adhere
any evident relation. The reasons for this dependency are
currently not well understood.

IV. CONCLUSION AND FUTURE WORK

A theoretical model is derived that allows the determina-
tion of the thermal diffusivity of a cantilever microbeam
using the optical beam deflection method. Via this non-
contact, non-destructive method also the effective conduc-
tance and the layer thicknesses can be determined if the
material properties are known. Initial experimental results
show that proposed method is capable of resolving the ther-
mal diffusivity of microcantilevers. Experiments conducted
in vacuum conditions are required for full validation of the
theoretical model.
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APPENDIX

The transfer function for the rotation of the cantilever due
to a local heat input is given by

G (s) =

√
2πc

8 (s+B) cosh (k3)
{

− 2 exp (k1) [erf (m1) + erf (m2)]

+ 2 exp (k2) [erf (m4)− erf (m3)]

+ 4 cosh (k3) erf (m5)

+ exp (k4) [erf (m3)− erf (m4)]

+ exp (k5) [erf (m2) + erf (m4)]

+ exp (k6) [erf (m3)− erf (m1)]

+ exp (k7) [erf (m1) + erf (m2)]}

where the auxiliary parameters are given by:

k1 =
2D (b− L)

√
s+B
D + (s+B) c2

2D

k2 =
2D (b− L)

√
s+B
D + (s+B) c2

2D

k3 =

√
s+B

D
L

k4 =
2D (L− 2b)

√
s+B
D + (s+B) c2

2D

k5 =
−2DL

√
s+B
D + (s+B) c2

2D

k6 =
2DL

√
s+B
D + (s+B) c2

2D

k7 =
2D (2b− L)

√
s+B
D + (s+B) c2

2D

m1 =

√
2
(
b+ c2

√
s+B
D

)
2c

m2 =

√
2
(
L− b− c2

√
s+B
D

)
2c

m3 =

√
2
(
L− b+ c2

√
s+B
D

)
2c

m4 =

√
2
(
−b+ c2

√
s+B
D

)
2c

m5 =

√
2

2

b

c
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