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Abstract— The identification of fungicide residues on crop 
foliage is necessary to make periodic pest management 
decisions. The determination of fungicide residue identities 
currently is difficult and time consuming using conventional 
chemical analysis methods such as gas chromatography-mass 
spectroscopy. Different fungicide types produce unique 
electronic aroma signature patterns when headspace volatiles 
are analyzed using a multi-sensor array within an electronic–
nose device. The advantage of electronic-nose sensor devices 
over conventional methods is that fungicides may be rapidly 
identified even in the presence of complex plant volatile 
organic compounds derived from crop foliage that may be 
present in the headspace mixture. New methods were 
developed for a conducting polymer type electronic nose 
device, the Aromascan A32S with a 32-sensor array, to 
accurately identify and discriminate between fungicide 
residues types in vitro. The A32S electronic nose distinguished 
between nine of eleven fungicide types, providing correct 
identification determinations at frequencies ranging from 84-
98%. The distribution of aroma class components, defined by 
the principal aroma elements detected for each fungicide type 
analyzed, was determined providing some indications of 
chemical relatedness between different fungicide aroma 
classes. The A32S electronic-nose device was capable of 
providing effective identification and discrimination 
determinations of most fungicide residue types tested in vitro 
and has strong potential feasibility for making e-nose fungicide 
residue determinations on plant (crop) surfaces in the field. 

Keywords- electronic aroma detection; e-nose technologies; 
volatile organic compounds; fungicide identification 

I.  INTRODUCTION 
The detection and identification of pesticides and other 

chemical residues on agricultural and landscape plants 
currently requires time-consuming and expensive chemical 
analyses [1-4]. This problem has led to delays for crop and 
land managers who must make frequent crop-management 
and pest-control decisions involving pesticides applications. 
Pesticide residues on food crops also are a significant health 
concern, particularly on vegetables and fruits, which broadly 
impacts environmental regulatory decisions regarding the 
safety and legal-sale of food products in commercial 
markets. The inadequacies of current analytical methods for 
determining the identities and concentrations of pre-harvest 
and postharvest crop pesticide residues on the surfaces of 

food products has produced a strong need for new rapid 
chemical-detection methods to effectively identify pesticide 
residues on plants in crop fields and in postharvest storage 
facilities prior to plant-product introductions into commercial 
food markets. Thus, a portable electronic analytical gas-
sensing device capable of quickly identifying agricultural 
pesticides on crop surfaces to avoid the high cost of 
conventional chemical analyses would have high utility. 

Electronic-nose (e-nose) devices are designed to produce 
digital electronic aroma signature patterns (EASPs) derived 
from sensor-array responses  to volatile organic compounds 
(VOCs) released from chemical sources [5-7]. Unlike other 
analytical instruments, e-nose devices have the capability of 
identifying organic samples from the VOCs they release 
without having to identify individual chemical compounds 
present in volatile mixtures [8-10]. A variety of different e-
nose sensors have been developed including optical sensors 
[11], metal oxides [12, 13], semi-conductive polymers [14-
16], and conductive polymers [17-19] for different 
applications. The broad agricultural and food industries have 
utilized electronic aroma detection (EAD) technologies to 
evaluate food quality and product aromas [20-21], food 
storage life and freshness [22-24], detect industrial wastes 
[25-26], diagnose plant diseases [27], and for many other 
agricultural applications [28-29], including the detection of 
hazardous agricultural chemicals in the environment [30-32]. 

The purposes of this study were to 1) determine if an 
electronic-nose (e-nose) device, the conductive polymer 
(CP)-type Aromascan A32S e-nose, has the capability of 
identifying different fungicide residue types in vitro, 2) 
evaluate the effectiveness (accuracy) of fungicide 
determinations, and 3) assess whether e-nose aroma data 
outputs provide some indications of chemical-relatedness 
between fungicide types from different chemical classes. The 
fungicide chemical classes tested include polychlorinated 
aromatic (chlorothalonil), piperazine (triforine), phenylamide 
(metalaxyl), organochlorine (PCNB), five triazoles 
(propiconazole, myclobutanil, triadimefon, difenoconazole, 
and tebuconazole), strobilurin (azoxystrobin), and 
dicarboximide (iprodione). 

This paper is composed of an experimental section 
describing the materials and methods used in associated with 
e-nose procedures, followed by results of research findings 
for CPA e-nose chemical analyses of fungicides residues, 
and a discussion and conclusions section, based on research 
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results, to summarize the significance of findings and new 
discoveries resulting from this research. 

II. MATERIALS AND METHODS 

A. Collection and storage of fungicide samples 
Eleven technical grade fungicides with the following 

specified common names and formulations, obtained from 
various pesticide manufacturers, including chlorothalonil 
(Bravo), triforine (Funginex), metalaxyl (Apron), 
pentachloronitrobenzene abbreviated as PCNB (Terrachlor), 
propiconazole (Tilt), azoxystrobin (Quadris), iprodione 
(Rovral), myclobutanil (Systhane), triadimefon (Bayleton), 
difenoconazole (Dividend), and tebuconazole (folicur) were 
utilized in this study. The fungicide azoxystrobin is unique 
among the eleven fungicides in that it is composed of a 
mycotoxin secondary metabolite (primarily strobilurin A), 
produced by mushrooms of the agricaceous fungi 
Oudemansiella mucida and Strobilurus tenacellus, common 
in Czechoslovakian forests.  

B. Sample preparation and prerun procedures 
Small aliquots (10 µl) of each fungicide type were 

analyzed separately by placing them into 14.8 ml uncapped 
glass vials inserted into a 500 ml Pyrex glass sampling bottle 
no. 1395 (Corning Inc., Corning, NY) fitted with reference 
air, sampling, and exhaust ports on a polypropylene bottle 
cap. Reference air entered the sampling bottle through a 3 
mm polypropylene tube extending to just above the bottom 
of the sampling bottle. The sampling bottle was held in the 
sampling chamber at a constant air temperature of 25 C. The 
sampling bottle was purged with moisture-conditioned 
reference air for 2 min prior to building headspace. The 
sampling bottle was sealed and volatiles from each fungicide 
analyte were allowed to build headspace and equilibrate for 
30 min prior to each run. Reference air was maintained at 
4% RH at 25 C. Prerun tests were performed as needed to 
determine sample air relative humidity compared with that of 
reference air. A reference library (recognition file) for 
fungicide types was constructed using neural net training by 
defining aroma classes using reference databases of known 
fungicides. This recognition file then was used to identify 
unknown samples. 

C. Instrument configuration and run parameters 
All analyses were conducted with an Aromascan A32S 

(Osmetech, Inc.,Wobum,MA) CP e-nose instrument  with 32 
sensor capacity in the sensor array and 15 V across sensor 
paths. The response sensitivities of individual sensors, 
measured as percent changes in electrical resistance response 
across sensor paths relative to base resistance (%∆R/Rbase), 
varied with the type of plastic polymer used in the sensor 
matrix coating, the type of ring substitutions used to modify 
its conductive properties, and the type of metal ions used to 
dope the matrix to improve and modulate sensor response. 
Detailed results of analyses that provided prior 
characterization and calibration of the sensor array were 
reported previously [27]. The block temperature of the 
sensor array was maintained at a constant 30 C. Reference 

air was preconditioned by passing room air sequentially 
through a carbon filter, silica gel beads, inline filter, and 
Hepa filter to remove organic compounds, moisture, 
particulates, and microbes, respectively, prior to humidity 
control and introduction into the sampling bottle. The flow 
rate (suction) of sample air at the sampling port was 
maintained at -702 ml/min using a calibrated ADM 3000 
flow meter (Agilent Technologies, Wilmington, DE). Sensor 
surfaces were purged between runs using a 2% isopropanol 
wash solution. The instrument was interfaced with a personal 
computer via an RS232 cable and controlled with 
Aromascan Version 3.51 software. The instrument plumbing 
was altered from conventional architecture and specifically 
configured for static sampling of the headspace by allowing 
air flow, maintained at 605 ml/min flow rate, coming out of 
the external vent port of the instrument during analytical 
runs, and closing the exhaust port on the sampling bottle so 
that headspace volatiles were taken from a homogeneous 
static air mass within the sampling bottle. 

D. Data acquisition parameters and run schedules 
Data from the sensor array were collected at 1 s intervals 

using a 0.2 detection threshold (y-units), a 15–20 y-max 
graph scale, and with a pattern average of five data samples 
taken per run during data acquisition. A uniform run 
schedule was used consisting of reference air 20 s, sampling 
time 90 s, and wash 20 s, followed by 90 s of reference air 
for a total run time of 220 s. A 2 min reference air purge was 
completed between runs after each sample was removed 
from the sampling bottle. 

E. Construction of reference libraries and validation 
An aroma signature reference library was constructed 

from known fungicide residue types included in this study. 
All database files were linked to specific (designated) aroma 
classes defining each sample type or category. The following 
recognition network options (neural net training parameters) 
were used for each training session: training threshold = 
0.60, recognition threshold = 0.60, number of elements 
allowed in error = 5, learning rate = 0.10, momentum = 0.60, 
error goal = 0.010 (P = 0.01), hidden nodes = 5, maximum 
iterations (epochs) = 10,000, using normalized input data, 
not actual intensity data. Some parameters were modified for 
improvement of recognition accuracy. A typical training 
required 2–35 min, depending on the size of the database 
applied, using an IBM-compatible personal computer with a 
minimum of 64 mb of RAM and 350 MHz run speed. Neural 
net trainings were validated by examining training results 
that compare individual database files for compatibility or by 
similarity matches to each specific odor classes by test-
assigned odor class distributions among related odor classes 
included in each library. The specific detailed analytical 
methods used for identification of unknowns, data 
processing, and statistical determinations followed the 
procedures and specifications indicated by Wilson et al. [27]. 

F. Principal component analysis 
Detailed comparisons of relatedness of odor classes 

(fungicide types) were determined using principal 
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component analysis (PCA) algorithms provided by 
Aromascan Version 3.51 software. Three-dimensional PCA 
was used to distinguish between  headspace volatiles 
released from eleven fungicide residue types in vitro. The 
mapping parameters for three-dimensional PCA were: 
iterations = 30, units in Eigen values (%), and with 
normalized input data. 

III. RESULTS 

A. Identification of fungicide residue types 
The A32S CP e-nose effectively identified nine of the 

eleven fungicide types tested based on differences in the 
aroma profiles of headspace  volatiles derived from technical 
grade fungicide samples.  Correct identifications of unknown 
fungicides residues were determined at rates ranging from 
range 84-98% for all fungicide types except for azoxystrobin 
and iprodione. Aroma discrimination software could not 
assign these two fungicide residue types to a principal aroma 
classification, among all of the aroma profiles present in the 
aroma reference library, because a large proportional 
majority of aroma components within the headspace volatiles 
from these fungicides did not fall into a single aroma class. 
The aroma components of both fungicide residues were 
predominantly distributed evenly among the two aroma 
classes of these two residue types. Thus, ambiguous identity 
determinations resulted for azoxystrobin and iprodione 
because a large percentage of aroma components were 
assigned to primarily two different aroma classes. 

B. Discrimination between fungicide types 
The aroma profiles of each fungicide type were further 

evaluated by neural net training validation during the process 
of creating a diagnostic pesticide library for the selected 
fungicides. Analysis of data from the sensor array for each 
aroma class (defined by the principal components present in 
aroma profiles from each fungicide type) provided a precise 
breakdown of the aroma class distribution of principal aroma 
components present in volatiles among the eleven fungicide 
types (Table I). The aroma class distribution indicated (on 
percentage bases) the proportion of aroma components, 
present in the headspace volatiles from each fungicide type, 
that were in common with principal aroma elements of 
volatiles from other fungicide types present in the reference 
library. The amount (percentage) of overlap among principal 
aroma elements from volatiles of each fungicide type 
provided an indication of relatedness between the chemical 
classes or chemical nature of volatiles released from 
individual fungicide residue types. Nine of the eleven 
fungicide types were identified correctly with a majority 
proportion of the aroma profile that was assigned to the 
principal aroma element characteristic of each fungicide 
type. The range of aroma class distributions attributed to the 
principal aroma class characteristic of each fungicide type 
ranged from 86.3% in difenoconazole to 98.4% in 
triadimefon. Unusually low proportions of the aroma class 
distribution profiles of azoxystrobin (57.8%) and iprodione 
(45.0%) were attributed to their respective principal aroma 
component. Consequently, these two fungicides residue 

types were determined as unknown aroma profiles and could 
not be identified. The proportion of secondary aroma 
elements attributed to aroma classes (besides the principal 
aroma element) ranged from 10.3-53.5% for azoxystrobin 
with three minor aroma elements, and 5.0-41.0% for 
iprodione with four minor aroma elements. 

The number of minor aroma elements found among the 
aroma class distributions of the nine identified fungicide 
residues ranged from two to six. The smallest number of 
minor elements (two) discovered among the fungicides 
tested was determined for mycobutanil with aroma class 
distributions ranging from only 2.0-3.2%. The largest 
number of minor elements (six) was found for tebuconazole 
with aroma class distributions ranging from only 1.9-10.4%. 
The highest proportion of minor elements attributed to a 
single minor aroma class with identifiable fungicides was 
determined for propiconazole with 26.4% triforine aroma 
elements, PCNB with 22.5% propiconazole aroma elements, 
and chlorothalonil with 17.8% propiconazole aroma class 
elements. 

C. Principal component analysis 
An analysis of eleven fungicide residue types using PCA by 
pairwise comparisons of headspace volatiles in all possible 
combinations provided indications of possible chemical 
relatedness between fungicides. The results of relatedness 
between fungicide volatiles were measured using a statistical 
algorithm called quality factor (QF) analysis that determines 
the distance between aroma profiles using Euclidean distance 
units of measurement. The greater the QF value determined 
from pairwise comparisons of volatiles, the greater the 
difference (or distance) between the aroma signature profiles 
of the two aromas being compared.  In terms of statistical 
determinations, a QF value of 2.0 is roughly equivalent to a 
statistical difference at P = 0.10 level of significance. The 
aroma relatedness among seven fungicide types from 
different chemical classes varied considerably based on 
Euclidean distance as indicated in Table II. QF values ranged 
from 2.4 to >320, indicating a very wide range of chemical 
differences between individual fungicide residue types. 
Among the seven fungicides compared, the QF of 2.4 
indicated a significantly different, but relatively close aroma 
signatures between chlorophalonil and propiconazole. The 
biggest difference, indicated by a QF of >320, showed a 
strong difference between the headspace volatiles of PCNB 
and azoxystrobin. Moderate levels of aroma differences were 
found between chlorothalonil, triforine, and PCNB, between 
triforine, PCNB, and propiconazole, and between 
azoxystrobin and iprodione. Intermediate levels of aroma 
differences were found between chlorthalonil and iprodione, 
triforine and metalaxyl, metalaxyl and propiconazole, and 
between PCNB and iprodione. High levels of aroma 
differences were found between chlorothalonil, metalaxyl, 
and azoxystrobin, between triforine, azoxystrobin, and 
iprodione, and between metalaxyl, PCNB, azoxystrobin, and 
iprodione.
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TABLE I.  DISTRIBUTION OF ELECTRONIC-NOSE AROMA CLASS COMPONENTS AMONG ELEVEN FUNGICIDE TYPES 

 Aroma Class Distribution (%)a 

Fungicide Types 
Fungicide Types (Chemical common name abbreviations) 

Chlo Trif Meta Pcnb Prop Azox Ipro Myco Tria Dife Tebu 

Chlorothalonil 90.4 – 9.7 – 17.8 – – – – 15.8 – 

Triforine – 92.3 – 7.2 11.7 16.3 13.2 2.9 – – – 

Metalaxyl – – 88.8 – 14.9 8.0 6.4 9.6 11.4 – – 

PCNB – 10.9 – 88.1 22.5 – – 7.8 – – 5.6 

Propiconazole – 26.4 7.4 6.5 86.5 – – – 7.2 14.8 – 

Azoxystrobin – 17.2 – – – 57.8 53.5 – 10.3 – – 

Iprodione – 7.5 – – – 41.0 45.0 – – 5.5 5.0 

Mycobutanil – – 2.0 – – – – 98.4 – – 3.2 

Triadimefon – – 5.3 1.7 – 1.4 – – 92.4 6.5 – 

Difenoconazole – – – 3.7 9.3 – – – 1.9 86.3 5.6 

Tebuconazole 3.7 – – 10.4 – 6.0 9.2 1.9 – 5.9 91.0 
a. Mean percent aroma class distributions indicated for each fungicide type; read from left to right (by row), not top to bottom. Fungicide abbreviations correspond to fungicide types (column 1). 

 
The relatedness between aroma profiles of  volatiles from 

the seven fungicide residue types, based on 3-dimensional 
CPA, was graphed in the form of an aroma map that 
indicates Euclidean distances among the seven fungicide 
types (Figure 1). The percentages of the total variance for 
this analysis, accounting for the variability explained by each 
orthogonal principal component (PC), are as follows: PC 1 = 
61.5%; PC 2 = 25.8%; and PC 3 < 7.4%, representing the x-, 
y-, and z-axis of the aroma map, respectively. A high 
proportion (87.3%) of the total variance was explained by the 
first two principal components (PC 1 and PC 2). Two 
clusters of data points on the aroma map indicated groups of 
fungicide residue types that were significantly different, but 
moderately related based on similar aroma elements. The 
first data cluster consisted of chlorothalonil, propiconazole, 
and PCNB that had relatively low pairwise QF values of 2.4, 
6.2, and 16.9 for each respective combination tested. The 
second cluster of data points consisted of azoxystrobin and 
iprodione with a pairwise QF value of 7.7 indicating a 
moderate level of chemical relatedness based on aroma 
elements. The fungicide residues of triforine and metalaxyl 
were highly separated from the two related data clusters, 
resulting in pairwise QF values ranging from 30.6 to 316.1 
for triforine (relative to the other fungicides) and QF values 
of 75.6 to 317.1 for comparisons of the other fungicides to 
metalaxyl. However, the pairwise comparison yielding the 
largest QF value of >320 was between PCNB and 
azoxystrobin, indicating very large differences in aroma 
elements and an extremely low level of chemical relatedness. 

The five triazole fungicides also were compared together 
in a separate PCA analysis to determine the e-nose capability 
of distinguishing between fungicides within the same 
chemical class. Comparisons of the triazole fungicide 

residues generally showed lower pairwise QF values that 
indicated a greater chemical relatedness between fungicides 
within the triazole class, based on aroma elements, than 
between fungicides from different chemical classes. The 
most chemically-related triazoles were difenoconazole and 
tebuconazole with a QF of 1.3 showing very similar aroma 
profiles. Most of the other pairwise comparisons between the 
triazoles resulted in QF values ranging between 20.3 and 
86.4 with intermediate levels of aroma differences, but at 
high levels of statistical differences (P < 0.001). The triazole 
pairs that exhibited the greatest differences in aroma profiles 
were found between triadimefon and tebuconazole 
(QF=282.5) and between propiconazole and triadimefon 
(QF>290). High levels of residue discrimination were 
determined between the triazole fungicides in all cases 
except between difenoconazole and tebuconazole (P < 0.05). 

IV. DISCUSSION AND CONCLUSION 
This study has demonstrated that the CP A32S e-nose has 

the capability of identifying and discriminating between 
fungicide residue types (in vitro) from several different 
chemical classes including: polychlorinated aromatics, 
piperazines, phenylamides, organochlorines, triazoles, 
strobilurins, and dicarboximides. Additional work is 
necessary to determine e-nose detection capabilities with 
other fungicide classes and the feasibility for fungicide 
residue detection on crop plants in the field. 

Electronic-nose aroma data outputs using PCA provided 
some indications of chemical-relatedness between fungicide 
types from different chemical classes. Generally, there were 
greater differences in aroma profiles between fungicides 
from different chemical classes than between fungicides in 
the same chemical class, which implied that the higher the 
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QF values in pairwise comparisons, the greater the chemical 
differences between fungicides based on aroma profiles 
(signature patterns) derived from outputs of the e-nose sensor 
array. However, high levels of discrimination were not only 
found between fungicides of different chemical classes, but 
also between some fungicide pairs within the triazole 
chemical class. These data suggest that aroma chemical 
characteristics can reflect big differences in the chemical 
structure and composition of individual fungicides even 
within the same chemical class. Thus, the e-nose determined 
aroma characteristics of fungicides, and probably other 
pesticides, are not always primarily determined by the 
functional groups and toxophores present (defining the 
chemical class), but also are determined by other functional 
groups that are present in the fungicide chemical structure. 

TABLE II.  RELATEDNESS OF SEVEN FUNGICIDE RESIDUE TYPES 
BASED ON 3-DIMENSIONAL PCA OF HEADSPACE VOLATILES 

Aroma class Aroma class  QF valuea 

Chlorothalonil Triforine 13.7** 

 Metalaxyl 125.4*** 

 PCNB 6.2** 

 Propiconazole 2.4* 

 Azoxystrobin 109.2*** 

 Iprodione 59.7** 

Triforine Metalaxyl 30.6** 

 PCNB 6.7** 

 Propiconazole 9.9** 

 Azoxystrobin 109.2*** 

 Iprodione 316.1**** 

Metalaxyl PCNB 178.8*** 

 Propiconazole 75.6*** 

 Azoxystrobin 317.1**** 

 Iprodione 258.9**** 

PCNB Propiconazole 16.9** 

 Azoxystrobin > 320.0**** 

 Iprodione 62.4** 

Propiconazole Azoxystrobin 21.1** 

 Iprodione 13.5** 

Azoxystrobin Iprodione 7.7** 
a. Quality factor significant difference levels between aroma classes: * = P < 0.05; ** = P < 0.01; 

*** = P < 0.001; **** = P < 0.0001. The percentages of the total variance, accounting for the 
variability explained by each orthogonal principal component (PC), are as follows: PC 1 = 61.5%; 

PC 2 = 25.8%; and PC 3 < 7.4%. 
 

The fungicides azoxystrobin and iprodione were the only 
two fungicide residue types that could not be identified with 
the A32S e-nose in the current study. In the case of 
azoxystrobin, this is a very unusual mycotoxin-type 
biofungicide (a strobilurin) derived from biological sources 

(agaric fungi) and not a product of petroleum-based chemical 
synthesis methods used in the manufacture of most 
fungicides. The complex structure of azoxystrobin may 
interfere with the effective detection and discrimination of 
this secondary fungal metabolite by the sensor array. Some 
chemical compounds, particularly certain pesticides, cause 
short- or long-term inactivation of specific sensors in the 
sensor array as a result of the chemical adhesion and 
interactions of certain pesticides with the surface of 
individual sensor types. The pesticides causing the most 
problems are usually those that are highly polarized or have 
locally-charged components on the pesticide molecule that 
react strongly to the surface chemistry of specific sensor 
types. This also may explain the difficulties in detecting 
iprodione, which is a dicarboximide that is highly polarized 
due to the presence of chlorines on the phenyl group and 
nitrogen groups on the imidazole and carboxamide groups. 

 

 

 

 

 

 

 

 

 

Figure 1.  Aroma map showing the relatedness of  volatiles from seven 
fungicide residue types using conductive polymer analysis (CPA). 

The available literature on e-nose detection of pesticides 
is highly limited [4]. A surface acoustic wave (SAW) e-nose 
previously was used to detect organophosphate (OP) 
insecticides in ambient air [33] and on vegetables such as 
different types of chili samples [34]. 

The next logical step is to determine the feasibility of the 
e-nose to detect fungicide residues on plant (crop) surfaces in 
the field. The addition of plant volatiles to the headspace 
requires the development of new reference libraries to take 
into consideration all combinations of crop and fungicide 
types likely applied to a crop during the growing season. All 
possible combinations of fungicide residues must be 
accounted for on each crop type. The theoretical logistics of 
fungicide identifications on crops are quite feasible given 
that the discrimination of plant volatiles of different plant 
species has been well established previously [4, 27, 35]. 
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