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Abstract—With the advance in sensor devices, electroencephalog-
raphy (EEG) can be unobtrusively collected enabling the inat-
tention prediction of unmanned aerial vehicle (UAV) operators,
which is one solution for reducing the high accident rate of
UAVs. Several studies using statistical learning methods on EEG
data have shown satisfactory results. However, it is almost
impossible to obtain accurate training data containing attention
status labels due to the absence of standardized measure for
the attention status. Therefore, in this paper, we propose a
semi-supervised inattention prediction framework which does not
require training data nor any prior information by utilizing
the fact that operators keep their attention at the beginning
of a task and adopting a cumulative sum algorithm to detect
the duration. Moreover, weighted dissimilarity measures are
applied to enhance the prediction performance of the proposed
framework. From experiments conducted on real-world datasets,
the proposed framework showed promising results.

Keywords–EEG sensor; Inattention prediction; Semi-supervised
learning; Cumulative sum algorithm;Weighted dissimilarity mea-
sures.

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are known for their

high accident rate, which is ten to hundred times higher
than that of manned ones [1]. One of the reasons for the
high accident rate is the detached cockpits of UAVs, causing
frequent inattention of operators [2]. Inattention refers to the
status where an operator fails to keep her/his focus on the
involved tasks due to external or internal stimuli such as
fatigue. Therefore, the accident rate of UAVs can be reduced
by predicting the inattention of operators and inducing them
to keep their attention.

Among many efforts to predict operators’ inattention, elec-
troencephalography (EEG) based statistical learning methods
are widely used in various domains including car driving [3] as
well as unmanned aerial vehicle maneuvering [4] with satisfac-
tory performances. Particularly, EEG is suitable for inattention
prediction of the UAV operators during maneuvering since
it can be obtained in less intrusive manner [5] in real time
with minimum bias caused by external conditions. Moreover,
adopting statistical learning methods is superior to other meth-
ods including index based methods [6] or observation based
methods [7] in the fact that they enable personalized prediction
without human interventions.

Most statistical learning based inattention prediction meth-
ods adopt supervised methods such as support vector machines
[3] and hidden Markov models [8], which require training
data, which is composed of EEG vectors and corresponding
attention status labels of an operator. Labels indicate whether

the operator is focused or not during the generation of the
corresponding EEG vector. Attention status labels used in
previous studies are earmarked by utilizing additional infor-
mation with imperfect assumptions due to the absence of
standardized measure of inattention [9]. For instance, Choi
et al. [8] assumed that an operator keeps attention while
performing more difficult tasks and labeled EEG generated
during performing easy task as inattention status. Several stud-
ies assumed that the physical behaviors of operators indicate
their attention status and used them as labels. However, these
labeling techniques may cause performance degradation since
the prediction performance of supervised methods depends on
the accuracy of training data. On the other hand, unsupervised
methods which do not require labeled data are generally known
to show insufficient performances.

To overcome the supervised methods’ necessity of training
data and unsupervised methods’ low performance quality,
semi-supervised methods, in which a little portion of labeled
data or prior knowledge are used to enhance prediction per-
formances, are proposed [9], [10]. Shi et al. [9] utilize two
prior knowledge to classify sleep stages of subjects, one of
which are extreme stage labels, which are relatively easy to
obtain, and another one is stage changing patterns. Choi et
al. [10] assume a certain duration of operators’ attention from
the beginning of tasks and different contributions of frequency
bands depending on attention status, both of which are stated
in previous literature. Prior knowledge adopted in both studies
are still costly to obtain and require human interventions for
determining parameters.

To this end, we propose a semi-supervised framework
for inattention prediction of UAV operators, where human
interventions or additional information usages are minimized.
The same assumptions used in [10] are adopted, which are that
operators tend to keep their attention for a certain duration
from the beginning of tasks [11] and that contributions of
frequency bands differ depending on the attention status.
Unlike the previous work, additional methods are employed
for automatic parameter determination.

Specifically, inattention prediction is performed by using
constrained k-means algorithm [12], which keeps a small
portion of labeled data unchanged throughout the clustering
procedure. As the small portion of attention labels, instances
of a certain duration from the beginning of maneuver are
used. The duration is automatically determined by conducting
the cumulative sum (CUSUM) algorithm for variance change
detection [13], by which unusually fluctuation of EEG is
detected. Moreover, weights of the four frequency bands

127Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-426-8

SENSORDEVICES 2015 : The Sixth International Conference on Sensor Device Technologies and Applications



according to attention status are learned during the clustering
procedure by using the weighted dissimilarity measures [14],
which determine different weights scheme of features for each
cluster.

The rest of paper is organized as follows. In Section 2, the
proposed inattention prediction framework for UAV operators
is introduced, and its components are presented in detail.
Then, performances of the proposed framework are evaluated
by using real-world dataset in Section 3, and the paper is
concluded in Section 4.

II. INATTENTION PREDICTION FRAMEWORK FOR UAV
OPERATORS

A. Problem definition
In this paper, we attempt to predict the attention status

of an UAV operator by utilizing EEG generated from the
operator while maneuvering. Specicially, an EEG sequence of
an operator, acquired during performing a task, is denoted
by E = {en|n = 1, · · · , N}, where en =< en,m >,
m = 1, · · · , 4, is the n-th EEG vector composed of en,m,
a value of the m-th feature, and N is the total number of
EEG vector generated. We note that the four features indicate
the four frequencies of EEG power spectral density, alpha (8-
12 Hz), beta (13-30 Hz), delta (1-3 Hz), and theta (4-7 Hz),
obtained by performing wavelet packet decomposition [15] on
orginal EEG signal.

The purpose of the proposed framework is to determine the
attention status of en. Label matrix, L = [lk,n], is a 2-by-N
integer matrix, where lk,n indicates whether en is generated
during attention status or inattention status, and it can have
two values 1 or 0, and

∑
k lk,n = 1. If en is generated during

the attention status, l1,n is 0 and l2,n is 1, otherwise l1,n is 1
and l2,n is 0.

B. Framework overview
In this section, the proposed inattention prediction frame-

work is introduced. Figure 1 shows an overview of the frame-
work. First, an operator’s EEG data is collected using an EEG
acquisition device, and, then, a portion of the collected data
is labeled by conducting the CUSUM algorithm. The portion
of labeled data and the rest of unlabeled data are clustered
according to attention and inattention status, and, at last, when
new EEG vector of the operator is given, the attention status
of the operator during generation of the vector is predicted by
using the clustering results.

Figure 1. Overview of the proposed framework.

C. Attention labeling using the CUSUM algorithm
To detect the duration, the CUSUM algorithm is adopted, a

well-known parameter change detection method for time series
data. Particularly, change in variance is detected since there
exists a large fluctuation in variance when inattention status
occurs as shown in the EEG example from Figure 1. We denote
the time, considered as a point where attention is sustained,
by d which stands for the duration and call it duration in the
rest of the paper.

There exist four time series data, representing the four
frequency bands, so that we separately detect their durations
and use the minimum value, obtained by (2).

d = min dm, m = 1, · · · , 4 (1)

where dm is a detected duration of the m-th feature, and it is
calculated by (2).

dm = argmaxt |Dt,m|, (2)

where Dt,m is defined as (3).

Dt,m =

∑t
n=1 e

2
n,m∑N

n=1 e
2
n,m

− t

N
, (3)

D. Inattention prediction using constrained k-means with
weighted dissimilarity measures

Using the duration as a small portion of labeled data,
constrained k-means [12] is adopted for the proposed
semi-supervised inattention prediction. Additionally, different
weights of the four frequency bands are learned according to
clusters, attention or inattention, by employing the dissimilarity
measures [14]. The proposed algorithm combining the above
two methods is in the form of the expectation and maximiza-
tion scheme [16] as shown in Figure 2.

Input: E, d, maxIter
Output: L, C, W
t← 1
c1,m ← 1

d−1

∑d−1
n=1 en,m

c2,m ← n
repeat

if n < d then
l
(t+1)
2,n ← 1 and l

(t+1)
1,n ← 0

else
determine L(t+1) for n = d, · · · , N and k = 1, 2

end if
determine C(t+1) for k = 1, 2 and m = 1, · · · , 4
determine W (t+1) for k = 1, 2 and m = 1, · · · , 4
t← t+ 1

until (t = maxIter) || (Equation (4) converges)

Figure 2. Pseudo-code of the inattention prediction algorithm combining
constarined k-means with weighted dissimilarity measures.

In Figure 2, C represents a 2-by-m matrix, m = 1, · · · , 4,
whose elements are c1,m and c2,m indicate the centroid of
inattention and attention cluster, respectively. W is also a 2-
by-m matrix, and its element, wk,m is a weight of the m-th
feature for the k-th cluster. The three determination process of
L, C, and W is to minimize the objective function shown in
(4).

F (E,L,W,C) =

2∑
k=1

N∑
n=1

4∑
m=1

lk,nwk,ms(ck,m, en,m), (4)
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where s(ck,m, en,m) is a similarity measure between ck,m and
en,m, calculated by (5).

s(ck,m, en,m) = |ck,m − en,m|2 (5)

Detailed information of the determination process can be found
in [14].

III. EXPERIMENT
A. Data acquisition

To evaluate the performances of the proposed inattention
prediction framework, real-world datasets were collected. Four
subjects, including a female and three males, maneuvered a
flight simulator called Microsoft Flight Simulator XTM [17],
which provides tasks and environments similar to those of
actual UAVs, using joysticks which are also similar to the
controllers of UAVs. Each subject performed a task of ma-
neuvering an UAV from Kagoshima, Japan to Gimhae, Korea
for three times in two days with enough rest to avoid fatigue.

A snapshot of data acquisition using the equipments men-
tioned above is shown in Figure 3. We used a commercial EEG
acquisition tool, EmotiveTM EPOC [18]. Using EmotiveTM

EPOC, EEG was collected from 14 channels according to
the international 10-20 system at frequency of 30 Hz and
bandwidth between 0.2 Hz and 45 Hz.

Figure 3. Snapshot of data acquisition procedure by using EmotiveTMEPOC,
joysticks, and Microsoft Flight Simulator XTM.

After conducting manual inspection for noise reduction,
averaged and normalized magnitudes (in microvolts) across
the 14 channels of the four frequency bands were used in
the experiments. Subjects were asked to keep certain levels
of velocity and altitude while maneuvering, and we assumed
that the periods where a subject failed to keep the given
standards are the inattention periods of the subject. We note
that the information of inattention period only used for model
validation purpose.

B. Experiment setting
According to the detection methods for attention dura-

tions and weights, nine different models, UM, GW, LW,
GD, GWGD, LWGD, DD, GWDD, LWDD, were involved
in the experiments. The first three columns in Table II show
names and characteristics of the nine models. ‘Non’ indicates
that the models do not utilize any duration or weights for
inattention prediction, ‘Given’ indicates that the models uses
the given values of durations or weights, and lastly, ‘Detected’
or ‘Learned’ indicates that the model uses detected durations
or learned weights by performing the CUSUM algorithm or
the weighted dissimilarity measure, receptively.

Among the nine models, UM is one that previously exists
and the others where duration and weight are utilized are ones
that proposed in this paper. Specifically, in the experiments, 5
minutes of duration and weight scheme (1, 2, 1, 1) for (delta,
theta, alpha, beta) were used. Those numbers are ones that
have proven to show the best performance by comparing a
small set of values in the previous study [10], and, also, theta
wave is known to be closely related to sleep states. We note
that, unfortunately, a previous inattention prediction method
based on supervised and semi-supervised approaches cannot
be implemented since we assumed that there is no labeled
data for training.

As an evaluation criterion, we employed accuracy which
is widely used in statistical learning domain [19]. Accuracy is
calculated by (6).

Accuracy =
TP + TN

TP + FP + FN + TN
, (6)

where TP , FP , FN , and TN receptively represent the
number of true positive, false positive, false negative, and
true negative instances as shown in Table I. In addition, all
experiments are repeated for ten times, and the results are
averaged to minimize randomness.

TABLE I. CONFUSION MATRIX FOR INATTENTION PREDICTION.

Predicted attention Predicted inattention

Actual attention True positive (TP ) False negative (FN )
Actual inattention False positive (FP ) True negative (TN )

C. Experiment results
In this section, experiment results of the proposed inatten-

tion prediction framework are presented. Table II shows the
summary of the performance comparison results among the
nine models. On the average, LWGD model performed the
best with an accuracy of 79.71%, while UM model performed
the worst with an accuracy of 54.48%. In most cases, better
results can be obtained when the attention status labels for the
durations or the weights of four frequency bands are used for
the inattention prediction.

In addition, prediction accuracies varies among subjects.
For instance, while the best accuracy of Subject 4 is 78.00%,
that of Subject 3 is 84.37%, and across all subjects, Subject
4 shows the worst accuracies for all models. This implies that
for some operators, the proposed framework may not work
satisfactorily, and, therefore, additional care should be given
for such operators.

By comparing results of models GD and DD, where GD
uses a given duration of 5 minutes for all subjects and DD uses
a detected duration for each subject and trial, it can be said that
prediction quality enhances when using a detected duration
with an exception of Subject 3. Moreover, the effectiveness
of learning weights varies among subjects, although for most
cases using learned weight enhanced the performances. There-
fore, in-depth experiments and explorations on the results
should be conducted to show appropriateness of the proposed
method.

IV. CONCLUSION
In this paper, an inattention prediction framework for

UAV operators using statistical learning methods on EEG
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TABLE II. PERFORMANCE COMPARISON RESULTS OF THE NINE MODELS ACCORDING TO THE FOUR SUBJECTS IN TERMS OF ACCURACY (IN PERCENT).

Duration Weight Model Subject 1 Subject 2 Subject 3 Subject 4 Average

Non Non UM 48.07 65.97 59.64 44.23 54.48
Given GW 50.47 62.18 73.31 44.48 57.61

Learned LW 47.46 61.93 57.49 48.46 53.83

Given Non GD 77.41 78.56 82.07 75.81 78.46
Given GWGD 78.56 78.89 81.89 76.67 79.00

Learned LWGD 80.15 78.93 84.32 75.41 79.71

Detected Non DD 77.90 79.07 81.23 77.20 78.85
Given GWDD 78.36 78.92 82.62 77.59 79.37

Learned LWDD 77.82 77.97 84.37 78.00 79.54

Average 64.86 71.97 73.65 66.67 69.29

data is proposed. Particularly, it is in the form of a semi-
supervised method by utilizing the fact that operators keep
their attention at the beginning of tasks to address the problem
of no unified attention standard. To minimize human interven-
tions, an automatic method for detecting attention duration,
called the CUSUM algorithm, is adopted, and the weighted
dissimilarity measures, where weights of four frequency bands
are separately learned depending on cluster during clustering
process, are applied to further enhance the performances of
the proposed method.

For the future work, we plan to conduct in-depth exper-
iments using diverse settings such as durations and weights.
Moreover, for the practical usage, advanced methods for both
detecting duration and learning weights should be developed to
improve accuracy of current model. Eventually, adoption of the
inattention framework to a real-world situation will contribute
to the lowering the UAV’s accident rate and enhancing UAV
operator’s safety.
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